1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-27 01:56:14 +01:00

Merge remote-tracking branch 'origin/nanoEvery2' into dex/unowifi

This commit is contained in:
Dex's Lab 2021-02-16 16:10:03 -05:00
commit 5e8fa739fc
25 changed files with 492 additions and 522 deletions

33
.github/workflows/sha.yml vendored Normal file
View File

@ -0,0 +1,33 @@
name: SHA
# Run this workflow ever time code is pushed to a branch
# other than `main` in your repository
on: push
jobs:
# Set the job key. The key is displayed as the job name
# when a job name is not provided
sha:
# Name the Job
name: Commit SHA
# Set the type of machine to run on
runs-on: ubuntu-latest
steps:
# Checks out a copy of your repository on the ubuntu-latest machine
- name: Checkout code
uses: actions/checkout@v2
- name: Create SHA File
run: |
sha=$(git rev-parse --short "$GITHUB_SHA")
echo "#define GITHUB_SHA \"$sha\"" > GITHUB_SHA.h
- uses: EndBug/add-and-commit@v4 # You can change this to use a specific version
with:
add: 'GITHUB_SHA.h'
message: 'Committing a SHA'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # Leave this line unchanged

View File

@ -1,46 +0,0 @@
/*
* AnalogReadFast.h
*
* Copyright (C) 2016 Albert van Dalen http://www.avdweb.nl
*
* This file is part of CommandStation.
*
* CommandStation is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CommandStation is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef COMMANDSTATION_DCC_ANALOGREADFAST_H_
#define COMMANDSTATION_DCC_ANALOGREADFAST_H_
#include <Arduino.h>
int inline analogReadFast(uint8_t ADCpin);
#if defined(ARDUINO_ARCH_MEGAAVR)
int inline analogReadFast(uint8_t ADCpin)
{ byte ADC0CTRLCoriginal = ADC0.CTRLC;
ADC0.CTRLC = (ADC0CTRLCoriginal & 0b00110000) + 0b01000011;
int adc = analogRead(ADCpin);
ADC0.CTRLC = ADC0CTRLCoriginal;
return adc;
}
#else
int inline analogReadFast(uint8_t ADCpin)
{ byte ADCSRAoriginal = ADCSRA;
ADCSRA = (ADCSRA & B11111000) | 4;
int adc = analogRead(ADCpin);
ADCSRA = ADCSRAoriginal;
return adc;
}
#endif
#endif // COMMANDSTATION_DCC_ANALOGREADFAST_H_

View File

@ -1,15 +1,49 @@
////////////////////////////////////////////////////////////////////////////////////
// © 2020, Chris Harlow. All rights reserved.
// DCC-EX CommandStation-EX Please see https://DCC-EX.com
//
// This file is a demonstattion of setting up a DCC-EX
// Command station with optional support for direct connection of WiThrottle devices
// such as "Engine Driver". If you contriol your layout through JMRI
// then DON'T connect throttles to this wifi, connect them to JMRI.
// This file is the main sketch for the Command Station.
//
// THE WIFI FEATURE IS NOT SUPPORTED ON ARDUINO DEVICES WITH ONLY 2KB RAM.
// CONFIGURATION:
// Configuration is normally performed by editing a file called config.h.
// This file is NOT shipped with the code so that if you pull a later version
// of the code, your configuration will not be overwritten.
//
// If you used the automatic installer program, config.h will have been created automatically.
//
// To obtain a starting copy of config.h please copy the file config.example.h which is
// shipped with the code and may be updated as new features are added.
//
// If config.h is not found, config.example.h will be used with all defaults.
////////////////////////////////////////////////////////////////////////////////////
#include "config.h"
#if __has_include ( "config.h")
#include "config.h"
#else
#warning config.h not found. Using defaults from config.example.h
#include "config.example.h"
#endif
/*
* © 2020,2021 Chris Harlow, Harald Barth, David Cutting,
* Fred Decker, Gregor Baues, Anthony W - Dayton All rights reserved.
*
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "DCCEX.h"
// Create a serial command parser for the USB connection,
@ -35,7 +69,7 @@ void setup()
// Start the WiFi interface on a MEGA, Uno cannot currently handle WiFi
#if WIFI_ON
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT);
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL);
#endif // WIFI_ON
#if ETHERNET_ON

