1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00
This commit is contained in:
Travis Farmer 2023-11-10 20:10:21 +00:00 committed by GitHub
commit 011f9396ec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 219 additions and 286 deletions

View File

@ -92,6 +92,7 @@ private:
#if defined(ARDUINO_ARCH_STM32) // TODO: PMA temporary hack - assumes 100Mhz F_CPU as STM32 can change frequency #if defined(ARDUINO_ARCH_STM32) // TODO: PMA temporary hack - assumes 100Mhz F_CPU as STM32 can change frequency
static const long CLOCK_CYCLES=(100000000L / 1000000 * DCC_SIGNAL_TIME) >>1; static const long CLOCK_CYCLES=(100000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#elif defined(ARDUINO_GIGA) #elif defined(ARDUINO_GIGA)
///TJF: we could get F_CPU from SystemCoreClock, but it will not allow as it is a non-constant value
static const long CLOCK_CYCLES=(480000000L / 1000000 * DCC_SIGNAL_TIME) >>1; static const long CLOCK_CYCLES=(480000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#else #else
static const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1; static const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1;

View File

@ -43,14 +43,19 @@
INTERRUPT_CALLBACK interruptHandler=0; INTERRUPT_CALLBACK interruptHandler=0;
//HardwareTimer* timer = NULL; #ifndef DCC_EX_TIMER
//HardwareTimer* timerAux = NULL; #if defined(TIM6)
HardwareTimer timer(TIM2); #define DCC_EX_TIMER TIM6
HardwareTimer timerAux(TIM3); #elif defined(TIM7)
#define DCC_EX_TIMER TIM7
static bool tim2ModeHA = false; #elif defined(TIM12)
static bool tim3ModeHA = false; #define DCC_EX_TIMER TIM12
#else
#warning This Giga variant does not have Timers 1,8 or 11!!
#endif
#endif // ifndef DCC_EX_TIMER
HardwareTimer dcctimer(TIM8);
void DCCTimer_Handler() __attribute__((interrupt)); void DCCTimer_Handler() __attribute__((interrupt));
void DCCTimer_Handler() { void DCCTimer_Handler() {
@ -61,64 +66,36 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback; interruptHandler=callback;
noInterrupts(); noInterrupts();
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); dcctimer.pause();
timer.pause(); dcctimer.setPrescaleFactor(1);
timerAux.pause(); // timer.setOverflow(CLOCK_CYCLES * 2);
timer.setPrescaleFactor(1); dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); // dcctimer.attachInterrupt(Timer11_Handler);
timer.attachInterrupt(DCCTimer_Handler); dcctimer.attachInterrupt(DCCTimer_Handler);
timer.refresh(); dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority!
timerAux.setPrescaleFactor(1); dcctimer.refresh();
timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); dcctimer.resume();
timerAux.refresh();
timer.resume();
timerAux.resume();
interrupts(); interrupts();
} }
bool DCCTimer::isPWMPin(byte pin) { bool DCCTimer::isPWMPin(byte pin) {
switch (pin) { //TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
case 12: // there's no support yet for High Accuracy, so for now return false
return true; // return digitalPinHasPWM(pin);
case 13: (void) pin;
return true;
default:
return false; return false;
} }
}
void DCCTimer::setPWM(byte pin, bool high) { void DCCTimer::setPWM(byte pin, bool high) {
switch (pin) { // TODO: High Accuracy mode is not supported as yet, and may never need to be
case 12: (void) pin;
if (!tim3ModeHA) { (void) high;
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 12); return;
tim3ModeHA = true;
}
if (high)
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
case 13:
if (!tim2ModeHA) {
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 13);
tim2ModeHA = true;
}
if (high)
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
}
} }
void DCCTimer::clearPWM() { void DCCTimer::clearPWM() {
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); return;
tim2ModeHA = false;
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
tim3ModeHA = false;
} }
void DCCTimer::getSimulatedMacAddress(byte mac[6]) { void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
@ -161,6 +138,7 @@ void DCCTimer::reset() {
//Watchdog::start(500); //Watchdog::start(500);
//while(true) {}; //while(true) {};
return;
} }
int * ADCee::analogvals = NULL; int * ADCee::analogvals = NULL;
@ -170,9 +148,15 @@ int16_t ADCee::ADCmax()
return 1023; return 1023;
} }
AdvancedADC adc(A0, A1); AdvancedADC adc;
pin_size_t active_pins[] = {A0, A1, A2, A3};
pin_size_t active_pinsB[] = {A4, A5, A6, A7};
int num_active_pins = 4;
const int samples_per_round = 512;
int ADCee::init(uint8_t pin) { int ADCee::init(uint8_t pin) {
adc.begin(AN_RESOLUTION_10, 16000, 1, 512); adc.stop();
if (pin >= A0 && pin <= A3) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pins);
else if (pin >= A4 && pin <= A7) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pinsB);
return 123; return 123;
} }
@ -180,13 +164,16 @@ int ADCee::init(uint8_t pin) {
* Read function ADCee::read(pin) to get value instead of analogRead(pin) * Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/ */
int ADCee::read(uint8_t pin, bool fromISR) { int ADCee::read(uint8_t pin, bool fromISR) {
int tmpPin = 0;
if (pin >= A0 && pin <= A3) tmpPin = (pin - A0);
else if (pin >= A4 && pin <= A7) tmpPin = ((pin - A0) - 4);
static SampleBuffer buf = adc.read(); static SampleBuffer buf = adc.read();
int retVal = -123; int retVal = -123;
if (adc.available()) { if (adc.available()) {
buf.release(); buf.release();
buf = adc.read(); buf = adc.read();
} }
return (buf[pin - A0]); return (buf[tmpPin]);
} }
/* /*

