diff --git a/DCCTimer.h b/DCCTimer.h index 7402f16..3b14fd6 100644 --- a/DCCTimer.h +++ b/DCCTimer.h @@ -125,8 +125,13 @@ private: // On platforms that scan, it is called from waveform ISR // only on a regular basis. static void scan(); + #if defined (ARDUINO_ARCH_STM32) + // bit array of used pins (max 32) + static uint32_t usedpins; +#else // bit array of used pins (max 16) static uint16_t usedpins; +#endif static uint8_t highestPin; // cached analog values (malloc:ed to actual number of ADC channels) static int *analogvals; diff --git a/DCCTimerSTM32.cpp b/DCCTimerSTM32.cpp index cffae40..f57499a 100644 --- a/DCCTimerSTM32.cpp +++ b/DCCTimerSTM32.cpp @@ -52,7 +52,7 @@ HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 HardwareSerial Serial3(PC11, PC10); // Rx=PC11, Tx=PC10 -- USART3 - F446RE HardwareSerial Serial5(PD2, PC12); // Rx=PC7, Tx=PC6 -- UART5 - F446RE // On the F446RE, Serial4 and Serial6 also use pins we can't readily map while using the Arduino pins -#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)|| defined(ARDUINO_NUCLEO_F412ZG) +#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE) // Nucleo-144 boards don't have Serial1 defined by default HardwareSerial Serial6(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6 // Serial3 is defined to use USART3 by default, but is in fact used as the diag console @@ -235,22 +235,19 @@ void DCCTimer::reset() { while(true) {}; } -// TODO: may need to use uint32_t on STMF4xx variants with > 16 analog inputs! -#if defined(ARDUINO_NUCLEO_F446RE) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE) -#warning STM32 board selected not fully supported - only use ADC1 inputs 0-15 for current sensing! -#endif -// For now, define the max of 16 ports - some variants have more, but this not **yet** supported -#define NUM_ADC_INPUTS 16 -// #define NUM_ADC_INPUTS NUM_ANALOG_INPUTS +// Now we can handle more ADCs, maybe this works! +#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS -uint16_t ADCee::usedpins = 0; -uint8_t ADCee::highestPin = 0; -int * ADCee::analogvals = NULL; -uint32_t * analogchans = NULL; -bool adc1configured = false; +uint32_t ADCee::usedpins = 0; // Max of 32 ADC input channels! +uint8_t ADCee::highestPin = 0; // Highest pin to scan +int * ADCee::analogvals = NULL; // Array of analog values last captured +uint32_t * analogchans = NULL; // Array of channel numbers to be scanned +// bool adc1configured = false; +ADC_TypeDef * * adcchans = NULL; // Array to capture which ADC is each input channel on -int16_t ADCee::ADCmax() { - return 4095; +int16_t ADCee::ADCmax() +{ + return 4095; } int ADCee::init(uint8_t pin) { @@ -261,11 +258,33 @@ int ADCee::init(uint8_t pin) { return -1024; // some silly value as error uint32_t stmgpio = STM_PORT(stmpin); // converts to the GPIO port (16-bits per port group on STM32) - uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC channel (only valid for ADC1!) - GPIO_TypeDef * gpioBase; + uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC input channel + ADC_TypeDef *adc = (ADC_TypeDef *)pinmap_find_peripheral(stmpin, PinMap_ADC); // find which ADC this pin is on ADC1/2/3 etc. + int adcnum = 1; + if (adc == ADC1) + DIAG(F("ADCee::init(): found pin %d on ADC1"), pin); +// Checking for ADC2 and ADC3 being defined helps cater for more variants later +#if defined(ADC2) + else if (adc == ADC2) + { + DIAG(F("ADCee::init(): found pin %d on ADC2"), pin); + adcnum = 2; + } +#endif +#if defined(ADC3) + else if (adc == ADC3) + { + DIAG(F("ADCee::init(): found pin %d on ADC3"), pin); + adcnum = 3; + } +#endif + else DIAG(F("ADCee::init(): found pin %d on unknown ADC!"), pin); - // Port config - find which port