11
DCC.cpp
View File

@ -481,9 +481,14 @@ void DCC::getLocoId(ACK_CALLBACK callback, bool blocking) {
}
void DCC::setLocoId(int id,ACK_CALLBACK callback, bool blocking) {
if (id<=0 || id>9999) callback(-1);
if (id<=127) ackManagerSetup(id,SHORT_LOCO_ID_PROG, callback, blocking);
else ackManagerSetup(id | 0xc000,LONG_LOCO_ID_PROG, callback, blocking);
if (id<1 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
if (id<=127)
ackManagerSetup(id, SHORT_LOCO_ID_PROG, callback, blocking);
else
ackManagerSetup(id | 0xc000,LONG_LOCO_ID_PROG, callback, blocking);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco

View File

@ -52,7 +52,7 @@ const int HASH_KEYWORD_ETHERNET = -30767;
const int HASH_KEYWORD_MAX = 16244;
const int HASH_KEYWORD_MIN = 15978;
int DCCEXParser::stashP[MAX_PARAMS];
int DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
@ -102,7 +102,7 @@ void DCCEXParser::loop(Stream &stream)
Sensor::checkAll(&stream); // Update and print changes
}
int DCCEXParser::splitValues(int result[MAX_PARAMS], const byte *cmd)
int DCCEXParser::splitValues(int result[MAX_COMMAND_PARAMS], const byte *cmd)
{
byte state = 1;
byte parameterCount = 0;
@ -111,10 +111,10 @@ int DCCEXParser::splitValues(int result[MAX_PARAMS], const byte *cmd)
bool signNegative = false;
// clear all parameters in case not enough found
for (int i = 0; i < MAX_PARAMS; i++)
for (int i = 0; i < MAX_COMMAND_PARAMS; i++)
result[i] = 0;
while (parameterCount < MAX_PARAMS)
while (parameterCount < MAX_COMMAND_PARAMS)
{
byte hot = *remainingCmd;
@ -161,7 +161,7 @@ int DCCEXParser::splitValues(int result[MAX_PARAMS], const byte *cmd)
return parameterCount;
}
int DCCEXParser::splitHexValues(int result[MAX_PARAMS], const byte *cmd)
int DCCEXParser::splitHexValues(int result[MAX_COMMAND_PARAMS], const byte *cmd)
{
byte state = 1;
byte parameterCount = 0;
@ -169,10 +169,10 @@ int DCCEXParser::splitHexValues(int result[MAX_PARAMS], const byte *cmd)
const byte *remainingCmd = cmd + 1; // skips the opcode
// clear all parameters in case not enough found
for (int i = 0; i < MAX_PARAMS; i++)
for (int i = 0; i < MAX_COMMAND_PARAMS; i++)
result[i] = 0;
while (parameterCount < MAX_PARAMS)
while (parameterCount < MAX_COMMAND_PARAMS)
{
byte hot = *remainingCmd;
@ -251,7 +251,7 @@ void DCCEXParser::parse(Print *stream, byte *com, bool blocking)
(void)EEPROM; // tell compiler not to warn this is unused
if (Diag::CMD)
DIAG(F("\nPARSING:%s\n"), com);
int p[MAX_PARAMS];
int p[MAX_COMMAND_PARAMS];
while (com[0] == '<' || com[0] == ' ')
com++; // strip off any number of < or spaces
byte params = splitValues(p, com);
@ -770,13 +770,13 @@ bool DCCEXParser::parseD(Print *stream, int params, int p[])
}
// CALLBACKS must be static
bool DCCEXParser::stashCallback(Print *stream, int p[MAX_PARAMS])
bool DCCEXParser::stashCallback(Print *stream, int p[MAX_COMMAND_PARAMS])
{
if (stashBusy )
return false;
stashBusy = true;
stashStream = stream;
memcpy(stashP, p, MAX_PARAMS * sizeof(p[0]));
memcpy(stashP, p, MAX_COMMAND_PARAMS * sizeof(p[0]));
return true;
}
void DCCEXParser::callback_W(int result)

