1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-24 13:21:23 +01:00

Merge pull request #304 from DCC-EX:ex-io-28-feature-request-enable-pwm-support

Ex-io-28-feature-request-enable-pwm-support
This commit is contained in:
peteGSX 2023-02-09 13:20:46 +10:00 committed by GitHub
commit 3b82a94d83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 250 additions and 80 deletions

View File

@ -1,5 +1,5 @@
/* /*
* © 2021, Peter Cole. All rights reserved. * © 2022, Peter Cole. All rights reserved.
* *
* This file is part of EX-CommandStation * This file is part of EX-CommandStation
* *
@ -26,19 +26,14 @@
* (Note the device driver is included by default) * (Note the device driver is included by default)
* *
* void halSetup() { * void halSetup() {
* // EXIOExpander::create(vpin, num_vpins, i2c_address, digitalPinCount, analoguePinCount); * // EXIOExpander::create(vpin, num_vpins, i2c_address);
* EXIOExpander::create(800, 18, 0x65, 12, 8); * EXIOExpander::create(800, 18, 0x65);
* } * }
* *
* Note when defining the number of digital and analogue pins, there is no way to sanity check * All pins on an EX-IOExpander device are allocated according to the pin map for the specific
* this from the device driver, and it is up to the user to define the correct values here. * device in use. There is no way for the device driver to sanity check pins are used for the
* * correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
* All pins available on the EX-IOExpander device must be accounted for. * incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
*
* Vpins are allocated to digital pins first, and then analogue pins, so digital pins will
* populate the first part of the specified vpin range, with the analogue pins populating the
* last part of the vpin range.
* Eg. for a default Nano, 800 - 811 are digital (D2 - D13), 812 to 817 are analogue (A0 - A3, A6/A7).
*/ */
#ifndef IO_EX_IOEXPANDER_H #ifndef IO_EX_IOEXPANDER_H
@ -54,22 +49,33 @@
*/ */
class EXIOExpander : public IODevice { class EXIOExpander : public IODevice {
public: public:
static void create(VPIN vpin, int nPins, uint8_t i2cAddress, int numDigitalPins, int numAnaloguePins) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress, numDigitalPins, numAnaloguePins); enum ProfileType : uint8_t {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
static void create(VPIN vpin, int nPins, uint8_t i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
} }
private: private:
// Constructor // Constructor
EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress, int numDigitalPins, int numAnaloguePins) { EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
_firstVpin = firstVpin; _firstVpin = firstVpin;
_nPins = nPins; _nPins = nPins;
_i2cAddress = i2cAddress; _i2cAddress = i2cAddress;
_numDigitalPins = numDigitalPins; // To save RAM, space for servo configuration is not allocated unless a pin is used.
_numAnaloguePins = numAnaloguePins; // Initialise the pointers to NULL.
_digitalPinBytes = (numDigitalPins+7)/8; _servoData = (ServoData**) calloc(_nPins, sizeof(ServoData*));
_analoguePinBytes = numAnaloguePins * 2; for (int i=0; i<_nPins; i++) {
_digitalInputStates=(byte*) calloc(_digitalPinBytes,1); _servoData[i] = NULL;
_analogueInputStates=(byte*) calloc(_analoguePinBytes,1); }
addDevice(this); addDevice(this);
} }
@ -77,20 +83,31 @@ private:
// Initialise EX-IOExander device // Initialise EX-IOExander device
I2CManager.begin(); I2CManager.begin();
if (I2CManager.exists(_i2cAddress)) { if (I2CManager.exists(_i2cAddress)) {
_digitalOutBuffer[0] = EXIOINIT; _command4Buffer[0] = EXIOINIT;
_digitalOutBuffer[1] = _numDigitalPins; _command4Buffer[1] = _nPins;
_digitalOutBuffer[2] = _numAnaloguePins; _command4Buffer[2] = _firstVpin & 0xFF;
// Send config, if EXIORDY returned, we're good, otherwise go offline _command4Buffer[3] = _firstVpin >> 8;
I2CManager.read(_i2cAddress, _commandBuffer, 1, _digitalOutBuffer, 3); // Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
if (_commandBuffer[0] != EXIORDY) { I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4);
if (_receive3Buffer[0] == EXIOPINS) {
_numDigitalPins = _receive3Buffer[1];
_numAnaloguePins = _receive3Buffer[2];
_digitalPinBytes = (_numDigitalPins + 7)/8;
_digitalInputStates=(byte*) calloc(_digitalPinBytes,1);
_analoguePinBytes = _numAnaloguePins * 2;
_analogueInputStates = (byte*) calloc(_analoguePinBytes, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
} else {
DIAG(F("ERROR configuring EX-IOExpander device, I2C:x%x"), _i2cAddress); DIAG(F("ERROR configuring EX-IOExpander device, I2C:x%x"), _i2cAddress);