View File

@ -35,11 +35,7 @@
#define WIRE_HAS_TIMEOUT #define WIRE_HAS_TIMEOUT
#endif #endif
#if defined(GIGA_I2C_1)
#define DCCEX_WIRE Wire1
#else
#define DCCEX_WIRE Wire
#endif
@ -47,9 +43,9 @@
* Initialise I2C interface software * Initialise I2C interface software
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::_initialise() { void I2CManagerClass::_initialise() {
DCCEX_WIRE.begin(); Wire.begin();
#if defined(WIRE_HAS_TIMEOUT) #if defined(WIRE_HAS_TIMEOUT)
DCCEX_WIRE.setWireTimeout(_timeout, true); Wire.setWireTimeout(_timeout, true);
#endif #endif
} }
@ -58,7 +54,7 @@ void I2CManagerClass::_initialise() {
* on Arduino. Mega4809 supports 1000000 (Fast+) too. * on Arduino. Mega4809 supports 1000000 (Fast+) too.
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) { void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
DCCEX_WIRE.setClock(i2cClockSpeed); Wire.setClock(i2cClockSpeed);
} }
/*************************************************************************** /***************************************************************************
@ -69,7 +65,7 @@ void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
void I2CManagerClass::setTimeout(unsigned long value) { void I2CManagerClass::setTimeout(unsigned long value) {
_timeout = value; _timeout = value;
#if defined(WIRE_HAS_TIMEOUT) #if defined(WIRE_HAS_TIMEOUT)
DCCEX_WIRE.setWireTimeout(value, true); Wire.setWireTimeout(value, true);
#endif #endif
} }
@ -82,7 +78,7 @@ static uint8_t muxSelect(I2CAddress address) {
I2CMux muxNo = address.muxNumber(); I2CMux muxNo = address.muxNumber();
I2CSubBus subBus = address.subBus(); I2CSubBus subBus = address.subBus();
if (muxNo != I2CMux_None) { if (muxNo != I2CMux_None) {
DCCEX_WIRE.beginTransmission(I2C_MUX_BASE_ADDRESS+muxNo); Wire.beginTransmission(I2C_MUX_BASE_ADDRESS+muxNo);
uint8_t data = (subBus == SubBus_All) ? 0xff : uint8_t data = (subBus == SubBus_All) ? 0xff :
(subBus == SubBus_None) ? 0x00 : (subBus == SubBus_None) ? 0x00 :
#if defined(I2CMUX_PCA9547) #if defined(I2CMUX_PCA9547)
@ -94,8 +90,8 @@ static uint8_t muxSelect(I2CAddress address) {
// with a bit set for the subBus to be enabled // with a bit set for the subBus to be enabled
1 << subBus; 1 << subBus;
#endif #endif
DCCEX_WIRE.write(&data, 1); Wire.write(&data, 1);
return DCCEX_WIRE.endTransmission(true); // have to release I2C bus for it to work return Wire.endTransmission(true); // have to release I2C bus for it to work
} }
return I2C_STATUS_OK; return I2C_STATUS_OK;
} }
@ -118,9 +114,9 @@ uint8_t I2CManagerClass::write(I2CAddress address, const uint8_t buffer[], uint8
#endif #endif
// Only send new transaction if address is non-zero. // Only send new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) { if (muxStatus == I2C_STATUS_OK && address != 0) {
DCCEX_WIRE.beginTransmission(address); Wire.beginTransmission(address);
if (size > 0) DCCEX_WIRE.write(buffer, size); if (size > 0) Wire.write(buffer, size);
status = DCCEX_WIRE.endTransmission(); status = Wire.endTransmission();
} }
#ifdef I2C_EXTENDED_ADDRESS #ifdef I2C_EXTENDED_ADDRESS
// Deselect MUX if there's more than one MUX present, to avoid having multiple ones selected // Deselect MUX if there's more than one MUX present, to avoid having multiple ones selected
@ -169,25 +165,25 @@ uint8_t I2CManagerClass::read(I2CAddress address, uint8_t readBuffer[], uint8_t
// Only start new transaction if address is non-zero. // Only start new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) { if (muxStatus == I2C_STATUS_OK && address != 0) {
if (writeSize > 0) { if (writeSize > 0) {
DCCEX_WIRE.beginTransmission(address); Wire.beginTransmission(address);
DCCEX_WIRE.write(writeBuffer, writeSize); Wire.write(writeBuffer, writeSize);
status = DCCEX_WIRE.endTransmission(false); // Don't free bus yet status = Wire.endTransmission(false); // Don't free bus yet
} }
if (status == I2C_STATUS_OK) { if (status == I2C_STATUS_OK) {
#ifdef WIRE_HAS_TIMEOUT #ifdef WIRE_HAS_TIMEOUT
DCCEX_WIRE.clearWireTimeoutFlag(); Wire.clearWireTimeoutFlag();
DCCEX_WIRE.requestFrom(address, (size_t)readSize); Wire.requestFrom(address, (size_t)readSize);
if (!DCCEX_WIRE.getWireTimeoutFlag()) { if (!Wire.getWireTimeoutFlag()) {
while (DCCEX_WIRE.available() && nBytes < readSize) while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = DCCEX_WIRE.read(); readBuffer[nBytes++] = Wire.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED; if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
} else { } else {
status = I2C_STATUS_TIMEOUT; status = I2C_STATUS_TIMEOUT;
} }
#else #else
DCCEX_WIRE.requestFrom(address, (size_t)readSize); Wire.requestFrom(address, (size_t)readSize);
while (DCCEX_WIRE.available() && nBytes < readSize) while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = DCCEX_WIRE.read(); readBuffer[nBytes++] = Wire.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED; if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
#endif #endif
} }

