1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-26 17:46:14 +01:00

start pico stuffz

This commit is contained in:
Dex's Lab 2023-01-02 22:02:54 -05:00
parent 5e8fa739fc
commit 0284858811
7 changed files with 40 additions and 317 deletions

2
DCC.h
View File

@ -164,6 +164,8 @@ private:
#define ARDUINO_TYPE "MEGA"
#elif defined(ARDUINO_ARCH_MEGAAVR)
#define ARDUINO_TYPE "MEGAAVR"
#elif defined(ARDUINO_ARCH_RP2040)
#define ARDUINO_TYPE "RP2040"
#else
#error CANNOT COMPILE - DCC++ EX ONLY WORKS WITH AN ARDUINO UNO, NANO 328, OR ARDUINO MEGA 1280/2560
#endif

View File

@ -43,12 +43,13 @@
*/
#include "DCCTimer.h"
const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle
const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1;
INTERRUPT_CALLBACK interruptHandler=0;
#ifdef ARDUINO_ARCH_MEGAAVR
#if defined(ARDUINO_ARCH_MEGAAVR)
// Arduino unoWifi Rev2 and nanoEvery architectire
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
@ -83,7 +84,24 @@ INTERRUPT_CALLBACK interruptHandler=0;
memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number
}
#else
#elif defined(ARDUINO_ARCH_RP2040)
// RP2040 aka Raspberry PI Pico
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
}
bool DCCTimer::isPWMPin(byte pin) {
return false; // TODO what are the relevant pins?
}
void DCCTimer::setPWM(byte pin, bool high) {
// TODO what are the relevant pins?
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
//memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number
}
#else
// Arduino nano, uno, mega etc
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER1_A_PIN 11

View File

@ -1,6 +1,9 @@
#ifndef DCCTimer_h
#define DCCTimer_h
#include "Arduino.h"
#if defined(ARDUINO_ARCH_RP2040)
#include "pico/stdlib.h"
#endif
typedef void (*INTERRUPT_CALLBACK)();

