1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-23 11:08:52 +01:00

Merge branch 'devel' into devel_chris

This commit is contained in:
Asbelos 2024-04-12 15:08:49 +01:00
commit 3fc90c916c
18 changed files with 297 additions and 44 deletions

76
DCC.cpp
View File

@ -325,8 +325,8 @@ preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
Die Adresse für den ersten erweiterten Zubehördecoder ist wie bei den einfachen
Zubehördecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Die Adresse f<EFBFBD>r den ersten erweiterten Zubeh<EFBFBD>rdecoder ist wie bei den einfachen
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Anwenderdialogen als Adresse 1 dargestellt.
This means that the first address shown to the user as "1" is mapped
@ -500,6 +500,36 @@ const ackOp FLASH READ_CV_PROG[] = {
const ackOp FLASH LOCO_ID_PROG[] = {
BASELINE,
// first check cv20 for extended addressing
SETCV, (ackOp)20, // CV 19 is extended
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
// read cv20 and 19 and merge
STARTMERGE, // Setup to read cv 20
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
STASHLOCOID, // keep cv 20 until we have cv19 as well.
SETCV, (ackOp)19,
STARTMERGE, // Setup to read cv 19
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
COMBINE1920, // Combile byte with stash and callback
// end of advanced 20,19 check
SKIPTARGET,
SETCV, (ackOp)19, // CV 19 is consist setting
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
@ -566,6 +596,10 @@ const ackOp FLASH LOCO_ID_PROG[] = {
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv19 support
@ -581,9 +615,25 @@ const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
CALLFAIL
};
// for CONSIST_ID_PROG the 20,19 values are already calculated
const ackOp FLASH CONSIST_ID_PROG[] = {
BASELINE,
SETCV,(ackOp)20,
SETBYTEH, // high byte to CV 20
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore decoder without cv19 support
@ -652,6 +702,26 @@ void DCC::setLocoId(int id,ACK_CALLBACK callback) {
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
}
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
if (id<0 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
byte cv20;
byte cv19;
if (id<=HIGHEST_SHORT_ADDR) {
cv19=id;
cv20=0;
}
else {
cv20=id/100;
cv19=id%100;
}
if (reverse) cv19|=0x80;
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
setThrottle2(cab,1); // ESTOP this loco if still on track
int reg=lookupSpeedTable(cab, false);

2
DCC.h
View File

@ -85,7 +85,7 @@ public:
static void getLocoId(ACK_CALLBACK callback);
static void setLocoId(int id,ACK_CALLBACK callback);
static void setConsistId(int id,bool reverse,ACK_CALLBACK callback);
// Enhanced API functions
static void forgetLoco(int cab); // removes any speed reminders for this loco
static void forgetAllLocos(); // removes all speed reminders

View File

@ -314,6 +314,14 @@ void DCCACK::loop() {
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
return;
case COMBINE1920:
// ackManagerStash is cv20, ackManagerByte is CV 19
// This will not be called if cv20==0
ackManagerByte &= 0x7F; // ignore direction marker
ackManagerByte %=100; // take last 2 decimal digits
callback( ackManagerStash*100+ackManagerByte);
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
@ -322,6 +330,15 @@ void DCCACK::loop() {
opcode=GETFLASH(ackManagerProg);
}
break;
case NAKSKIP:
if (ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
break;
case SKIPTARGET:
break;
default:

View File

@ -56,6 +56,8 @@ enum ackOp : byte
STASHLOCOID, // keeps current byte value for later
COMBINELOCOID, // combines current value with stashed value and returns it
ITSKIP, // skip to SKIPTARGET if ack true
NAKSKIP, // skip to SKIPTARGET if ack false
COMBINE1920, // combine cvs 19 and 20 and callback
SKIPTARGET = 0xFF // jump to target
};