View File

@ -34,7 +34,7 @@ struct DCCEXParser
static void setFilter(FILTER_CALLBACK filter);
static void setRMFTFilter(FILTER_CALLBACK filter);
static void setAtCommandCallback(AT_COMMAND_CALLBACK filter);
static const int MAX_PARAMS=10; // Must not exceed this
static const int MAX_COMMAND_PARAMS=10; // Must not exceed this
private:
@ -42,8 +42,8 @@ struct DCCEXParser
byte bufferLength=0;
bool inCommandPayload=false;
byte buffer[MAX_BUFFER+2];
int splitValues( int result[MAX_PARAMS], const byte * command);
int splitHexValues( int result[MAX_PARAMS], const byte * command);
int splitValues( int result[MAX_COMMAND_PARAMS], const byte * command);
int splitHexValues( int result[MAX_COMMAND_PARAMS], const byte * command);
bool parseT(Print * stream, int params, int p[]);
bool parseZ(Print * stream, int params, int p[]);
@ -55,8 +55,8 @@ struct DCCEXParser
static bool stashBusy;
static Print * stashStream;
static int stashP[MAX_PARAMS];
bool stashCallback(Print * stream, int p[MAX_PARAMS]);
static int stashP[MAX_COMMAND_PARAMS];
bool stashCallback(Print * stream, int p[MAX_COMMAND_PARAMS]);
static void callback_W(int result);
static void callback_B(int result);
static void callback_R(int result);

View File

@ -25,6 +25,21 @@
* DCCEX works on a single timer interrupt at a regular 58uS interval.
* The DCCWaveform class generates the signals to the motor shield
* based on this timer.
*
* If the motor drivers are BOTH configured to use the correct 2 pins for the architecture,
* (see isPWMPin() function. )
* then this allows us to use a hardware driven pin switching arrangement which is
* achieved by setting the duty cycle of the NEXT clock interrupt to 0% or 100% depending on
* the required pin state. (see setPWM())
* This is more accurate than the software interrupt but at the expense of
* limiting the choice of available pins.
* Fortunately, a standard motor shield on a Mega uses pins that qualify for PWM...
* Other shields may be jumpered to PWM pins or run directly using the software interrupt.
*
* Because the PWM-based waveform is effectively set half a cycle after the software version,
* it is not acceptable to drive the two tracks on different methiods or it would cause
* problems for <1 JOIN> etc.
*
*/
#include "DCCTimer.h"
@ -35,9 +50,11 @@ INTERRUPT_CALLBACK interruptHandler=0;
#ifdef ARDUINO_ARCH_MEGAAVR
// Arduino unoWifi Rev2 and nanoEvery architectire
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
ADC0.CTRLC = (ADC0.CTRLC & 0b00110000) | 0b01000011; // speed up analogRead sample time
TCB0.CTRLB = TCB_CNTMODE_INT_gc & ~TCB_CCMPEN_bm; // timer compare mode with output disabled
TCB0.CTRLA = TCB_CLKSEL_CLKDIV2_gc; // 8 MHz ~ 0.125 us
TCB0.CCMP = CLOCK_CYCLES -1; // 1 tick less for timer reset
@ -54,11 +71,33 @@ INTERRUPT_CALLBACK interruptHandler=0;
interruptHandler();
}
bool DCCTimer::isPWMPin(byte pin) {
return false; // TODO what are the relevant pins?
}
void DCCTimer::setPWM(byte pin, bool high) {
// TODO what are the relevant pins?
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number
}
#else
// Arduino nano, uno, mega etc
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER1_A_PIN 11
#define TIMER1_B_PIN 12
#define TIMER1_C_PIN 13
#else
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
#endif
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
ADCSRA = (ADCSRA & 0b11111000) | 0b00000100; // speed up analogRead sample time
TCCR1A = 0;
ICR1 = CLOCK_CYCLES;
TCNT1 = 0;
@ -69,4 +108,38 @@ INTERRUPT_CALLBACK interruptHandler=0;
// ISR called by timer interrupt every 58uS
ISR(TIMER1_OVF_vect){ interruptHandler(); }
// Alternative pin manipulation via PWM control.
bool DCCTimer::isPWMPin(byte pin) {
return pin==TIMER1_A_PIN
|| pin==TIMER1_B_PIN
#ifdef TIMER1_C_PIN
|| pin==TIMER1_C_PIN
#endif
;
}
void DCCTimer::setPWM(byte pin, bool high) {
if (pin==TIMER1_A_PIN) {
TCCR1A |= _BV(COM1A1);
OCR1A= high?1024:0;
}
else if (pin==TIMER1_B_PIN) {
TCCR1A |= _BV(COM1B1);
OCR1B= high?1024:0;
}
#ifdef TIMER1_C_PIN
else if (pin==TIMER1_C_PIN) {
TCCR1A |= _BV(COM1C1);
OCR1C= high?1024:0;
}
#endif
}
#include <avr/boot.h>
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
for (byte i=0; i<6; i++) mac[i]=boot_signature_byte_get(0x0E + i);
}
#endif