_deviceState = DEVSTATE_FAILED; _deviceState = DEVSTATE_FAILED;
return; return;
} }
// We now need to retrieve the analogue pin map
_command1Buffer[0] = EXIOINITA;
I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1);
// Attempt to get version, if we don't get it, we don't care, don't go offline // Attempt to get version, if we don't get it, we don't care, don't go offline
// Using digital in buffer in reverse to save RAM _command1Buffer[0] = EXIOVER;
_commandBuffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1);
I2CManager.read(_i2cAddress, _versionBuffer, 3, _commandBuffer, 1);
_majorVer = _versionBuffer[0]; _majorVer = _versionBuffer[0];
_minorVer = _versionBuffer[1]; _minorVer = _versionBuffer[1];
_patchVer = _versionBuffer[2]; _patchVer = _versionBuffer[2];
@ -105,88 +122,202 @@ private:
} }
} }
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
if (configType != CONFIGURE_INPUT) return false;
if (paramCount != 1) return false; if (paramCount != 1) return false;
if (vpin >= _firstVpin + _numDigitalPins) {
DIAG(F("EX-IOExpander ERROR: Vpin %d is an analogue pin, cannot use as a digital pin"), vpin);
return false;
}
bool pullup = params[0];
int pin = vpin - _firstVpin; int pin = vpin - _firstVpin;
if (configType == CONFIGURE_INPUT) {
bool pullup = params[0];
_digitalOutBuffer[0] = EXIODPUP; _digitalOutBuffer[0] = EXIODPUP;
_digitalOutBuffer[1] = pin; _digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = pullup; _digitalOutBuffer[2] = pullup;
I2CManager.write(_i2cAddress, _digitalOutBuffer, 3); I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
if (_command1Buffer[0] == EXIORDY) {
return true; return true;
} } else {
DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin);
// We only use this to detect incorrect use of analogue pins
int _configureAnalogIn(VPIN vpin) override {
if (vpin < _firstVpin + _numDigitalPins) {
DIAG(F("EX-IOExpander ERROR: Vpin %d is a digital pin, cannot use as an analogue pin"), vpin);
return false; return false;
} }
} else {
return false;
}
}
// Analogue input pin configuration, used to enable on EX-IOExpander device
int _configureAnalogIn(VPIN vpin) override {
int pin = vpin - _firstVpin; int pin = vpin - _firstVpin;
_analogueOutBuffer[0] = EXIOENAN; _command2Buffer[0] = EXIOENAN;
_analogueOutBuffer[1] = pin; _command2Buffer[1] = pin;
I2CManager.write(_i2cAddress, _analogueOutBuffer, 2); I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2);
if (_command1Buffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin);
return false;
}
return true; return true;
} }
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override { void _loop(unsigned long currentMicros) override {
(void)currentMicros; // remove warning (void)currentMicros; // remove warning
_commandBuffer[0] = EXIORDD; if (_deviceState == DEVSTATE_FAILED) return;
I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _commandBuffer, 1); _command1Buffer[0] = EXIORDD;
_commandBuffer[0] = EXIORDAN; I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1);
I2CManager.read(_i2cAddress, _analogueInputStates, _analoguePinBytes, _commandBuffer, 1); _command1Buffer[0] = EXIORDAN;
I2CManager.read(_i2cAddress, _analogueInputStates, _analoguePinBytes, _command1Buffer, 1);
if ((currentMicros - _lastRefresh) / 1000UL > refreshInterval) {
_lastRefresh = currentMicros;
for (int pin=0; pin<_nPins; pin++) {
if (_servoData[pin] != NULL) {
updatePosition(pin);
}
}
}
} }
// Obtain the correct analogue input value
int _readAnalogue(VPIN vpin) override { int _readAnalogue(VPIN vpin) override {
if (vpin < _firstVpin + _numDigitalPins) return false; if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin - _numDigitalPins; int pin = vpin - _firstVpin;
uint8_t _pinLSBByte = pin * 2; uint8_t _pinLSBByte;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
_pinLSBByte = aPin * 2;
}
}
uint8_t _pinMSBByte = _pinLSBByte + 1; uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
} }
// Obtain the correct digital input value
int _read(VPIN vpin) override { int _read(VPIN vpin) override {
if (vpin >= _firstVpin + _numDigitalPins) return false; if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin; int pin = vpin - _firstVpin;
if (_servoData[pin] == NULL) {
uint8_t pinByte = pin / 8; uint8_t pinByte = pin / 8;
bool value = _digitalInputStates[pinByte] >> (pin - pinByte * 8); bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value; return value;
} else {
struct ServoData *s = _servoData[pin];
if (s == NULL) {
return false; // No structure means no animation!