View File

@ -458,6 +458,9 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
DCC::setLocoId(p[0],callback_Wloco);
else if (params == 4) // WRITE CV ON PROG <W CV VALUE [CALLBACKNUM] [CALLBACKSUB]>
DCC::writeCVByte(p[0], p[1], callback_W4);
else if ((params==2 || params==3 ) && p[0]=="CONSIST"_hk ) {
DCC::setConsistId(p[1],p[2]=="REVERSE"_hk,callback_Wconsist);
}
else if (params == 2) // WRITE CV ON PROG <W CV VALUE>
DCC::writeCVByte(p[0], p[1], callback_W);
else
@ -1348,3 +1351,11 @@ void DCCEXParser::callback_Wloco(int16_t result)
StringFormatter::send(getAsyncReplyStream(), F("<w %d>\n"), result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Wconsist(int16_t result)
{
if (result==1) result=stashP[1]; // pick up original requested id from command
StringFormatter::send(getAsyncReplyStream(), F("<w CONSIST %d%S>\n"),
result, stashP[2]=="REVERSE"_hk ? F(" REVERSE") : F(""));
commitAsyncReplyStream();
}

View File

@ -71,6 +71,7 @@ struct DCCEXParser
static void callback_R(int16_t result);
static void callback_Rloco(int16_t result);
static void callback_Wloco(int16_t result);
static void callback_Wconsist(int16_t result);
static void callback_Vbit(int16_t result);
static void callback_Vbyte(int16_t result);
static FILTER_CALLBACK filterCallback;

View File

@ -65,7 +65,11 @@ class DCCTimer {
static void startRailcomTimer(byte brakePin);
static void ackRailcomTimer();
static void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
static void DCCEXanalogWrite(uint8_t pin, int value);
static void DCCEXanalogWrite(uint8_t pin, int value, bool invert);
static void DCCEXledcDetachPin(uint8_t pin);
static void DCCEXanalogCopyChannel(int8_t frompin, int8_t topin);
static void DCCEXInrushControlOn(uint8_t pin, int duty, bool invert);
static void DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted);
// Update low ram level. Allow for extra bytes to be specified
// by estimation or inspection, that may be used by other

View File

@ -78,6 +78,7 @@ int DCCTimer::freeMemory() {
////////////////////////////////////////////////////////////////////////
#ifdef ARDUINO_ARCH_ESP32
#include "DIAG.h"
#include <driver/adc.h>
#include <soc/sens_reg.h>
#include <soc/sens_struct.h>
@ -154,8 +155,10 @@ void DCCTimer::reset() {
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f == 7)
/*
else if (f == 7) // not used on ESP32
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
*/
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
@ -188,23 +191,104 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency
}
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
DIAG(F("Clear pin %d channel"), pin);
pin_to_channel[pin] = 0;
pinMatrixOutDetach(pin, false, false);
}
static byte LEDCToMux[] = {
LEDC_HS_SIG_OUT0_IDX,
LEDC_HS_SIG_OUT1_IDX,
LEDC_HS_SIG_OUT2_IDX,
LEDC_HS_SIG_OUT3_IDX,
LEDC_HS_SIG_OUT4_IDX,
LEDC_HS_SIG_OUT5_IDX,
LEDC_HS_SIG_OUT6_IDX,
LEDC_HS_SIG_OUT7_IDX,
LEDC_LS_SIG_OUT0_IDX,
LEDC_LS_SIG_OUT1_IDX,
LEDC_LS_SIG_OUT2_IDX,
LEDC_LS_SIG_OUT3_IDX,
LEDC_LS_SIG_OUT4_IDX,
LEDC_LS_SIG_OUT5_IDX,
LEDC_LS_SIG_OUT6_IDX,
LEDC_LS_SIG_OUT7_IDX,
};
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
ledcAttachPin(pin, channel);
if (inverted) // we attach again but with inversion
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
}
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
// arguments are signed depending on inversion of pins
DIAG(F("Pin %d copied to %d"), frompin, topin);
bool inverted = false;
if (frompin<0)
frompin = -frompin;
if (topin<0) {
inverted = true;
topin = -topin;
}
int channel = pin_to_channel[frompin]; // after abs(frompin)
pin_to_channel[topin] = channel;
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
// This allocates channels 15, 13, 11, ....
// so each channel gets its own timer.
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] == 0) {
int search_channel;
int n;
if (!cnt_channel) {
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
return;
}
pin_to_channel[pin] = --cnt_channel;
ledcSetup(cnt_channel, 1000, 8);
ledcAttachPin(pin, cnt_channel);
// search for free channels top down
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
bool chanused = false;
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
if (pin_to_channel[n] == search_channel) { // current search_channel used
chanused = true;
break;
}
}
if (chanused)
continue;
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
break;
}
if (search_channel >= cnt_channel) {
pin_to_channel[pin] = search_channel;
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
} else {
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
--cnt_channel; // Now we are at 14, 12, ...
}
ledcSetup(pin_to_channel[pin], 1000, 8);
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
} else {
ledcAttachPin(pin, pin_to_channel[pin]);
// This else is only here so we can enable diag
// Pin should be already attached to channel
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
}
ledcWrite(pin_to_channel[pin], value);
}
}
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
// this uses hardcoded channel 0
ledcSetup(0, 62500, 8);
DCCEXledcAttachPin(pin, 0, inverted);
ledcWrite(0, duty);
}
int ADCee::init(uint8_t pin) {
pinMode(pin, ANALOG);
adc1_config_width(ADC_WIDTH_BIT_12);

