1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/IO_EXIOExpander.h

403 lines
15 KiB
C
Raw Normal View History

2022-12-08 05:21:01 +01:00
/*
2023-01-29 10:26:33 +01:00
* © 2022, Peter Cole. All rights reserved.
2022-12-08 05:21:01 +01:00
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
2022-12-28 20:10:37 +01:00
* The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices.
* This device driver will configure the device on startup, along with
2022-12-08 05:21:01 +01:00
* interacting with the device for all input/output duties.
2022-12-09 23:32:15 +01:00
*
* To create EX-IOExpander devices, these are defined in myHal.cpp:
2022-12-28 23:44:08 +01:00
* (Note the device driver is included by default)
2022-12-09 23:32:15 +01:00
*
* void halSetup() {
2023-01-29 10:26:33 +01:00
* // EXIOExpander::create(vpin, num_vpins, i2c_address);
* EXIOExpander::create(800, 18, 0x65);
* }
*
2023-01-29 10:26:33 +01:00
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
* device in use. There is no way for the device driver to sanity check pins are used for the
* correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
* incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
2022-12-08 05:21:01 +01:00
*/
#ifndef IO_EX_IOEXPANDER_H
#define IO_EX_IOEXPANDER_H
2022-12-12 10:54:20 +01:00
#include "I2CManager.h"
#include "DIAG.h"
2022-12-08 05:21:01 +01:00
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for EX-IOExpander.
*/
class EXIOExpander : public IODevice {
public:
2023-02-08 20:32:27 +01:00
enum ProfileType : uint8_t {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
2023-01-29 01:06:01 +01:00
static void create(VPIN vpin, int nPins, uint8_t i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
2022-12-08 05:21:01 +01:00
}
private:
// Constructor
2023-01-29 01:06:01 +01:00
EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
2022-12-08 05:21:01 +01:00
_firstVpin = firstVpin;
_nPins = nPins;
_i2cAddress = i2cAddress;
2023-02-08 20:32:27 +01:00
// To save RAM, space for servo configuration is not allocated unless a pin is used.
// Initialise the pointers to NULL.
for (int i=0; i<_nPins; i++) {
_servoData[i] = NULL;
}
2022-12-08 05:21:01 +01:00
addDevice(this);
}
void _begin() {
// Initialise EX-IOExander device
2023-01-09 23:16:42 +01:00
I2CManager.begin();
2022-12-08 05:21:01 +01:00
if (I2CManager.exists(_i2cAddress)) {
2023-02-01 10:46:08 +01:00
_command4Buffer[0] = EXIOINIT;
_command4Buffer[1] = _nPins;
_command4Buffer[2] = _firstVpin & 0xFF;
_command4Buffer[3] = _firstVpin >> 8;
2023-02-01 05:53:46 +01:00
// Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
2023-02-01 10:46:08 +01:00
I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4);
2023-02-01 05:53:46 +01:00
if (_receive3Buffer[0] == EXIOPINS) {
_numDigitalPins = _receive3Buffer[1];
_numAnaloguePins = _receive3Buffer[2];
_digitalPinBytes = (_numDigitalPins + 7)/8;
_digitalInputStates=(byte*) calloc(_digitalPinBytes,1);
2023-01-29 01:06:01 +01:00
_analoguePinBytes = _numAnaloguePins * 2;
_analogueInputStates = (byte*) calloc(_analoguePinBytes, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
2023-01-29 01:06:01 +01:00
} else {
2022-12-20 10:41:32 +01:00
DIAG(F("ERROR configuring EX-IOExpander device, I2C:x%x"), _i2cAddress);
_deviceState = DEVSTATE_FAILED;
return;
}
2023-01-29 01:06:01 +01:00
// We now need to retrieve the analogue pin map
_command1Buffer[0] = EXIOINITA;
I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1);
2022-12-25 21:44:15 +01:00
// Attempt to get version, if we don't get it, we don't care, don't go offline
2023-01-29 01:06:01 +01:00
_command1Buffer[0] = EXIOVER;
I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1);
2023-01-29 01:06:01 +01:00
_command1Buffer[0] = EXIOVER;
I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1);
2022-12-25 22:36:12 +01:00
_majorVer = _versionBuffer[0];
_minorVer = _versionBuffer[1];
_patchVer = _versionBuffer[2];