View File

@ -1,313 +0,0 @@
/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma GCC optimize ("-O3")
#include <Arduino.h>
#include "DCCWaveform.h"
#include "DCCTimer.h"
#include "DIAG.h"
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
bool DCCWaveform::progTrackSyncMain=false;
bool DCCWaveform::progTrackBoosted=false;
int DCCWaveform::progTripValue=0;
void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
mainTrack.motorDriver=mainDriver;
progTrack.motorDriver=progDriver;
progTripValue = progDriver->mA2raw(TRIP_CURRENT_PROG); // need only calculate once hence static
mainTrack.setPowerMode(POWERMODE::OFF);
progTrack.setPowerMode(POWERMODE::OFF);
MotorDriver::usePWM= mainDriver->isPWMCapable() && progDriver->isPWMCapable();
if (MotorDriver::usePWM) DIAG(F("\nWaveform using PWM pins for accuracy."));
else DIAG(F("\nWaveform accuracy limited by signal pin configuration."));
DCCTimer::begin(DCCWaveform::interruptHandler);
}
void DCCWaveform::loop() {
mainTrack.checkPowerOverload();
progTrack.checkPowerOverload();
}
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
// member functions would be cleaner but have more overhead
byte sigMain=signalTransform[mainTrack.state];
byte sigProg=progTrackSyncMain? sigMain : signalTransform[progTrack.state];
// Set the signal state for both tracks
mainTrack.motorDriver->setSignal(sigMain);
progTrack.motorDriver->setSignal(sigProg);
// Move on in the state engine
mainTrack.state=stateTransform[mainTrack.state];
progTrack.state=stateTransform[progTrack.state];
// WAVE_PENDING means we dont yet know what the next bit is
if (mainTrack.state==WAVE_PENDING) mainTrack.interrupt2();
if (progTrack.state==WAVE_PENDING) progTrack.interrupt2();
else if (progTrack.ackPending) progTrack.checkAck();
}
// An instance of this class handles the DCC transmissions for one track. (main or prog)
// Interrupts are marshalled via the statics.
// A track has a current transmit buffer, and a pending buffer.
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
isMainTrack = isMain;
packetPending = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
state = WAVE_START;
// The +1 below is to allow the preamble generator to create the stop bit
// for the previous packet.
requiredPreambles = preambleBits+1;
bytes_sent = 0;
bits_sent = 0;
sampleDelay = 0;
lastSampleTaken = millis();
ackPending=false;
}
POWERMODE DCCWaveform::getPowerMode() {
return powerMode;
}
void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode = mode;
bool ison = (mode == POWERMODE::ON);
motorDriver->setPower( ison);
}
void DCCWaveform::checkPowerOverload() {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= motorDriver->getRawCurrentTripValue();
if (!isMainTrack && !ackPending && !progTrackSyncMain && !progTrackBoosted)
tripValue=progTripValue;
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=motorDriver->getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
DIAG(F("\n*** %S FAULT PIN ACTIVE TOGGLE POWER ON THIS OR BOTH TRACKS ***\n"), isMainTrack ? F("MAIN") : F("PROG"));
lastCurrent = -lastCurrent;
}
if (lastCurrent <= tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPowerMode(POWERMODE::OVERLOAD);
unsigned int mA=motorDriver->raw2mA(lastCurrent);
unsigned int maxmA=motorDriver->raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%d ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("\n*** %S TRACK POWER RESET delay=%d ***\n"), isMainTrack ? F("MAIN") : F("PROG"), sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}
// For each state of the wave nextState=stateTransform[currentState]
const WAVE_STATE DCCWaveform::stateTransform[]={
/* WAVE_START -> */ WAVE_PENDING,
/* WAVE_MID_1 -> */ WAVE_START,
/* WAVE_HIGH_0 -> */ WAVE_MID_0,
/* WAVE_MID_0 -> */ WAVE_LOW_0,
/* WAVE_LOW_0 -> */ WAVE_START,
/* WAVE_PENDING (should not happen) -> */ WAVE_PENDING};
// For each state of the wave, signal pin is HIGH or LOW
const bool DCCWaveform::signalTransform[]={
/* WAVE_START -> */ HIGH,
/* WAVE_MID_1 -> */ LOW,
/* WAVE_HIGH_0 -> */ HIGH,
/* WAVE_MID_0 -> */ LOW,
/* WAVE_LOW_0 -> */ LOW,
/* WAVE_PENDING (should not happen) -> */ LOW};
void DCCWaveform::interrupt2() {
// calculate the next bit to be sent:
// set state WAVE_MID_1 for a 1=bit
// or WAVE_HIGH_0 for a 0 bit.
if (remainingPreambles > 0 ) {
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
remainingPreambles--;
return;
}
// Wave has gone HIGH but what happens next depends on the bit to be transmitted
// beware OF 9-BIT MASK generating a zero to start each byte
state=(transmitPacket[bytes_sent] & bitMask[bits_sent])? WAVE_MID_1 : WAVE_HIGH_0;
bits_sent++;
// If this is the last bit of a byte, prepare for the next byte
if (bits_sent == 9) { // zero followed by 8 bits of a byte
//end of Byte
bits_sent = 0;
bytes_sent++;
// if this is the last byte, prepere for next packet
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
remainingPreambles = requiredPreambles;
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
sentResetsSincePacket=0;
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (sentResetsSincePacket<250) sentResetsSincePacket++;
}
}
}
}
// Wait until there is no packet pending, then make this pending
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount >= MAX_PACKET_SIZE) return; // allow for chksum
while (packetPending);
byte checksum = 0;
for (byte b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
}
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
packetPending = true;
sentResetsSincePacket=0;
}
// Operations applicable to PROG track ONLY.
// (yes I know I could have subclassed the main track but...)
void DCCWaveform::setAckBaseline() {
if (isMainTrack) return;
int baseline=motorDriver->getCurrentRaw();
ackThreshold= baseline + motorDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("\nACK baseline=%d/%dmA Threshold=%d/%dmA Duration: %dus <= pulse <= %dus"),
baseline,motorDriver->raw2mA(baseline),
ackThreshold,motorDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
}
void DCCWaveform::setAckPending() {
if (isMainTrack) return;
ackMaxCurrent=0;
ackPulseStart=0;
ackPulseDuration=0;
ackDetected=false;
ackCheckStart=millis();
ackPending=true; // interrupt routines will now take note
}
byte DCCWaveform::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("\n%S after %dmS max=%d/%dmA pulse=%duS"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,motorDriver->raw2mA(ackMaxCurrent), ackPulseDuration);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
void DCCWaveform::checkAck() {
// This function operates in interrupt() time so must be fast and can't DIAG
if (sentResetsSincePacket > 6) { //ACK timeout
ackCheckDuration=millis()-ackCheckStart;
ackPending = false;
return;
}
int current=motorDriver->getCurrentRaw();
if (current > ackMaxCurrent) ackMaxCurrent=current;
// An ACK is a pulse lasting between minAckPulseDuration and maxAckPulseDuration uSecs (refer @haba)
if (current>ackThreshold) {
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
// detected trailing edge of pulse
ackPulseDuration=micros()-ackPulseStart;
if (ackPulseDuration>=minAckPulseDuration && ackPulseDuration<=maxAckPulseDuration) {
ackCheckDuration=millis()-ackCheckStart;
ackDetected=true;
ackPending=false;
transmitRepeats=0; // shortcut remaining repeat packets
return; // we have a genuine ACK result
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}

View File

@ -24,7 +24,7 @@
#include "Outputs.h"
#include "DIAG.h"
#if defined(ARDUINO_ARCH_SAMD)
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_RP2040)
ExternalEEPROM EEPROM;
#endif

View File

@ -3,7 +3,7 @@
#include <Arduino.h>
#if defined(ARDUINO_ARCH_SAMD)
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_RP2040)
#include <SparkFun_External_EEPROM.h>
extern ExternalEEPROM EEPROM;
#else

View File

@ -101,3 +101,16 @@ lib_deps =
PaulStoffregen/TimerOne
monitor_speed = 115200
monitor_flags = --echo
[env:pico]
platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico
framework = arduino
board_build.core = earlephilhower
lib_deps =
${env.lib_deps}
DIO2
arduino-libraries/Ethernet
SPI
marcoschwartz/LiquidCrystal_I2C
SparkFun External EEPROM Arduino Library