View File

@ -333,7 +333,9 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency
return;
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
if (invert)
value = 255-value;
// Calculate percentage duty cycle from value given
uint32_t duty_cycle = (value * 100 / 256) + 1;
if (pin_timer[pin] != NULL) {

View File

@ -177,7 +177,7 @@ LookList* RMFT2::LookListLoader(OPCODE op1, OPCODE op2, OPCODE op3) {
/* static */ void RMFT2::begin() {
DIAG(F("EXRAIL RoutCode at =%P"),RouteCode);
//DIAG(F("EXRAIL RoutCode at =%P"),RouteCode);
bool saved_diag=diag;
diag=true;
@ -418,7 +418,7 @@ void RMFT2::createNewTask(int route, uint16_t cab) {
void RMFT2::driveLoco(byte speed) {
if (loco<=0) return; // Prevent broadcast!
if (diag) DIAG(F("EXRAIL drive %d %d %d"),loco,speed,forward^invert);
//if (diag) DIAG(F("EXRAIL drive %d %d %d"),loco,speed,forward^invert);
/* TODO.....
power on appropriate track if DC or main if dcc
if (TrackManager::getMainPowerMode()==POWERMODE::OFF) {
@ -1074,7 +1074,7 @@ void RMFT2::loop2() {
case OPCODE_ROUTE:
case OPCODE_AUTOMATION:
case OPCODE_SEQUENCE:
if (diag) DIAG(F("EXRAIL begin(%d)"),operand);
//if (diag) DIAG(F("EXRAIL begin(%d)"),operand);
break;
case OPCODE_AUTOSTART: // Handled only during begin process
@ -1156,7 +1156,7 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
/* static */ void RMFT2::doSignal(int16_t id,char rag) {
if (!(compileFeatures & FEATURE_SIGNAL)) return; // dont compile code below
if (diag) DIAG(F(" doSignal %d %x"),id,rag);
//if (diag) DIAG(F(" doSignal %d %x"),id,rag);
// Schedule any event handler for this signal change.
// This will work even without a signal definition.
@ -1176,7 +1176,7 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
VPIN redpin=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+2);
VPIN amberpin=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+4);
VPIN greenpin=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+6);
if (diag) DIAG(F("signal %d %d %d %d %d"),sigid,id,redpin,amberpin,greenpin);
//if (diag) DIAG(F("signal %d %d %d %d %d"),sigid,id,redpin,amberpin,greenpin);
VPIN sigtype=sigid & ~SIGNAL_ID_MASK;
@ -1184,7 +1184,7 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
// A servo signal, the pin numbers are actually servo positions
// Note, setting a signal to a zero position has no effect.
int16_t servopos= rag==SIGNAL_RED? redpin: (rag==SIGNAL_GREEN? greenpin : amberpin);
if (diag) DIAG(F("sigA %d %d"),id,servopos);
//if (diag) DIAG(F("sigA %d %d"),id,servopos);
if (servopos!=0) IODevice::writeAnalogue(id,servopos,PCA9685::Bounce);
return;
}
@ -1302,7 +1302,7 @@ void RMFT2::rotateEvent(int16_t turntableId, bool change) {
void RMFT2::clockEvent(int16_t clocktime, bool change) {
// Hunt for an ONTIME for this time
if (Diag::CMD)
DIAG(F("Looking for clock event at : %d"), clocktime);
DIAG(F("clockEvent at : %d"), clocktime);
if (change) {
onClockLookup->handleEvent(F("CLOCK"),clocktime);
onClockLookup->handleEvent(F("CLOCK"),25*60+clocktime%60);
@ -1312,7 +1312,7 @@ void RMFT2::clockEvent(int16_t clocktime, bool change) {
void RMFT2::powerEvent(int16_t track, bool overload) {
// Hunt for an ONOVERLOAD for this item
if (Diag::CMD)
DIAG(F("Looking for Power event on track : %c"), track);
DIAG(F("powerEvent : %c"), track);
if (overload) {
onOverloadLookup->handleEvent(F("POWER"),track);
}

