1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-26 17:46:14 +01:00
CommandStation-EX/IO_NeoPixel.h

334 lines
13 KiB
C
Raw Permalink Normal View History

2024-09-03 12:26:17 +02:00
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers.
* This device driver will configure the device on startup, along with
* interacting with the device for all input/output duties.
*
* To create NEOPIXEL devices, these are defined in myAutomation.h:
* (Note the device driver is included by default)
*
2024-09-03 16:04:40 +02:00
* HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address)
* e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60)
2024-09-03 12:26:17 +02:00
* This gives each pixel in the chain an individual vpin
* The number of pixels must match the physical pixels in the chain.
*
* This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit.
* This can be written/read with an analog write/read call.
* The ON bit can be set on and off with a digital write. This allows for
* a pixel to be preset a colour and then turned on and off like any other light.
*/
#ifndef IO_EX_NeoPixel_H
#define IO_EX_NeoPixel_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
2024-09-03 16:04:40 +02:00
// The following macros to define the Neopixel String type
// have been copied from the Adafruit Seesaw Library under the
// terms of the GPL.
// Credit to: https://github.com/adafruit/Adafruit_Seesaw
// The order of primary colors in the NeoPixel data stream can vary
// among device types, manufacturers and even different revisions of
// the same item. The third parameter to the seesaw_NeoPixel
// constructor encodes the per-pixel byte offsets of the red, green
// and blue primaries (plus white, if present) in the data stream --
// the following #defines provide an easier-to-use named version for
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
// device expecting three bytes per pixel, with the first byte
// containing the green value, second containing red and third
// containing blue. The in-memory representation of a chain of
// NeoPixels is the same as the data-stream order; no re-ordering of
// bytes is required when issuing data to the chain.
// Bits 5,4 of this value are the offset (0-3) from the first byte of
// a pixel to the location of the red color byte. Bits 3,2 are the
// green offset and 1,0 are the blue offset. If it is an RGBW-type
// device (supporting a white primary in addition to R,G,B), bits 7,6
// are the offset to the white byte...otherwise, bits 7,6 are set to
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#define NEO_KHZ800 0x0000 // 800 KHz datastream
#define NEO_KHZ400 0x0100 // 400 KHz datastream
2024-09-03 12:26:17 +02:00
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for NeoPixel.
*/
2024-09-03 16:04:40 +02:00
2024-09-03 12:26:17 +02:00
class NeoPixel : public IODevice {
public:
2024-09-05 23:02:29 +02:00
static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) {
2024-09-03 16:04:40 +02:00
if (checkNoOverlap(vpin, nPins, mode, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress);
2024-09-03 12:26:17 +02:00
}
private:
2024-09-03 16:04:40 +02:00
static const byte SEESAW_NEOPIXEL_BASE=0x0E;
static const byte SEESAW_NEOPIXEL_STATUS = 0x00;
static const byte SEESAW_NEOPIXEL_PIN = 0x01;
static const byte SEESAW_NEOPIXEL_SPEED = 0x02;
static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03;
static const byte SEESAW_NEOPIXEL_BUF=0x04;
static const byte SEESAW_NEOPIXEL_SHOW=0x05;
2024-09-05 23:02:29 +02:00
// all adafruit examples say this pin. Presumably its hard wired
// in the adapter anyway.
static const byte SEESAW_PIN15 = 15;
2024-09-03 16:04:40 +02:00
2024-09-03 12:26:17 +02:00
// Constructor
2024-09-03 16:04:40 +02:00
NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) {
2024-09-03 12:26:17 +02:00
_firstVpin = firstVpin;
2024-09-05 23:02:29 +02:00
_nPins=nPins;
2024-09-03 12:26:17 +02:00
_I2CAddress = i2cAddress;
2024-09-07 12:16:30 +02:00
// calculate the offsets into the seesaw buffer for each colour depending
// on the pixel strip type passed in mode.
2024-09-06 09:08:18 +02:00
_redOffset=4+(mode >> 4 & 0x03);
_greenOffset=4+(mode >> 2 & 0x03);
_blueOffset=4+(mode & 0x03);
if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3;
2024-09-03 16:04:40 +02:00
else _bytesPerPixel=4; // string has a white byte.
2024-09-07 12:16:30 +02:00
2024-09-03 16:04:40 +02:00
_kHz800=(mode & NEO_KHZ400)==0;
2024-09-06 09:08:18 +02:00
_showPendimg=false;
2024-09-07 12:16:30 +02:00
// Each pixel requires 3 bytes RGB memory.