View File

@ -35,12 +35,21 @@ unsigned long MotorDriver::globalOverloadStart = 0;
volatile portreg_t shadowPORTA; volatile portreg_t shadowPORTA;
volatile portreg_t shadowPORTB; volatile portreg_t shadowPORTB;
volatile portreg_t shadowPORTC; volatile portreg_t shadowPORTC;
#if defined(ARDUINO_ARCH_STM32) #if defined(ARDUINO_ARCH_STM32) || (defined(ARDUINO_GIGA) && defined(XGIGA))
volatile portreg_t shadowPORTD; volatile portreg_t shadowPORTD;
volatile portreg_t shadowPORTE; volatile portreg_t shadowPORTE;
volatile portreg_t shadowPORTF; volatile portreg_t shadowPORTF;
#endif #endif
#if defined(ARDUINO_GIGA) && defined(XGIGA)
#define STM_PORT(X) (((uint32_t)(X) >> 4) & 0xF)
#define STM_PIN(X) ((uint32_t)(X) & 0xF)
#define STM_GPIO_PIN(X) ((uint16_t)(1<<STM_PIN(X)))
#define digitalPinToBitMask(p) (STM_GPIO_PIN(digitalPinToPinName(p)))
#define portOutputRegister(P) (&(P->ODR))
#define portInputRegister(P) (&(P->IDR))
#endif
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin, MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) { byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) {
const FSH * warnString = F("** WARNING **"); const FSH * warnString = F("** WARNING **");
@ -58,7 +67,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
getFastPin(F("SIG"),signalPin,fastSignalPin); getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT); pinMode(signalPin, OUTPUT);
#ifndef ARDUINO_GIGA // no giga #if !defined(ARDUINO_GIGA) || (defined(ARDUINO_GIGA) && defined(XGIGA)) // no giga
fastSignalPin.shadowinout = NULL; fastSignalPin.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) { if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin); DIAG(F("Found PORTA pin %d"),signalPin);
@ -97,7 +106,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
getFastPin(F("SIG2"),signalPin2,fastSignalPin2); getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT); pinMode(signalPin2, OUTPUT);
#ifndef ARDUINO_GIGA // no giga #if !defined(ARDUINO_GIGA) || (defined(ARDUINO_GIGA) && defined(XGIGA)) // no giga
fastSignalPin2.shadowinout = NULL; fastSignalPin2.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) { if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin2); DIAG(F("Found PORTA pin %d"),signalPin2);
@ -508,7 +517,7 @@ unsigned int MotorDriver::mA2raw( unsigned int mA) {
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) { void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin); // DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
#if defined(ARDUINO_GIGA) // yes giga #if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
(void)type; (void)type;
(void)input; // no warnings please (void)input; // no warnings please
@ -520,6 +529,9 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
PortGroup *port = digitalPinToPort(pin); PortGroup *port = digitalPinToPort(pin);
#elif defined(ARDUINO_ARCH_STM32) #elif defined(ARDUINO_ARCH_STM32)
GPIO_TypeDef *port = digitalPinToPort(pin); GPIO_TypeDef *port = digitalPinToPort(pin);
#elif defined(ARDUINO_GIGA)
//auto * port = ((GPIO_TypeDef *)(GPIOA_BASE + (GPIOB_BASE - GPIOA_BASE) * (digitalPinToPinName(pin) >> 4)));
GPIO_TypeDef *port = (GPIO_TypeDef *)digitalPinToPort(pin);
#else #else
uint8_t port = digitalPinToPort(pin); uint8_t port = digitalPinToPort(pin);
#endif #endif