View File

@ -1 +1 @@
#define GITHUB_SHA "devel-202404012205Z"
#define GITHUB_SHA "devel-202404061747Z"

View File

@ -1,7 +1,9 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2024, Paul Antoine
* © 2023, Neil McKechnie
* All rights reserved.
*
* This file is part of DCC++EX API
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -112,13 +114,14 @@ protected:
// Fill buffer with spaces
memset(_buffer, ' ', _numCols*_numRows);
_displayDriver->clearNative();
// Add device to list of HAL devices (not necessary but allows
// status to be displayed using <D HAL SHOW> and device to be
// reinitialised using <D HAL RESET>).
IODevice::addDevice(this);
// Moved after addDevice() to ensure I2CManager.begin() has been called fisrt
_displayDriver->clearNative();
// Also add this display to list of display handlers
DisplayInterface::addDisplay(displayNo);

View File

@ -336,8 +336,6 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
{ // new block because of variable f
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
@ -349,12 +347,12 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
}
}
#endif
//DIAG(F("Brake pin %d freqency %d"), brakePin, f);
//DIAG(F("Brake pin %d value %d freqency %d"), brakePin, brake, f);
DCCTimer::DCCEXanalogWrite(brakePin, brake, invertBrake);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
DCCTimer::DCCEXanalogWrite(brakePin,brake);
#else // all AVR here
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
analogWrite(brakePin,brake);
analogWrite(brakePin, invertBrake ? 255-brake : brake);
#endif
}
@ -404,26 +402,26 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
void MotorDriver::throttleInrush(bool on) {
if (brakePin == UNUSED_PIN)
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT | TRACK_MODE_BOOST)))
return;
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
if (invertBrake)
duty = 255-duty;
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXInrushControlOn(brakePin, duty, invertBrake);
} else {
ledcDetachPin(brakePin);
ledcDetachPin(brakePin); // not DCCTimer::DCCEXledcDetachPin() as we have not
// registered the pin in the pin to channel array
}
#elif defined(ARDUINO_ARCH_STM32)
if(on) {
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWrite(brakePin,duty,invertBrake);
} else {
pinMode(brakePin, OUTPUT);
}
#else // all AVR here
if (invertBrake)
duty = 255-duty;
if(on){
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
}

View File

@ -193,13 +193,14 @@ class MotorDriver {
}
};
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
inline int8_t getBrakePinSigned() { return invertBrake ? -brakePin : brakePin; };
void setDCSignal(byte speedByte, uint8_t frequency=0);
void throttleInrush(bool on);
inline void detachDCSignal() {
#if defined(__arm__)
pinMode(brakePin, OUTPUT);
#elif defined(ARDUINO_ARCH_ESP32)
ledcDetachPin(brakePin);
DCCTimer::DCCEXledcDetachPin(brakePin);
#else
setDCSignal(128);
#endif