View File

@ -7,6 +7,9 @@ typedef void (*INTERRUPT_CALLBACK)();
class DCCTimer {
public:
static void begin(INTERRUPT_CALLBACK interrupt);
static void getSimulatedMacAddress(byte mac[6]);
static bool isPWMPin(byte pin);
static void setPWM(byte pin, bool high);
private:
};

View File

@ -17,6 +17,7 @@
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma GCC optimize ("-O3")
#include <Arduino.h>
#include "DCCWaveform.h"
@ -38,6 +39,9 @@ void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
progTripValue = progDriver->mA2raw(TRIP_CURRENT_PROG); // need only calculate once hence static
mainTrack.setPowerMode(POWERMODE::OFF);
progTrack.setPowerMode(POWERMODE::OFF);
MotorDriver::usePWM= mainDriver->isPWMCapable() && progDriver->isPWMCapable();
if (MotorDriver::usePWM) DIAG(F("\nWaveform using PWM pins for accuracy."));
else DIAG(F("\nWaveform accuracy limited by signal pin configuration."));
DCCTimer::begin(DCCWaveform::interruptHandler);
}
@ -119,6 +123,11 @@ void DCCWaveform::checkPowerOverload() {
case POWERMODE::ON:
// Check current
lastCurrent=motorDriver->getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
DIAG(F("\n*** %S FAULT PIN ACTIVE TOGGLE POWER ON THIS OR BOTH TRACKS ***\n"), isMainTrack ? F("MAIN") : F("PROG"));
lastCurrent = -lastCurrent;
}
if (lastCurrent <= tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
@ -129,9 +138,9 @@ void DCCWaveform::checkPowerOverload() {
setPowerMode(POWERMODE::OVERLOAD);
unsigned int mA=motorDriver->raw2mA(lastCurrent);
unsigned int maxmA=motorDriver->raw2mA(tripValue);
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%l ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, power_sample_overload_wait);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%d ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
@ -142,6 +151,8 @@ void DCCWaveform::checkPowerOverload() {
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("\n*** %S TRACK POWER RESET delay=%d ***\n"), isMainTrack ? F("MAIN") : F("PROG"), sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
@ -198,7 +209,10 @@ void DCCWaveform::interrupt2() {
}
else if (packetPending) {
// Copy pending packet to transmit packet
for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
@ -223,7 +237,7 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
while (packetPending);
byte checksum = 0;
for (int b = 0; b < byteCount; b++) {
for (byte b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
}

View File

@ -29,7 +29,7 @@ const int POWER_SAMPLE_OVERLOAD_WAIT = 20;
// Number of preamble bits.
const int PREAMBLE_BITS_MAIN = 16;
const int PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 12;
const byte MAX_PACKET_SIZE = 5; // NMRA standard exrtended packets
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic
// to the transform array.