View File

@ -31,7 +31,7 @@
// use powers of two so we can do logical and/or on the track modes in if clauses. // use powers of two so we can do logical and/or on the track modes in if clauses.
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4, enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32}; TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32};
#if defined(ARDUINO_GIGA) // yes giga #if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#define setHIGH(fastpin) digitalWrite(fastpin,1) #define setHIGH(fastpin) digitalWrite(fastpin,1)
#define setLOW(fastpin) digitalWrite(fastpin,0) #define setLOW(fastpin) digitalWrite(fastpin,0)
@ -39,7 +39,7 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
#endif // giga #endif // giga
#if defined(ARDUINO_GIGA) // yes giga #if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#define isHIGH(fastpin) ((PinStatus)digitalRead(fastpin)==1) #define isHIGH(fastpin) ((PinStatus)digitalRead(fastpin)==1)
#define isLOW(fastpin) ((PinStatus)digitalRead(fastpin)==0) #define isLOW(fastpin) ((PinStatus)digitalRead(fastpin)==0)
#else // no giga #else // no giga
@ -82,6 +82,25 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
#endif #endif
#endif #endif
#if defined(ARDUINO_GIGA) && defined(XGIGA)
#define PORTA GPIOA->ODR
#define HAVE_PORTA(X) X
#define PORTB GPIOB->ODR
#define HAVE_PORTB(X) X
#define PORTC GPIOC->ODR
#define HAVE_PORTC(X) X
#define PORTD GPIOD->ODR
#define HAVE_PORTD(X) X
#if defined(GPIOE)
#define PORTE GPIOE->ODR
#define HAVE_PORTE(X) X
#endif
#if defined(GPIOF)
#define PORTF GPIOF->ODR
#define HAVE_PORTF(X) X
#endif
#endif
// if macros not defined as pass-through we define // if macros not defined as pass-through we define
// them here as someting that is valid as a // them here as someting that is valid as a
// statement and evaluates to false. // statement and evaluates to false.
@ -121,13 +140,13 @@ public:
byte invpin = UNUSED_PIN; byte invpin = UNUSED_PIN;
}; };
#if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32) #if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32) || (defined(ARDUINO_GIGA) && defined(XGIGA))
typedef uint32_t portreg_t; typedef uint32_t portreg_t;
#else #else
typedef uint8_t portreg_t; typedef uint8_t portreg_t;
#endif #endif
#if defined(ARDUINO_GIGA) // yes giga #if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
typedef int FASTPIN; typedef int FASTPIN;
@ -165,7 +184,7 @@ class MotorDriver {
// otherwise the call from interrupt context can undo whatever we do // otherwise the call from interrupt context can undo whatever we do
// from outside interrupt // from outside interrupt
void setBrake( bool on, bool interruptContext=false); void setBrake( bool on, bool interruptContext=false);
#if defined(ARDUINO_GIGA) // yes giga #if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
__attribute__((always_inline)) inline void setSignal( bool high) { __attribute__((always_inline)) inline void setSignal( bool high) {
digitalWrite(signalPin, high); digitalWrite(signalPin, high);
if (dualSignal) digitalWrite(signalPin2, !high); if (dualSignal) digitalWrite(signalPin2, !high);