we're on and power it up - switch(stmgpio) { + // Port config - find which port we're on and power it up + GPIO_TypeDef *gpioBase; + + switch (stmgpio) + { case 0x00: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; //Power up PORTA gpioBase = GPIOA; @@ -278,6 +297,20 @@ int ADCee::init(uint8_t pin) { RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; //Power up PORTC gpioBase = GPIOC; break; + case 0x03: + RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN; //Power up PORTD + gpioBase = GPIOD; + break; + case 0x04: + RCC->AHB1ENR |= RCC_AHB1ENR_GPIOEEN; //Power up PORTE + gpioBase = GPIOE; + break; +#if defined(GPIOF) + case 0x05: + RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN; //Power up PORTF + gpioBase = GPIOF; + break; +#endif default: return -1023; // some silly value as error } @@ -293,31 +326,33 @@ int ADCee::init(uint8_t pin) { if (adcchan > 18) return -1022; // silly value as error if (adcchan < 10) - ADC1->SMPR2 |= (0b111 << (adcchan * 3)); // Channel sampling rate 480 cycles + adc->SMPR2 |= (0b111 << (adcchan * 3)); // Channel sampling rate 480 cycles else - ADC1->SMPR1 |= (0b111 << ((adcchan - 10) * 3)); // Channel sampling rate 480 cycles + adc->SMPR1 |= (0b111 << ((adcchan - 10) * 3)); // Channel sampling rate 480 cycles // Read the inital ADC value for this analog input - ADC1->SQR3 = adcchan; // 1st conversion in regular sequence - ADC1->CR2 |= (1 << 30); // Start 1st conversion SWSTART - while(!(ADC1->SR & (1 << 1))); // Wait until conversion is complete - value = ADC1->DR; // Read value from register + adc->SQR3 = adcchan; // 1st conversion in regular sequence + adc->CR2 |= ADC_CR2_SWSTART; //(1 << 30); // Start 1st conversion SWSTART + while(!(adc->SR & (1 << 1))); // Wait until conversion is complete + value = adc->DR; // Read value from register uint8_t id = pin - PNUM_ANALOG_BASE; - if (id > 15) { // today we have not enough bits in the mask to support more - return -1021; - } + // if (id > 15) { // today we have not enough bits in the mask to support more + // return -1021; + // } - if (analogvals == NULL) { // allocate analogvals and analogchans if this is the first invocation of init. + if (analogvals == NULL) { // allocate analogvals, analogchans and adcchans if this is the first invocation of init analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int)); analogchans = (uint32_t *)calloc(NUM_ADC_INPUTS+1, sizeof(uint32_t)); + adcchans = (ADC_TypeDef **)calloc(NUM_ADC_INPUTS+1, sizeof(ADC_TypeDef)); } analogvals[id] = value; // Store sampled value analogchans[id] = adcchan; // Keep track of which ADC channel is used for reading this pin - usedpins |= (1 << id); // This pin is now ready + adcchans[id] = adc; // Keep track of which ADC this channel is on + usedpins |= (1 << id); // This pin is now ready if (id > highestPin) highestPin = id; // Store our highest pin in use - DIAG(F("ADCee::init(): value=%d, channel=%d, id=%d"), value, adcchan, id); + DIAG(F("ADCee::init(): value=%d, ADC%d: channel=%d, id=%d"), value, adcnum, adcchan, id); return value; } @@ -344,13 +379,16 @@ void ADCee::scan() { static uint8_t id = 0; // id and mask are the same thing but it is faster to static uint16_t mask = 1; // increment and shift instead to calculate mask from id static bool waiting = false; + static ADC_TypeDef *adc; - if (waiting) { + adc = adcchans[id]; + if (waiting) + { // look if we have a result - if (!(ADC1->SR & (1 << 1))) + if (!