View File

@ -17,13 +17,18 @@
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "config.h"
#include "defines.h" // This should be changed to DCCEX.h when possible
#if __has_include ( "config.h")
#include "config.h"
#else
#warning config.h not found. Using defaults from config.example.h
#include "config.example.h"
#endif
#include "defines.h"
#if ETHERNET_ON == true
#include "EthernetInterface.h"
#include "DIAG.h"
#include "CommandDistributor.h"
#include "DCCTimer.h"
EthernetInterface * EthernetInterface::singleton=NULL;
/**
@ -45,9 +50,14 @@ void EthernetInterface::setup()
*/
EthernetInterface::EthernetInterface()
{
byte mac[]=MAC_ADDRESS;
byte mac[6];
DCCTimer::getSimulatedMacAddress(mac);
DIAG(F("\n+++++ Ethernet Setup. Simulatd mac="));
for (byte i=0;i<sizeof(mac); i++) {
DIAG(F("%x:"),mac[i]);
}
DIAG(F("\n"));
DIAG(F("\n+++++ Ethernet Setup "));
connected=false;
#ifdef IP_ADDRESS
@ -73,11 +83,11 @@ EthernetInterface::EthernetInterface()
IPAddress ip = Ethernet.localIP(); // reassign the obtained ip address
server = new EthernetServer(LISTEN_PORT); // Ethernet Server listening on default port LISTEN_PORT
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
server->begin();
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port:%d"), LISTEN_PORT);
LCD(5,F("Port:%d"), IP_PORT);
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
}

View File

@ -22,7 +22,12 @@
#ifndef EthernetInterface_h
#define EthernetInterface_h
#if __has_include ( "config.h")
#include "config.h"
#else
#warning config.h not found. Using defaults from config.example.h
#include "config.example.h"
#endif
#include "DCCEXParser.h"
#include <Arduino.h>
#include <avr/pgmspace.h>
@ -33,11 +38,7 @@
* @brief Network Configuration
*
*/
#ifndef MAC_ADDRESS
#error define MAC_ADDRESS in config.h
#endif
#define LISTEN_PORT 2560 // default listen port for the server
#define MAX_ETH_BUFFER 512
#define OUTBOUND_RING_SIZE 2048

View File

@ -1 +1 @@
#define GITHUB_SHA "9db6d36"
#define GITHUB_SHA "0228345"

View File

@ -27,7 +27,6 @@
#ifndef LCD_Implementation_h
#define LCD_Implementation_h
#include "config.h"
#include <Wire.h>
#include "LCDDisplay.h"