View File

@ -2,6 +2,8 @@
© 2023 Paul M. Antoine © 2023 Paul M. Antoine
© 2021 Harald Barth © 2021 Harald Barth
© 2023 Nathan Kellenicki © 2023 Nathan Kellenicki
© 2023 Travis Farmer
© 2023 Chris Harlow
This file is part of CommandStation-EX This file is part of CommandStation-EX
@ -20,20 +22,19 @@
*/ */
#include "defines.h" #include "defines.h"
#ifdef WIFI_NINA #ifdef WIFI_NINA || GIGA_WIFI
#include <vector> //#include <vector>
#include <SPI.h> #include <SPI.h>
#ifndef ARDUINO_GIGA #ifndef ARDUINO_GIGA
#include <WifiNINA.h> #include <WifiNINA.h>
#else #else
#if defined(GIGA_WIFI)
#include <WiFi.h> #include <WiFi.h>
#else
#include <WiFiNINA.h>
#endif
#endif #endif
#include "Wifi_NINA.h" #include "Wifi_NINA.h"
// #include "ESPmDNS.h"
// #include <WiFi.h>
// #include "esp_wifi.h"
// #include "WifiESP32.h"
// #include <SPI.h>
#include "DIAG.h" #include "DIAG.h"
#include "RingStream.h" #include "RingStream.h"
#include "CommandDistributor.h" #include "CommandDistributor.h"
@ -46,49 +47,22 @@
#define ESP32_RESETN PA10 // Reset pin #define ESP32_RESETN PA10 // Reset pin
#define SPIWIFI_ACK PB3 // a.k.a BUSY or READY pin #define SPIWIFI_ACK PB3 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1 #define ESP32_GPIO0 -1
#elif defined(ARDUINO_GIGA)
#define SPIWIFI SPI
#define SPIWIFI_SS 10 // Chip select pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_RESETN 5 // Reset pin
#define ESP32_GPIO0 -1 // Not connected
#else #else
#warning "WiFiNINA has no SPI port or pin allocations for this archiecture yet!" #warning "WiFiNINA has no SPI port or pin allocations for this archiecture yet!"
#endif #endif
#define MAX_CLIENTS 10
class NetworkClient {
public:
NetworkClient(WiFiClient c) {
wifi = c;
};
bool ok() {
return (inUse && wifi.connected());
};
bool recycle(WiFiClient c) {
if (inUse == true) return false;
// return false here until we have
// implemented a LRU timer
// if (LRU too recent) return false;
return false;
wifi = c;
inUse = true;
return true;
};
WiFiClient wifi;
bool inUse = true;
};
static std::vector<NetworkClient> clients; // a list to hold all clients
static WiFiServer *server = NULL; static WiFiServer *server = NULL;
static RingStream *outboundRing = new RingStream(10240); static RingStream *outboundRing = new RingStream(10240);
static bool APmode = false; static bool APmode = false;
static IPAddress ip; static IPAddress ip;
// #ifdef WIFI_TASK_ON_CORE0
// void wifiLoop(void *){
// for(;;){
// WifiNINA::loop();
// }
// }
// #endif
char asciitolower(char in) { char asciitolower(char in) {
if (in <= 'Z' && in >= 'A') if (in <= 'Z' && in >= 'A')
return in - ('Z' - 'z'); return in - ('Z' - 'z');
@ -107,7 +81,7 @@ bool WifiNINA::setup(const char *SSid,
uint8_t tries = 40; uint8_t tries = 40;
// Set up the pins! // Set up the pins!
#ifndef ARDUINO_GIGA #ifndef GIGA_WIFI
WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI); WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
#endif #endif
// check for the WiFi module: // check for the WiFi module:
@ -121,14 +95,6 @@ bool WifiNINA::setup(const char *SSid,
String fv = WiFi.firmwareVersion(); String fv = WiFi.firmwareVersion();
DIAG(F("WifiNINA Firmware version found:%s"), fv.c_str()); DIAG(F("WifiNINA Firmware version found:%s"), fv.c_str());
// clean start