(adc->SR & (1 << 1))) return; // no result, continue to wait // found value - analogvals[id] = ADC1->DR; + analogvals[id] = adc->DR; // advance at least one track #ifdef DEBUG_ADC if (id == 1) TrackManager::track[1]->setBrake(0); @@ -369,9 +407,10 @@ void ADCee::scan() { // look for a valid track to sample or until we are around while (true) { if (mask & usedpins) { - // start new ADC aquire on id - ADC1->SQR3 = analogchans[id]; //1st conversion in regular sequence - ADC1->CR2 |= (1 << 30); //Start 1st conversion SWSTART + // start new ADC aquire on id + adc = adcchans[id]; + adc->SQR3 = analogchans[id]; // 1st conversion in regular sequence + adc->CR2 |= (1 << 30); // Start 1st conversion SWSTART #ifdef DEBUG_ADC if (id == 1) TrackManager::track[1]->setBrake(1); #endif @@ -392,19 +431,83 @@ void ADCee::scan() { void ADCee::begin() { noInterrupts(); //ADC1 config sequence - // TODO: currently defaults to ADC1, may need more to handle other members of STM32F4xx family - RCC->APB2ENR |= (1 << 8); //Enable ADC1 clock (Bit8) + RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // Enable ADC1 clock // Set ADC prescaler - DIV8 ~ 40ms, DIV6 ~ 30ms, DIV4 ~ 20ms, DIV2 ~ 11ms ADC->CCR = (0 << 16); // Set prescaler 0=DIV2, 1=DIV4, 2=DIV6, 3=DIV8 ADC1->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8) ADC1->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00) ADC1->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion + // Disable the DMA controller for ADC1 + ADC1->CR2 &= ~ADC_CR2_DMA; ADC1->CR2 &= ~(1 << 1); //Single conversion ADC1->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0 ADC1->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->CR2 |= (1 << 0); // Switch on ADC1 + // Wait for ADC1 to become ready (calibration complete) + while (!(ADC1->CR2 & ADC_CR2_ADON)) { + } +#if defined(ADC2) + // Enable the ADC2 clock + RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; + + // Initialize ADC2 + ADC2->CR1 = 0; // Disable all channels + ADC2->CR2 = 0; // Clear CR2 register + + ADC2->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8) + ADC2->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00) + ADC2->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion + ADC2->CR2 &= ~ADC_CR2_DMA; // Disable the DMA controller for ADC3 + ADC2->CR2 &= ~(1 << 1); //Single conversion + ADC2->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0 + ADC2->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + ADC2->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + ADC2->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + + // Enable the ADC + ADC2->CR2 |= ADC_CR2_ADON; + + // Wait for ADC2 to become ready (calibration complete) + while (!(ADC2->CR2 & ADC_CR2_ADON)) { + } + + // Perform ADC3 calibration (optional) + // ADC3->CR2 |= ADC_CR2_CAL; + // while (ADC3->CR2 & ADC_CR2_CAL) { + // } +#endif +#if defined(ADC3) + // Enable the ADC3 clock + RCC->APB2ENR |= RCC_APB2ENR_ADC3EN; + + // Initialize ADC3 + ADC3->CR1 = 0; // Disable all channels + ADC3->CR2 = 0; // Clear CR2 register + + ADC3->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8) + ADC3->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00) + ADC3->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion + ADC3->CR2 &= ~ADC_CR2_DMA; // Disable the DMA controller for ADC3 + ADC3->CR2 &= ~(1 << 1); //Single conversion + ADC3->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0 + ADC3->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + ADC3->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + ADC3->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register + + // Enable the ADC + ADC3->CR2 |= ADC_CR2_ADON; + + // Wait for ADC3 to become ready (calibration complete) + while (!(ADC3->CR2 & ADC_CR2_ADON)) { + } + + // Perform ADC3 calibration (optional) + // ADC3->CR2 |= ADC_CR2_CAL; + // while (ADC3->CR2 & ADC_CR2_CAL) { + // } +#endif interrupts(); } #endif