2023-01-11 22:27:42 +01:00
DIAG(F("EX-IOExpander device found, I2C:x%x, Version v%d.%d.%d"),
_i2cAddress, _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]);
2022-12-08 05:21:01 +01:00
#ifdef DIAG_IO
_display();
#endif
} else {
2022-12-13 22:49:09 +01:00
DIAG(F("EX-IOExpander device not found, I2C:x%x"), _i2cAddress);
2022-12-08 05:21:01 +01:00
_deviceState = DEVSTATE_FAILED;
}
}
2023-01-29 01:06:01 +01:00
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
2023-01-29 10:26:33 +01:00
if (configType == CONFIGURE_INPUT) {
bool pullup = params[0];
_digitalOutBuffer[0] = EXIODPUP;
_digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = pullup;
2023-02-06 22:32:16 +01:00
I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
if (_command1Buffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin);
return false;
}
2023-02-08 20:32:27 +01:00
} else if (configType == CONFIGURE_SERVO) {
if (paramCount != 5) return false;
#ifdef DIAG_IO
DIAG(F("Servo: Configure VPIN:%d Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"),
vpin, params[0], params[1], params[2], params[3], params[4]);
#endif
struct ServoData *s = _servoData[pin];
if (s == NULL) {
_servoData[pin] = (struct ServoData *)calloc(1, sizeof(struct ServoData));
s = _servoData[pin];
if (!s) return false; // Check for failed memory allocation
}
s->activePosition = params[0];
s->inactivePosition = params[1];
s->profile = params[2];
s->duration = params[3];
int state = params[4];
if (state != -1) {
// Position servo to initial state
IODevice::writeAnalogue(pin, state ? s->activePosition : s->inactivePosition, 0, 0);
}
return true;
2023-01-29 10:26:33 +01:00
} else {
return false;
}
}
2023-01-29 01:06:01 +01:00
// Analogue input pin configuration, used to enable on EX-IOExpander device
2023-01-11 23:10:41 +01:00
int _configureAnalogIn(VPIN vpin) override {
2023-01-23 07:26:07 +01:00
int pin = vpin - _firstVpin;
2023-01-29 01:06:01 +01:00
_command2Buffer[0] = EXIOENAN;
_command2Buffer[1] = pin;
2023-02-06 22:32:16 +01:00
I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2);
if (_command1Buffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin);
return false;
}
2023-01-23 07:26:07 +01:00
return true;
2023-01-11 23:10:41 +01:00
}
2023-01-29 01:06:01 +01:00
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
2023-01-23 02:49:23 +01:00
void _loop(unsigned long currentMicros) override {
2023-01-27 19:42:55 +01:00
(void)currentMicros; // remove warning
2023-02-08 22:38:00 +01:00
if (_deviceState == DEVSTATE_FAILED) return;
2023-01-29 01:06:01 +01:00
_command1Buffer[0] = EXIORDD;
I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1);
_command1Buffer[0] = EXIORDAN;
I2CManager.read(_i2cAddress, _analogueInputStates, _analoguePinBytes, _command1Buffer, 1);
2023-02-08 23:41:50 +01:00
if ((currentMicros - _lastRefresh) / 1000UL > refreshInterval) {
_lastRefresh = currentMicros;
for (int pin=0; pin<_nPins; pin++) {
if (_servoData[pin] != NULL) {
updatePosition(pin);
}
}
2023-02-08 22:38:00 +01:00
}
2023-01-23 02:49:23 +01:00
}
2023-01-29 01:06:01 +01:00
// Obtain the correct analogue input value
2023-01-11 23:10:41 +01:00
int _readAnalogue(VPIN vpin) override {
2023-01-29 01:06:01 +01:00
int pin = vpin - _firstVpin;
uint8_t _pinLSBByte;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
_pinLSBByte = aPin * 2;
}
}
2023-01-23 07:26:07 +01:00
uint8_t _pinMSBByte = _pinLSBByte + 1;
2023-01-23 11:12:28 +01:00
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
2022-12-11 01:22:48 +01:00
}
2023-01-29 01:06:01 +01:00
// Obtain the correct digital input value
int _read(VPIN vpin) override {
2023-02-08 22:38:00 +01:00
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
2023-02-08 22:38:00 +01:00
if (_servoData[pin] == NULL) {
uint8_t pinByte = pin / 8;
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value;
} else {
struct ServoData *s = _servoData[pin];
if (s == NULL) {
return false; // No structure means no animation!