// WiFi.mode(WIFI_STA);
// WiFi.disconnect(true);
// differnet settings that did not improve for haba
// WiFi.useStaticBuffers(true);
// WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN);
// WiFi.setSortMethod(WIFI_CONNECT_AP_BY_SECURITY);
const char *yourNetwork = "Your network "; const char *yourNetwork = "Your network ";
if (strncmp(yourNetwork, SSid, 13) == 0 || strncmp("", SSid, 13) == 0) if (strncmp(yourNetwork, SSid, 13) == 0 || strncmp("", SSid, 13) == 0)
haveSSID = false; haveSSID = false;
@ -148,8 +114,8 @@ bool WifiNINA::setup(const char *SSid,
delay(500); delay(500);
} }
if (WiFi.status() == WL_CONNECTED) { if (WiFi.status() == WL_CONNECTED) {
// String ip_str = sprintf("%xl", WiFi.localIP()); IPAddress ip = WiFi.localIP();
DIAG(F("Wifi STA IP %d.%d.%d.%d"), WiFi.localIP()[0], WiFi.localIP()[1],WiFi.localIP()[2],WiFi.localIP()[3],WiFi.localIP()[4],WiFi.localIP()[5]); DIAG(F("Wifi STA IP %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
wifiUp = true; wifiUp = true;
} else { } else {
DIAG(F("Could not connect to Wifi SSID %s"),SSid); DIAG(F("Could not connect to Wifi SSID %s"),SSid);
@ -164,7 +130,7 @@ bool WifiNINA::setup(const char *SSid,
} }
if (WiFi.status() == WL_CONNECTED) { if (WiFi.status() == WL_CONNECTED) {
ip = WiFi.localIP(); ip = WiFi.localIP();
DIAG(F("Wifi STA IP 2nd try %s"), ip); DIAG(F("Wifi STA IP 2nd try %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
wifiUp = true; wifiUp = true;
} else { } else {
DIAG(F("Wifi STA mode FAIL. Will revert to AP mode")); DIAG(F("Wifi STA mode FAIL. Will revert to AP mode"));
@ -184,13 +150,13 @@ bool WifiNINA::setup(const char *SSid,
strMac += String(mac[i], HEX); strMac += String(mac[i], HEX);
} }
DIAG(F("MAC address: %x:%x:%x:%x:%X;%x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); DIAG(F("MAC address: %x:%x:%x:%x:%x:%x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
strMac.remove(0,9); strMac.remove(0,9);
strMac.replace(":",""); strMac.replace(":","");
strMac.replace(":",""); strMac.replace(":","");
// convert mac addr hex chars to lower case to be compatible with AT software // convert mac addr hex chars to lower case to be compatible with AT software
std::transform(strMac.begin(), strMac.end(), strMac.begin(), asciitolower); //std::transform(strMac.begin(), strMac.end(), strMac.begin(), asciitolower); ///TJF: why does this fail compile with WiFiNINA, but not giga WiFi???
strSSID.concat(strMac); strSSID.concat(strMac);
strPass.concat(strMac); strPass.concat(strMac);
} }
@ -200,7 +166,7 @@ bool WifiNINA::setup(const char *SSid,
channel) == WL_AP_LISTENING) { channel) == WL_AP_LISTENING) {
DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str()); DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str());
ip = WiFi.localIP(); ip = WiFi.localIP();
DIAG(F("Wifi AP IP %s"),ip); DIAG(F("Wifi AP IP %d.%d.%d.%d"),ip[0], ip[1], ip[2], ip[3]);
wifiUp = true; wifiUp = true;
APmode = true; APmode = true;
} else { } else {
@ -228,26 +194,11 @@ bool WifiNINA::setup(const char *SSid,
server->begin(); server->begin();
// server started here // server started here
// #ifdef WIFI_TASK_ON_CORE0
// //start loop task
// if (pdPASS != xTaskCreatePinnedToCore(
// wifiLoop, /* Task function. */
// "wifiLoop",/* name of task. */
// 10000, /* Stack size of task */
