1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-24 19:28:53 +01:00

UPdated Example .inos

basic and wifi
This commit is contained in:
Asbelos 2020-09-07 10:51:25 +01:00
parent 449565376a
commit 1031382299
2 changed files with 101 additions and 0 deletions

View File

@ -0,0 +1,29 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This is a basic, no frills CVreader example of a DCC++ compatible setup.
* There are more advanced examples in the examples folder i
*/
#include "DCCEX.h"
// Create parser for <> commands coming from keyboard or JMRI on thr USB connection.
DCCEXParser serialParser;
void setup() {
// Responsibility 1: Start the usb connection for diagnostics and possible JMRI input
Serial.begin(115200);
// Responsibility 2: Start the DCC engine with information about your Motor Shield.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorDriverss.h
DCC::begin(STANDARD_MOTOR_SHIELD);
}
void loop() {
// Responsibility 1: Handle DCC background processes (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(Serial);
}

View File

@ -0,0 +1,72 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This file is a demonstattion of setting up a DCC-EX
* Command station to support direct connection of WiThrottle devices
* such as "Engine Driver". If you contriol your layout through JMRI
* then DON'T connect throttles to this wifi, connect them to JMRI.
*
* This is just 3 statements longer than the basic setup.
*
* THIS SETUP DOES NOT APPLY TO ARDUINO UNO WITH ONLY A SINGLE SERIAL PORT.
* REFER TO SEPARATE EXAMPLE.
*/
#include "DCCEX.h"
// Create a serial command parser... Enables certain diagnostics and commands
// to be issued from the USB serial console
// This is NOT intended for JMRI....
DCCEXParser serialParser;
void setup() {
// The main sketch has responsibilities during setup()
// Responsibility 1: Start the usb connection for diagnostics
// This is normally Serial but uses SerialUSB on a SAMD processor
Serial.begin(115200);
// Responsibility 3: Start the DCC engine.
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
// Optionally a Timer number (1..4) may be passed to DCC::begin to override the default Timer1 used for the
// waveform generation. e.g. DCC::begin(STANDARD_MOTOR_SHIELD,2); to use timer 2
DCC::begin(STANDARD_MOTOR_SHIELD);
// Start the WiFi interface.
// NOTE: References to Serial1 are for the serial port used to connect
// your wifi chip/shield.
Serial1.begin(115200); // BAUD rate of your Wifi chip/shield
WifiInterface::setup(Serial1,
F("BTHub5-M6PT"), // Router name
F("49de8d4862"), // Router password
F("DCCEX"), // Hostname (ignored by some wifi chip firmware)
3532); // port (3532 is 0xDCC)
}
void loop() {
// The main sketch has responsibilities during loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(Serial1);
// Responsibility 3: Optionally handle any incoming WiFi traffic
WifiInterface::loop();
}