2022-05-17 12:06:08 +02:00
|
|
|
/*
|
|
|
|
* © 2022 Paul M Antoine
|
|
|
|
* © 2021 Mike S
|
|
|
|
* © 2021 Harald Barth
|
|
|
|
* © 2021 Fred Decker
|
|
|
|
* © 2021 Chris Harlow
|
|
|
|
* © 2021 David Cutting
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This file is part of Asbelos DCC API
|
|
|
|
*
|
|
|
|
* This is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* It is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// ATTENTION: this file only compiles on a SAMD21 based board
|
|
|
|
// Please refer to DCCTimer.h for general comments about how this class works
|
|
|
|
// This is to avoid repetition and duplication.
|
|
|
|
#ifdef ARDUINO_ARCH_SAMD
|
|
|
|
|
|
|
|
#include "FSH.h" //PMA temp debug
|
|
|
|
#include "DIAG.h" //PMA temp debug
|
|
|
|
#include "DCCTimer.h"
|
|
|
|
|
|
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
|
|
interruptHandler=callback;
|
|
|
|
noInterrupts();
|
|
|
|
|
|
|
|
// Set up ADC to do faster reads... default for Arduino Zero platform configs is 436uS,
|
|
|
|
// and we need sub-100uS. This code sets it to a read speed of around 21uS, and for now
|
|
|
|
// enables 10-bit mode, although 12-bit is possible
|
|
|
|
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
|
|
|
|
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
|
|
|
|
|
|
|
|
ADC->CTRLB.reg &= 0b1111100011111111; // mask PRESCALER bits
|
|
|
|
ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 64
|
|
|
|
ADC_CTRLB_RESSEL_10BIT; // Result on 10 bits default, 12 bits possible
|
|
|
|
|
|
|
|
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time
|
|
|
|
ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0
|
|
|
|
ADC->SAMPCTRL.reg = 0x00; // sampling Time Length = 0
|
|
|
|
|
|
|
|
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
|
|
|
|
while(ADC->STATUS.bit.SYNCBUSY == 1); // wait for synchronization
|
|
|
|
|
|
|
|
// Timer setup - setup clock sources first
|
|
|
|
REG_GCLK_GENDIV = GCLK_GENDIV_DIV(1) | // Divide 48MHz by 1
|
|
|
|
GCLK_GENDIV_ID(4); // Apply to GCLK4
|
|
|
|
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
|
|
|
|
|
|
|
|
REG_GCLK_GENCTRL = GCLK_GENCTRL_GENEN | // Enable GCLK
|
|
|
|
GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz clock source
|
|
|
|
GCLK_GENCTRL_ID(4); // Select GCLK4
|
|
|
|
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
|
|
|
|
|
|
|
|
REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable generic clock
|
|
|
|
4 << GCLK_CLKCTRL_GEN_Pos | // Apply to GCLK4
|
|
|
|
GCLK_CLKCTRL_ID_TCC0_TCC1; // Feed GCLK to TCC0/1
|
|
|
|
while (GCLK->STATUS.bit.SYNCBUSY);
|
|
|
|
|
|
|
|
// Assume we're using TCC0... as we're bit-bashing the DCC waveform output pins anyway
|
|
|
|
// for "normal accuracy" DCC waveform generation. For high accuracy we're going to need
|
|
|
|
// to a good deal more. The TCC waveform output pins are mux'd on the SAMD, and output
|
|
|
|
// pins for each TCC are only available on certain pins
|
|
|
|
TCC0->WAVE.reg = TCC_WAVE_WAVEGEN_NPWM; // Select NPWM as waveform
|
|
|
|
while (TCC0->SYNCBUSY.bit.WAVE); // Wait for sync
|
|
|
|
|
|
|
|
// Set the frequency
|
|
|
|
TCC0->CTRLA.reg |= TCC_CTRLA_PRESCALER(TCC_CTRLA_PRESCALER_DIV1_Val);
|
|
|
|
TCC0->PER.reg = CLOCK_CYCLES * 2;
|
|
|
|
while (TCC0->SYNCBUSY.bit.PER);
|
|
|
|
|
|
|
|
// Start the timer
|
|
|
|
TCC0->CTRLA.bit.ENABLE = 1;
|
|
|
|
while (TCC0->SYNCBUSY.bit.ENABLE);
|
|
|
|
|
|
|
|
// Set the interrupt condition, priority and enable it in the NVIC
|
|
|
|
TCC0->INTENSET.reg = TCC_INTENSET_OVF; // Only interrupt on overflow
|
|
|
|
NVIC_SetPriority((IRQn_Type)TCC0_IRQn, 0); // Make this highest priority
|
|
|
|
NVIC_EnableIRQ((IRQn_Type)TCC0_IRQn); // Enable the interrupt
|
|
|
|
interrupts();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
|
|
|
|
// copied from rf24 branch
|
|
|
|
void TCC0_Handler() {
|
|
|
|
if(TCC0->INTFLAG.bit.OVF) {
|
|
|
|
TCC0->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
|
|
interruptHandler();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TCC1_Handler() {
|
|
|
|
if(TCC1->INTFLAG.bit.OVF) {
|
|
|
|
TCC1->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
|
|
interruptHandler();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TCC2_Handler() {
|
|
|
|
if(TCC2->INTFLAG.bit.OVF) {
|
|
|
|
TCC2->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
|
|
interruptHandler();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
|
|
//TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
|
|
|
|
// there's no support yet for High Accuracy, so for now return false
|
|
|
|
// return digitalPinHasPWM(pin);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
|
|
// TODO: High Accuracy mode is not supported as yet, and may never need to be
|
|
|
|
(void) pin;
|
|
|
|
(void) high;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DCCTimer::clearPWM() {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
|
|
volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C;
|
|
|
|
volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040;
|
|
|
|
// volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044;
|
|
|
|
// volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048;
|
|
|
|
|
|
|
|
volatile uint32_t m1 = *serno1;
|
|
|
|
volatile uint32_t m2 = *serno2;
|
|
|
|
mac[0] = m1 >> 8;
|
|
|
|
mac[1] = m1 >> 0;
|
|
|
|
mac[2] = m2 >> 24;
|
|
|
|
mac[3] = m2 >> 16;
|
|
|
|
mac[4] = m2 >> 8;
|
|
|
|
mac[5] = m2 >> 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
|
|
|
|
// Return low memory value...
|
|
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
|
|
int retval = freeMemory();
|
|
|
|
interrupts();
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" char* sbrk(int incr);
|
|
|
|
|
|
|
|
int DCCTimer::freeMemory() {
|
|
|
|
char top;
|
|
|
|
return (int)(&top - reinterpret_cast<char *>(sbrk(0)));
|
|
|
|
}
|
|
|
|
|
2022-07-08 16:01:40 +02:00
|
|
|
void DCCTimer::reset() {
|
|
|
|
__disable_irq();
|
|
|
|
NVIC_SystemReset();
|
|
|
|
while(true) {};
|
|
|
|
}
|
|
|
|
|
2022-05-17 12:06:08 +02:00
|
|
|
#endif
|