1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-24 05:11:24 +01:00
CommandStation-EX/IO_duinoNodes.h

172 lines
5.4 KiB
C
Raw Normal View History

/*
* © 2022, Chris Harlow. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
2022-12-25 23:11:56 +01:00
#ifndef IO_duinoNodes_h
#define IO_duinoNodes_h
#include <Arduino.h>
2022-12-25 21:52:07 +01:00
#include "defines.h"
#include "IODevice.h"
#define PIN_MASK(bit) (0x80>>(bit%8))
2022-12-25 21:52:07 +01:00
#define GET_BIT(x) (_pinValues[(x)/8] & PIN_MASK((x)) )
#define SET_BIT(x) _pinValues[(x)/8] |= PIN_MASK((x))
#define CLR_BIT(x) _pinValues[(x)/8] &= ~PIN_MASK((x))
#define DIAG_IO
2022-12-25 23:11:56 +01:00
class IO_duinoNodes : public IODevice {
public:
2022-12-25 23:11:56 +01:00
IO_duinoNodes(VPIN firstVpin, int nPins,
byte clockPin, byte latchPin, byte dataPin,
const byte* pinmap) :
IODevice(firstVpin, nPins) {
_latchPin=latchPin;
_clockPin=clockPin;
_dataPin=dataPin;
_pinMap=pinmap;
_nShiftBytes=(nPins+7)/8; // rounded up to multiples of 8 bits
_pinValues=(byte*) calloc(_nShiftBytes,1);
// Connect to HAL so my _write, _read and _loop will be called as required.
IODevice::addDevice(this);
}
// Called by HAL to start handling this device
void _begin() override {
_deviceState = DEVSTATE_NORMAL;
pinMode(_latchPin,OUTPUT);
pinMode(_clockPin,OUTPUT);
2022-12-25 21:52:07 +01:00
pinMode(_dataPin,_pinMap?INPUT_PULLUP:OUTPUT);
_display();
}
// loop called by HAL supervisor
void _loop(unsigned long currentMicros) override {
if (_pinMap) _loopInput(currentMicros);
else if (_xmitPending) _loopOutput();
}
void _loopInput(unsigned long currentMicros) {
if (currentMicros-_prevMicros < POLL_MICROS) return; // Nothing to do
_prevMicros=currentMicros;
//set latch to HIGH to freeze & store parallel data
ArduinoPins::fastWriteDigital(_latchPin, HIGH);
2022-12-26 11:09:34 +01:00
delayMicroseconds(1);
//set latch to LOW to enable the data to be transmitted serially
ArduinoPins::fastWriteDigital(_latchPin, LOW);
2022-12-25 22:35:38 +01:00
// stream in the bitmap using mapping order provided at constructor
2022-12-25 21:52:07 +01:00
for (int xmitByte=0;xmitByte<_nShiftBytes; xmitByte++) {
byte newByte=0;
for (int xmitBit=0;xmitBit<8; xmitBit++) {
ArduinoPins::fastWriteDigital(_clockPin, LOW);
2022-12-26 11:09:34 +01:00
delayMicroseconds(1);
2022-12-25 21:52:07 +01:00
bool data = ArduinoPins::fastReadDigital(_dataPin);
byte map=_pinMap[xmitBit];
if (data) newByte |= map;
else newByte &= ~map;
ArduinoPins::fastWriteDigital(_clockPin, HIGH);
2022-12-26 11:09:34 +01:00
delayMicroseconds(1);
2022-12-25 21:52:07 +01:00
}
_pinValues[xmitByte]=newByte;
2022-12-25 22:35:38 +01:00
// DIAG(F("DIN %x=%x"),xmitByte, newByte);
2022-12-25 21:52:07 +01:00
}
}
void _loopOutput() {
// stream out the bitmap (highest pin first)
_xmitPending=false;
ArduinoPins::fastWriteDigital(_latchPin, LOW);
for (int xmitBit=_nShiftBytes*8 -1; xmitBit>=0; xmitBit--) {
ArduinoPins::fastWriteDigital(_dataPin,GET_BIT(xmitBit));
ArduinoPins::fastWriteDigital(_clockPin,HIGH);
ArduinoPins::fastWriteDigital(_clockPin,LOW);
}
digitalWrite(_latchPin, HIGH);
}
int _read(VPIN vpin) override {
2022-12-25 21:52:07 +01:00
int pin=vpin - _firstVpin;
bool b=GET_BIT(pin);
return b?1:0;
}
void _write(VPIN vpin, int value) override {
int pin = vpin - _firstVpin;
bool oldval=GET_BIT(pin);
bool newval=value!=0;
if (newval==oldval) return; // no change
if (newval) SET_BIT(pin);
else CLR_BIT(pin);
_xmitPending=true; // shift register will be sent on next _loop()
}
void _display() override {
2022-12-25 23:11:56 +01:00
DIAG(F("IO_duinoNodes %SPUT Configured on VPins:%d-%d shift=%d"),
_pinMap?F("IN"):F("OUT"),
(int)_firstVpin,
2022-12-25 21:52:07 +01:00
(int)_firstVpin+_nPins-1, _nShiftBytes*8);
}
private:
2022-12-25 22:35:38 +01:00
static const unsigned long POLL_MICROS=100000; // 10 / S
unsigned long _prevMicros;
int _nShiftBytes=0;
VPIN _latchPin,_clockPin,_dataPin;
byte* _pinValues;
bool _xmitPending; // Only relevant in output mode
const byte* _pinMap; // NULL in output mode
};
2022-12-25 21:52:07 +01:00
class IO_DNIN8 {
public:
2022-12-25 21:52:07 +01:00
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
// input arrives as board pin 0,7,6,5,1,2,3,4
static const byte pinmap[8]={0x80,0x01,0x02,0x04,0x40,0x20,0x10,0x08};
2022-12-25 21:52:07 +01:00
if (IODevice::checkNoOverlap(firstVpin,nPins))
2022-12-25 23:11:56 +01:00
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,pinmap);
}
};
2022-12-25 21:52:07 +01:00
class IO_DNIN8K {
public:
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
2022-12-25 21:52:07 +01:00
// input arrives as board pin 0, 1, 2, 3, 4, 5, 6, 7
static const byte pinmap[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};
if (IODevice::checkNoOverlap(firstVpin,nPins))
2022-12-25 23:11:56 +01:00
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,pinmap);
}
};
2022-12-25 22:35:38 +01:00
class IO_DNOU8 {
public:
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
2022-12-25 21:52:07 +01:00
if (IODevice::checkNoOverlap(firstVpin,nPins))
2022-12-25 23:11:56 +01:00
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,NULL);
}
};
#endif