View File

@ -38,8 +38,8 @@
if (track[t]->getMode()==findmode) \
track[t]->function;
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
MotorDriver * TrackManager::track[MAX_TRACKS] = { NULL };
int16_t TrackManager::trackDCAddr[MAX_TRACKS] = { 0 };
int8_t TrackManager::lastTrack=-1;
bool TrackManager::progTrackSyncMain=false;
@ -251,18 +251,47 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
} else {
track[trackToSet]->makeProgTrack(false); // only the prog track knows it's type
}
track[trackToSet]->setMode(mode);
trackDCAddr[trackToSet]=dcAddr;
// When a track is switched, we must clear any side effects of its previous
// state, otherwise trains run away or just dont move.
// This can be done BEFORE the PWM-Timer evaluation (methinks)
if (!(mode & TRACK_MODE_DC)) {
if (mode & TRACK_MODE_DC) {
if (trackDCAddr[trackToSet] != dcAddr) {
// new or changed DC Addr, run the new setup
if (trackDCAddr[trackToSet] != 0) {
// if we change dcAddr and not only
// change from another mode,
// first detach old DC signal
track[trackToSet]->detachDCSignal();
}
#ifdef ARDUINO_ARCH_ESP32
int trackfound = -1;
FOR_EACH_TRACK(t) {
//DIAG(F("Checking track %c mode %x dcAddr %d"), 'A'+t, track[t]->getMode(), trackDCAddr[t]);
if (t != trackToSet // not our track
&& (track[t]->getMode() & TRACK_MODE_DC) // right mode
&& trackDCAddr[t] == dcAddr) { // right addr
//DIAG(F("Found track %c"), 'A'+t);
trackfound = t;
break;
}
}
if (trackfound > -1) {
DCCTimer::DCCEXanalogCopyChannel(track[trackfound]->getBrakePinSigned(),
track[trackToSet]->getBrakePinSigned());
}
#endif
}
// set future DC Addr;
trackDCAddr[trackToSet]=dcAddr;
} else {
// DCC tracks need to have set the PWM to zero or they will not work.
track[trackToSet]->detachDCSignal();
track[trackToSet]->setBrake(false);
trackDCAddr[trackToSet]=0; // clear that an addr is set for DC as this is not a DC track
}
track[trackToSet]->setMode(mode);
// BOOST:
// Leave it as is

View File

@ -211,6 +211,19 @@ The configuration file for DCC-EX Command Station
// #define DISABLE_VDPY
// #define ENABLE_VDPY
/////////////////////////////////////////////////////////////////////////////////////
// DISABLE / ENABLE DIAG
//
// To diagose different errors, you can turn on differnet messages. This costs
// program memory which we do not have enough on the Uno and Nano, so it is
// by default DISABLED on those. If you think you can fit it (for example
// having disabled some of the features above) you can enable it with
// ENABLE_DIAG. You can even disable it on all other CPUs with
// DISABLE_DIAG
//
// #define DISABLE_DIAG
// #define ENABLE_DIAG
/////////////////////////////////////////////////////////////////////////////////////
// REDEFINE WHERE SHORT/LONG ADDR break is. According to NMRA the last short address
// is 127 and the first long address is 128. There are manufacturers which have

View File

@ -220,9 +220,15 @@
//
#if defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_UNO)
#define IO_NO_HAL // HAL too big whatever you disable otherwise
#ifndef ENABLE_VDPY
#define DISABLE_VDPY
#endif
#ifndef ENABLE_DIAG
#define DISABLE_DIAG
#endif
#endif
#if __has_include ( "myAutomation.h")

View File

@ -3,7 +3,19 @@
#include "StringFormatter.h"
#define VERSION "5.2.42"
#define VERSION "5.2.48"
// 5.2.48 - Bugfix: HALDisplay was generating I2C traffic prior to I2C being initialised
// 5.2.47 - EXRAIL additions:
// STEALTH_GLOBAL
// BLINK
// TOGGLE_TURNOUT
// FTOGGLE, XFTOGGLE
// Reduced code-developmenmt DIAG noise
// 5.2.46 - Support for extended consist CV20 in <R> and <W id>
// - New cmd <W CONSIST id [REVERSE]> to handle long/short consist ids
// 5.2.45 - ESP32 Trackmanager reset cab number to 0 when track is not DC
// ESP32 fix PWM LEDC inverted pin mode
// ESP32 rewrite PWM LEDC to use pin mux
// 5.2.42 - ESP32 Bugfix: Uninitialized stack variable
// 5.2.41 - Update rotary encoder default address to 0x67
// 5.2.40 - Allow no shield