} else {
return (s->stepNumber < s->numSteps);
}
}
} }
void _write(VPIN vpin, int value) override { void _write(VPIN vpin, int value) override {
if (vpin >= _firstVpin + _numDigitalPins) return; if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin; int pin = vpin - _firstVpin;
if (_servoData[pin] == NULL) {
_digitalOutBuffer[0] = EXIOWRD; _digitalOutBuffer[0] = EXIOWRD;
_digitalOutBuffer[1] = pin; _digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = value; _digitalOutBuffer[2] = value;
I2CManager.write(_i2cAddress, _digitalOutBuffer, 3); I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
if (_command1Buffer[0] != EXIORDY) {
DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin);
}
} else {
if (value) value = 1;
struct ServoData *s = _servoData[pin];
if (s != NULL) {
// Use configured parameters
this->_writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration);
} else {
/* simulate digital pin on PWM */
this->_writeAnalogue(vpin, value ? 4095 : 0, Instant | NoPowerOff, 0);
}
}
}
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
if (_deviceState == DEVSTATE_FAILED) return;
if (value > 4095) value = 4095;
else if (value < 0) value = 0;
struct ServoData *s = _servoData[pin];
if (s == NULL) {
// Servo pin not configured, so configure now using defaults
s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1);
if (s == NULL) return; // Check for memory allocation failure
s->activePosition = 4095;
s->inactivePosition = 0;
s->currentPosition = value;
s->profile = Instant | NoPowerOff; // Use instant profile (but not this time)
}
// Animated profile. Initiate the appropriate action.
s->currentProfile = profile;
uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit.
s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds
profileValue==Medium ? 20 : // 1.0 seconds
profileValue==Slow ? 40 : // 2.0 seconds
profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds
duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms)
s->stepNumber = 0;
s->toPosition = value;
s->fromPosition = s->currentPosition;
}
void updatePosition(uint8_t pin) {
struct ServoData *s = _servoData[pin];
if (s == NULL) return; // No pin configuration/state data
if (s->numSteps == 0) return; // No animation in progress
if (s->stepNumber == 0 && s->fromPosition == s->toPosition) {
// Go straight to end of sequence, output final position.
s->stepNumber = s->numSteps-1;
}
if (s->stepNumber < s->numSteps) {
// Animation in progress, reposition servo
s->stepNumber++;
if ((s->currentProfile & ~NoPowerOff) == Bounce) {
// Retrieve step positions from array in flash
uint8_t profileValue = GETFLASH(&_bounceProfile[s->stepNumber]);
s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition);
} else {
// All other profiles - calculate step by linear interpolation between from and to positions.
s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition);
}
// Send servo command
this->writePWM(pin, s->currentPosition);
} else if (s->stepNumber < s->numSteps + _catchupSteps) {
// We've finished animation, wait a little to allow servo to catch up
s->stepNumber++;
} else if (s->stepNumber == s->numSteps + _catchupSteps
&& s->currentPosition != 0) {
s->numSteps = 0; // Done now.