} else {
return (s->stepNumber < s->numSteps);
}
}
}
2022-12-18 09:59:16 +01:00
void _write(VPIN vpin, int value) override {
2023-02-08 22:38:00 +01:00
if (_deviceState == DEVSTATE_FAILED) return;
2022-12-18 09:59:16 +01:00
int pin = vpin - _firstVpin;
2023-02-08 22:38:00 +01:00
if (_servoData[pin] == NULL) {
_digitalOutBuffer[0] = EXIOWRD;
_digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = value;
I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
if (_command1Buffer[0] != EXIORDY) {
DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin);
}
} else {
if (value) value = 1;
struct ServoData *s = _servoData[pin];
if (s != NULL) {
// Use configured parameters
this->_writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration);
} else {
/* simulate digital pin on PWM */
this->_writeAnalogue(vpin, value ? 4095 : 0, Instant | NoPowerOff, 0);
}
2023-02-06 22:32:16 +01:00
}
2022-12-18 09:59:16 +01:00
}
2023-02-08 20:32:27 +01:00
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
2023-02-01 05:53:46 +01:00
int pin = vpin - _firstVpin;
2023-02-08 22:38:00 +01:00
#ifdef DIAG_IO
2023-02-08 20:32:27 +01:00
DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
2023-02-08 22:38:00 +01:00
#endif
2023-02-08 20:32:27 +01:00
if (_deviceState == DEVSTATE_FAILED) return;
if (value > 4095) value = 4095;
else if (value < 0) value = 0;
struct ServoData *s = _servoData[pin];
if (s == NULL) {
// Servo pin not configured, so configure now using defaults
s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1);
if (s == NULL) return; // Check for memory allocation failure
s->activePosition = 4095;
s->inactivePosition = 0;
s->currentPosition = value;
s->profile = Instant | NoPowerOff; // Use instant profile (but not this time)
}
// Animated profile. Initiate the appropriate action.
s->currentProfile = profile;
uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit.
s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds
profileValue==Medium ? 20 : // 1.0 seconds
profileValue==Slow ? 40 : // 2.0 seconds
profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds
duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms)
s->stepNumber = 0;
s->toPosition = value;
s->fromPosition = s->currentPosition;
}
void updatePosition(uint8_t pin) {
struct ServoData *s = _servoData[pin];
if (s == NULL) return; // No pin configuration/state data
if (s->numSteps == 0) return; // No animation in progress
if (s->stepNumber == 0 && s->fromPosition == s->toPosition) {
// Go straight to end of sequence, output final position.
s->stepNumber = s->numSteps-1;
}
if (s->stepNumber < s->numSteps) {
// Animation in progress, reposition servo
s->stepNumber++;
if ((s->currentProfile & ~NoPowerOff) == Bounce) {
// Retrieve step positions from array in flash
uint8_t profileValue = GETFLASH(&_bounceProfile[s->stepNumber]);
s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition);
} else {
// All other profiles - calculate step by linear interpolation between from and to positions.
s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition);
}
// Send servo command
2023-02-08 22:38:00 +01:00
this->writePWM(pin, s->currentPosition);
2023-02-08 20:32:27 +01:00
} else if (s->stepNumber < s->numSteps + _catchupSteps) {
// We've finished animation, wait a little to allow servo to catch up
s->stepNumber++;
} else if (s->stepNumber == s->numSteps + _catchupSteps
&& s->currentPosition != 0) {
s->numSteps = 0; // Done now.