// Although the driver device can remember this, it cant do off/on without
// forgetting what the on colour was!
pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB));
stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off
if (pixelBuffer==nullptr || stateBuffer==nullptr) {
DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString());
return;
}
// preset all pins to white so a digital on/off will do something even if no colour set.
memset(pixelBuffer,0xFF,_nPins*sizeof(RGB));
2024-09-03 12:26:17 +02:00
addDevice(this);
}
void _begin() {
2024-09-07 12:16:30 +02:00
2024-09-03 12:26:17 +02:00
// Initialise Neopixel device
I2CManager.begin();
if (!I2CManager.exists(_I2CAddress)) {
DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
2024-09-05 23:02:29 +02:00
2024-09-03 16:04:40 +02:00
byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800};
I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer));
2024-09-05 23:02:29 +02:00
// In the driver there are 3 of 4 byts per pixel
auto numBytes=_bytesPerPixel * _nPins;
byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH,
(byte)(numBytes >> 8), (byte)(numBytes & 0xFF)};
I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer));
const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15};
I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer));
2024-09-06 09:08:18 +02:00
for (auto pin=0;pin<_nPins;pin++) transmit(pin);
2024-09-03 12:26:17 +02:00
_display();
}
2024-09-06 09:08:18 +02:00
// loop called by HAL supervisor
void _loop(unsigned long currentMicros) override {
if (!_showPendimg) return;
byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW};
I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer));
_showPendimg=false;
}
2024-09-07 12:16:30 +02:00
2024-09-03 12:26:17 +02:00
// read back pixel on/off
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
2024-09-07 12:16:30 +02:00
return isPixelOn(vpin-_firstVpin);
2024-09-03 12:26:17 +02:00
}
// Write digital value. Sets pixel on or off
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
2024-09-07 12:16:30 +02:00
auto pixel=vpin-_firstVpin;
2024-09-03 12:26:17 +02:00
if (value) {
2024-09-07 12:16:30 +02:00
if (isPixelOn(pixel)) return;
setPixelOn(pixel);
2024-09-03 12:26:17 +02:00
}
else { // set off
2024-09-07 12:16:30 +02:00
if (!isPixelOn(pixel)) return;
setPixelOff(pixel);
2024-09-03 12:26:17 +02:00
}
2024-09-07 12:16:30 +02:00
transmit(pixel);
2024-09-03 12:26:17 +02:00
}
2024-09-12 09:35:26 +02:00
VPIN _writeRange(VPIN vpin,int value, int count) {
// using write range cuts out the constant vpin to driver lookup so
// we can update multiple pixels much faster.
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_write(vpin,value);
vpin++;
}
return nextVpin; // next pin we cant
}
2024-09-07 12:16:30 +02:00
// Write analogue value.
// The convoluted parameter mashing here is to allow passing the RGB and on/off
// information through the generic HAL _writeAnalog interface which was originally
// designed for servos and short integers
void _writeAnalogue(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B) override {
2024-09-03 12:26:17 +02:00
if (_deviceState == DEVSTATE_FAILED) return;
2024-09-07 12:16:30 +02:00
RGB newColour={(byte)((colour_RG>>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)};
auto pixel=vpin-_firstVpin;
if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change
if (onoff) setPixelOn(pixel); else setPixelOff(pixel);
pixelBuffer[pixel]=newColour;
transmit(pixel);
2024-09-03 12:26:17 +02:00
}
2024-09-12 09:35:26 +02:00
VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override {
// using write range cuts out the constant vpin to driver lookup so
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_writeAnalogue(vpin,colour_RG, onoff,colour_B);
vpin++;
}
return nextVpin; // next pin we cant
}
2024-09-03 12:26:17 +02:00
// Display device information and status.
void _display() override {
DIAG(F("NeoPixel I2C:%s Vpins %u-%u %S"),
_I2CAddress.toString(),
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
2024-09-07 12:16:30 +02:00
bool isPixelOn(int16_t pixel) {return stateBuffer[pixel/8] & (0x80>>(pixel%8));}
void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));}
void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));}
2024-09-03 12:26:17 +02:00
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
2024-09-03 16:04:40 +02:00
2024-09-07 12:16:30 +02:00
void transmit(uint16_t pixel, bool show=true) {
2024-09-06 09:08:18 +02:00
byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00};
2024-09-07 12:16:30 +02:00
uint16_t offset= pixel * _bytesPerPixel;
2024-09-03 16:04:40 +02:00
buffer[2]=(byte)(offset>>8);
2024-09-06 09:08:18 +02:00
buffer[3]=(byte)(offset & 0xFF);
2024-09-07 12:16:30 +02:00
if (isPixelOn(pixel)) {
auto colour=pixelBuffer[pixel];
buffer[_redOffset]=colour.red;
buffer[_greenOffset]=colour.green;
buffer[_blueOffset]=colour.blue;
} // else leave buffer black (in buffer preset to zeros above)
2024-09-03 16:04:40 +02:00
// Transmit pixel to driver
I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel);
2024-09-06 09:08:18 +02:00
_showPendimg=true;
2024-09-03 12:26:17 +02:00
}
2024-09-07 12:16:30 +02:00
struct RGB {
byte red;
byte green;
byte blue;
bool operator==(const RGB& other) const {
return red == other.red && green == other.green && blue == other.blue;
}
};
RGB* pixelBuffer = nullptr;
byte* stateBuffer = nullptr; // 1 bit per pixel
bool _showPendimg;
// mapping of RGB onto pixel buffer for seesaw.
2024-09-03 16:04:40 +02:00
byte _bytesPerPixel;
byte _redOffset;
byte _greenOffset;
byte _blueOffset;
bool _kHz800;
2024-09-03 12:26:17 +02:00
};
#endif