// NULL, /* parameter of the task */
// 1, /* priority of the task */
// NULL, /* Task handle to keep track of created task */
// 0)) { /* pin task to core 0 */
// DIAG(F("Could not create wifiLoop task"));
// return false;
// }
// // report server started after wifiLoop creation
// // when everything looks good
// DIAG(F("Server starting (core 0) port %d"),port);
// #else
DIAG(F("Server will be started on port %d"),port); DIAG(F("Server will be started on port %d"),port);
// #endif
ip = WiFi.localIP();
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port:%d"), port);
return true; return true;
} }
@ -261,107 +212,78 @@ const char *wlerror[] = {
"WL_DISCONNECTED" "WL_DISCONNECTED"
}; };
void WifiNINA::loop() { WiFiClient * clients[MAX_CLIENTS]; // nulled in setup
int clientId; //tmp loop var
// really no good way to check for LISTEN especially in AP mode? void WifiNINA::checkForNewClient() {
wl_status_t wlStatus; auto newClient=server->available();
if (APmode || (wlStatus = (wl_status_t)WiFi.status()) == WL_CONNECTED) { if (!newClient) return;
// loop over all clients and remove inactive for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
for (clientId=0; clientId<clients.size(); clientId++){ if (!clients[clientId]) {
// check if client is there and alive clients[clientId]= new WiFiClient(newClient); // use this slot
if(clients[clientId].inUse && !clients[clientId].wifi.connected()) { clients[clientId]->flush(); // clear out the input buffer
DIAG(F("New client connected to slot %d"),clientId); //TJF: brought in for debugging.
return;
}
}
}
void WifiNINA::checkForLostClients() {
for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
auto c=clients[clientId];
if(c && !c->connected()) {
clients[clientId]->stop();
DIAG(F("Remove client %d"), clientId); DIAG(F("Remove client %d"), clientId);
CommandDistributor::forget(clientId); CommandDistributor::forget(clientId);
clients[clientId].wifi.stop(); //delete c; //TJF: this causes a crash when client drops.. commenting out for now.
clients[clientId].inUse = false; clients[clientId]=nullptr; // TJF: what to do... what to do...
//Do NOT clients.erase(clients.begin()+clientId) as
//that would mix up clientIds for later.
}
}
if (server->available()) {
WiFiClient client;
while (client = server->available()) {
for (clientId=0; clientId<clients.size(); clientId++){
if (clients[clientId].recycle(client)) {
ip = client.remoteIP();
DIAG(F("Recycle client %d %s"), clientId, ip);
break;
}
}
if (clientId>=clients.size()) {
NetworkClient nc(client);
clients.push_back(nc);
ip = client.remoteIP();
DIAG(F("New client %d, %s"), clientId, ip);
} }
} }
} }
// loop over all connected clients
for (clientId=0; clientId<clients.size(); clientId++){ void WifiNINA::checkForClientInput() {
if(clients[clientId].ok()) { // Find a client providing input
int len; for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
if ((len = clients[clientId].wifi.available()) > 0) { auto c=clients[clientId];
if(c) {
auto len=c->available();
if (len) {
// read data from client // read data from client
byte cmd[len+1]; byte cmd[len+1];
for(int i=0; i<len; i++) { for(int i=0; i<len; i++) cmd[i]=c->read();
cmd[i]=clients[clientId].wifi.read();
}
cmd[len]=0; cmd[len]=0;