}
2023-02-01 05:53:46 +01:00
}
2023-02-08 22:38:00 +01:00
void writePWM(int pin, uint16_t value) {
_command4Buffer[0] = EXIOWRAN;
_command4Buffer[1] = pin;
_command4Buffer[2] = value & 0xFF;
_command4Buffer[3] = value >> 8;
I2CManager.write(_i2cAddress, _command4Buffer, 4);
}
2022-12-08 05:21:01 +01:00
void _display() override {
2023-01-29 01:06:01 +01:00
DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d Vpins %d-%d %S"),
2022-12-25 22:36:12 +01:00
_i2cAddress, _majorVer, _minorVer, _patchVer,
2023-01-29 01:06:01 +01:00
(int)_firstVpin, (int)_firstVpin+_nPins-1,
2022-12-25 21:44:15 +01:00
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
2022-12-08 05:21:01 +01:00
}
uint8_t _i2cAddress;
2023-02-01 05:53:46 +01:00
uint8_t _numDigitalPins = 0;
2023-01-29 10:26:33 +01:00
uint8_t _numAnaloguePins = 0;
byte _digitalOutBuffer[3];
2022-12-25 22:36:12 +01:00
uint8_t _versionBuffer[3];
2022-12-25 21:44:15 +01:00
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
2023-01-23 07:26:07 +01:00
byte* _digitalInputStates;
byte* _analogueInputStates;
uint8_t _digitalPinBytes = 0;
uint8_t _analoguePinBytes = 0;
2023-01-29 01:06:01 +01:00
byte _command1Buffer[1];
byte _command2Buffer[2];
2023-02-01 10:46:08 +01:00
byte _command4Buffer[4];
2023-02-01 05:53:46 +01:00
byte _receive3Buffer[3];
2023-01-29 01:06:01 +01:00
uint8_t* _analoguePinMap;
2022-12-09 05:41:48 +01:00
2023-02-08 20:32:27 +01:00
// Servo specific
struct ServoData {
uint16_t activePosition : 12; // Config parameter
uint16_t inactivePosition : 12; // Config parameter
uint16_t currentPosition : 12;
uint16_t fromPosition : 12;
uint16_t toPosition : 12;
uint8_t profile; // Config parameter
uint16_t stepNumber; // Index of current step (starting from 0)
uint16_t numSteps; // Number of steps in animation, or 0 if none in progress.
uint8_t currentProfile; // profile being used for current animation.
uint16_t duration; // time (tenths of a second) for animation to complete.
}; // 14 bytes per element, i.e. per pin in use
2023-02-08 22:38:00 +01:00
struct ServoData *_servoData[256];
2023-02-08 20:32:27 +01:00
static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off
2023-02-08 23:41:50 +01:00
2023-02-08 20:32:27 +01:00
const unsigned int refreshInterval = 50; // refresh every 50ms
2023-02-08 23:41:50 +01:00
unsigned long _lastRefresh = 0;
2023-02-08 20:32:27 +01:00
2023-02-08 22:38:00 +01:00
// Profile for a bouncing signal or turnout
// The profile below is in the range 0-100% and should be combined with the desired limits
// of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here,
// i.e. the bounce is the same on the down action as on the up action. First entry isn't used.
const byte FLASH _bounceProfile[30] =
2023-02-08 20:32:27 +01:00
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};
// EX-IOExpander protocol flags
2022-12-09 05:41:48 +01:00
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
2022-12-25 21:44:15 +01:00
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
2023-02-01 10:46:08 +01:00
EXIOENAN = 0xE7, // Flag to enable an analogue pin
2023-02-01 05:53:46 +01:00
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
2023-02-01 10:46:08 +01:00
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
2022-12-09 05:41:48 +01:00
};
2022-12-08 05:21:01 +01:00
};
2023-01-27 19:42:55 +01:00
#endif