}
}
void writePWM(int pin, uint16_t value) {
_command4Buffer[0] = EXIOWRAN;
_command4Buffer[1] = pin;
_command4Buffer[2] = value & 0xFF;
_command4Buffer[3] = value >> 8;
I2CManager.write(_i2cAddress, _command4Buffer, 4);
} }
void _display() override { void _display() override {
int _firstAnalogue, _lastAnalogue; DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d Vpins %d-%d %S"),
if (_numAnaloguePins == 0) {
_firstAnalogue = 0;
_lastAnalogue = 0;
} else {
_firstAnalogue = _firstVpin + _numDigitalPins;
_lastAnalogue = _firstVpin + _nPins - 1;
}
DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d: %d Digital Vpins %d-%d, %d Analogue Vpins %d-%d %S"),
_i2cAddress, _majorVer, _minorVer, _patchVer, _i2cAddress, _majorVer, _minorVer, _patchVer,
_numDigitalPins, _firstVpin, _firstVpin + _numDigitalPins - 1, (int)_firstVpin, (int)_firstVpin+_nPins-1,
_numAnaloguePins, _firstAnalogue, _lastAnalogue,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
} }
uint8_t _i2cAddress; uint8_t _i2cAddress;
uint8_t _numDigitalPins; uint8_t _numDigitalPins = 0;
uint8_t _numAnaloguePins; uint8_t _numAnaloguePins = 0;
byte _analogueOutBuffer[2];
byte _digitalOutBuffer[3]; byte _digitalOutBuffer[3];
uint8_t _versionBuffer[3]; uint8_t _versionBuffer[3];
uint8_t _majorVer = 0; uint8_t _majorVer = 0;
@ -196,8 +327,41 @@ private:
byte* _analogueInputStates; byte* _analogueInputStates;
uint8_t _digitalPinBytes = 0; uint8_t _digitalPinBytes = 0;
uint8_t _analoguePinBytes = 0; uint8_t _analoguePinBytes = 0;
byte _commandBuffer[1]; byte _command1Buffer[1];
byte _command2Buffer[2];
byte _command4Buffer[4];
byte _receive3Buffer[3];
uint8_t* _analoguePinMap;
// Servo specific
struct ServoData {
uint16_t activePosition : 12; // Config parameter
uint16_t inactivePosition : 12; // Config parameter
uint16_t currentPosition : 12;
uint16_t fromPosition : 12;
uint16_t toPosition : 12;
uint8_t profile; // Config parameter
uint16_t stepNumber; // Index of current step (starting from 0)
uint16_t numSteps; // Number of steps in animation, or 0 if none in progress.
uint8_t currentProfile; // profile being used for current animation.
uint16_t duration; // time (tenths of a second) for animation to complete.
}; // 14 bytes per element, i.e. per pin in use
ServoData** _servoData;
static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off
const unsigned int refreshInterval = 50; // refresh every 50ms
unsigned long _lastRefresh = 0;
// Profile for a bouncing signal or turnout
// The profile below is in the range 0-100% and should be combined with the desired limits
// of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here,
// i.e. the bounce is the same on the down action as on the up action. First entry isn't used.
const byte FLASH _bounceProfile[30] =
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};
// EX-IOExpander protocol flags
enum { enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
@ -206,7 +370,11 @@ private:
EXIORDAN = 0xE4, // Flag to read an analogue input EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag eo enable an analogue pin EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
}; };
}; };

View File

@ -4,7 +4,9 @@
#include "StringFormatter.h" #include "StringFormatter.h"
#define VERSION "4.2.14" #define VERSION "4.2.15"
// 4.2.15 Add basic experimental PWM support to EX-IOExpander
// EX-IOExpander 0.0.14 minimum required
// 4.2.14 STM32F4xx fast ADC read implementation // 4.2.14 STM32F4xx fast ADC read implementation
// 4.2.13 Broadcast power for <s> again // 4.2.13 Broadcast power for <s> again
// 4.2.12 Bugfix for issue #299 TurnoutDescription NULL // 4.2.12 Bugfix for issue #299 TurnoutDescription NULL