CommandDistributor::parse(clientId,cmd,outboundRing); CommandDistributor::parse(clientId,cmd,outboundRing);
} }
} }
} // all clients }
}
WiThrottle::loop(outboundRing);
void WifiNINA::checkForClientOutput() {
// something to write out? // something to write out?
clientId=outboundRing->read(); auto clientId=outboundRing->read();
if (clientId >= 0) { if (clientId < 0) return;
// We have data to send in outboundRing auto replySize=outboundRing->count();
// and we have a valid clientId. if (replySize==0) return; // nothing to send
// First read it out to buffer auto c=clients[clientId];
// and then look if it can be sent because if (!c) {
// we can not leave it in the ring for ever // client is gone, throw away msg
int count=outboundRing->count(); for (int i=0;i<replySize;i++) outboundRing->read();
{ DIAG(F("gone, drop message.")); //TJF: only for diag
char buffer[count+1]; // one extra for '\0' return;
for(int i=0;i<count;i++) {
int c = outboundRing->read();
if (c >= 0) // Panic check, should never be false
buffer[i] = (char)c;
else {
DIAG(F("Ringread fail at %d"),i);
break;
}
}
// buffer filled, end with '\0' so we can use it as C string
buffer[count]='\0';
if((unsigned int)clientId <= clients.size() && clients[clientId].ok()) {
if (Diag::CMD || Diag::WITHROTTLE)
DIAG(F("SEND %d:%s"), clientId, buffer);
clients[clientId].wifi.write(buffer,count);
} else {
DIAG(F("Unsent(%d): %s"), clientId, buffer);
}
}
}
} else if (!APmode) { // in STA mode but not connected any more
// kick it again
if (wlStatus <= 6) {
DIAG(F("Wifi aborted with error %s. Kicking Wifi!"), wlerror[wlStatus]);
// esp_wifi_start();
// esp_wifi_connect();
uint8_t tries=40;
while (WiFi.status() != WL_CONNECTED && tries) {
Serial.print('.');
tries--;
delay(500);
}
} else {
// all well, probably
//DIAG(F("Running BT"));
} }
// emit data to the client object
// This should work in theory, the
//DIAG(F("send message")); //TJF: only for diag
//TJF: the old code had to add a 0x00 byte to the end to terminate the
//TJF: c string, before sending it. i take it this is not needed?
for (int i=0;i<replySize;i++) c->write(outboundRing->read());
} }
void WifiNINA::loop() {
checkForLostClients(); // ***
checkForNewClient();
checkForClientInput(); // ***
WiThrottle::loop(outboundRing); // allow withrottle to broadcast if needed
checkForClientOutput();
} }
#endif // WIFI_NINA #endif // WIFI_NINA

View File

@ -38,5 +38,9 @@ public:
const bool forceAP); const bool forceAP);
static void loop(); static void loop();
private: private:
static void checkForNewClient();
static void checkForLostClients();
static void checkForClientInput();
static void checkForClientOutput();
}; };
#endif //WifiNINA_h #endif //WifiNINA_h

View File

@ -161,14 +161,6 @@
//#endif //#endif
#define SDA I2C_SDA #define SDA I2C_SDA
#define SCL I2C_SCL #define SCL I2C_SCL
#define DCC_EX_TIMER
// these don't work...
//extern const uint16_t PROGMEM port_to_input_PGM[];
//extern const uint16_t PROGMEM port_to_output_PGM[];
//extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
//#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
//#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
//#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
/* TODO when ready /* TODO when ready
#elif defined(ARDUINO_ARCH_RP2040) #elif defined(ARDUINO_ARCH_RP2040)