View File

@ -18,51 +18,72 @@
*/
#include <Arduino.h>
#include "MotorDriver.h"
#include "AnalogReadFast.h"
#include "DCCTimer.h"
#include "DIAG.h"
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
#define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH)
#define isLOW(fastpin) (!isHIGH(fastpin))
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAMC) || defined(ARDUINO_ARCH_MEGAAVR)
#define WritePin digitalWrite
#define ReadPin digitalRead
#else
// use the DIO2 libraray for much faster pin access
#define GPIO2_PREFER_SPEED 1
#include <DIO2.h> // use IDE menu Tools..Manage Libraries to locate and install DIO2
#define WritePin digitalWrite2
#define ReadPin digitalRead2
#endif
bool MotorDriver::usePWM=false;
MotorDriver::MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
powerPin=power_pin;
getFastPin(F("POWER"),powerPin,fastPowerPin);
pinMode(powerPin, OUTPUT);
signalPin=signal_pin;
getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT);
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
dualSignal=true;
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
}
else dualSignal=false;
brakePin=brake_pin;
if (brake_pin!=UNUSED_PIN){
invertBrake=brake_pin < 0;
brakePin=invertBrake ? 0-brake_pin : brake_pin;
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
pinMode(brakePin, OUTPUT);
setBrake(false);
}
else brakePin=UNUSED_PIN;
currentPin=current_pin;
senseFactor=sense_factor;
pinMode(currentPin, INPUT);
faultPin=fault_pin;
if (faultPin != UNUSED_PIN) {
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
pinMode(faultPin, INPUT);
}
senseFactor=sense_factor;
tripMilliamps=trip_milliamps;
rawCurrentTripValue=(int)(trip_milliamps / sense_factor);
simulatedOverload=(int)(32000/senseFactor);
pinMode(powerPin, OUTPUT);
pinMode(brakePin < 0 ? -brakePin : brakePin, OUTPUT);
setBrake(false);
pinMode(signalPin, OUTPUT);
if (signalPin2 != UNUSED_PIN) pinMode(signalPin2, OUTPUT);
pinMode(currentPin, INPUT);
if (faultPin != UNUSED_PIN) pinMode(faultPin, INPUT);
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
void MotorDriver::setPower(bool on) {
if (brakePin == -4 && on) {
if (on) {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
setBrake(true);
setBrake(false);
setHIGH(fastPowerPin);
}
WritePin(powerPin, on ? HIGH : LOW);
else setLOW(fastPowerPin);
}
// setBrake applies brake if on == true. So to get
@ -74,30 +95,35 @@ void MotorDriver::setPower(bool on) {
// compensate for that.
//
void MotorDriver::setBrake(bool on) {
bool state = on;
byte pin = brakePin;
if (brakePin < 0) {
pin=-pin;
state=!state;
}
WritePin(pin, state ? HIGH : LOW);
//DIAG(F("BrakePin: %d is %d\n"), pin, ReadPin(pin));
if (brakePin == UNUSED_PIN) return;
if (on ^ invertBrake) setHIGH(fastBrakePin);
else setLOW(fastBrakePin);
}
void MotorDriver::setSignal( bool high) {
WritePin(signalPin, high ? HIGH : LOW);
if (signalPin2 != UNUSED_PIN) WritePin(signalPin2, high ? LOW : HIGH);
if (usePWM) {
DCCTimer::setPWM(signalPin,high);
}
else {
if (high) {
setHIGH(fastSignalPin);
if (dualSignal) setLOW(fastSignalPin2);
}
else {
setLOW(fastSignalPin);
if (dualSignal) setHIGH(fastSignalPin2);
}
}
}
int MotorDriver::getCurrentRaw() {
if (faultPin != UNUSED_PIN && ReadPin(faultPin) == LOW && ReadPin(powerPin) == HIGH)
return simulatedOverload;
int current = analogRead(currentPin);
if (faultPin != UNUSED_PIN && isLOW(fastFaultPin) && isHIGH(fastPowerPin))
return -current;
return current;
// IMPORTANT: This function can be called in Interrupt() time within the 56uS timer
// The default analogRead takes ~100uS which is catastrphic
// so analogReadFast is used here. (-2uS)
return analogReadFast(currentPin);
// so DCCTimer has set the sample time to be much faster.
}
unsigned int MotorDriver::raw2mA( int raw) {
@ -106,3 +132,15 @@ unsigned int MotorDriver::raw2mA( int raw) {
int MotorDriver::mA2raw( unsigned int mA) {
return (int)(mA / senseFactor);
}
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
DIAG(F("\nMotorDriver %S Pin=%d,"),type,pin);
uint8_t port = digitalPinToPort(pin);
if (input)
result.inout = portInputRegister(port);
else
result.inout = portOutputRegister(port);
result.maskHIGH = digitalPinToBitMask(pin);
result.maskLOW = ~result.maskHIGH;
DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x\n"),port, result.inout,input,result.maskHIGH);
}

View File

@ -18,12 +18,20 @@
*/
#ifndef MotorDriver_h
#define MotorDriver_h
#include "FSH.h"
// Virtualised Motor shield 1-track hardware Interface
#ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h
#define UNUSED_PIN 127 // inside int8_t
#endif
struct FASTPIN {
volatile uint8_t *inout;
uint8_t maskHIGH;
uint8_t maskLOW;
};
class MotorDriver {
public:
MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin);
@ -36,13 +44,20 @@ class MotorDriver {
inline int getRawCurrentTripValue() {
return rawCurrentTripValue;
}
bool isPWMCapable();
static bool usePWM;
private:
byte powerPin, signalPin, signalPin2, currentPin, faultPin;
int8_t brakePin; // negative means pin is inverted
void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result);
void getFastPin(const FSH* type,int pin, FASTPIN & result) {
getFastPin(type, pin, 0, result);
}
byte powerPin, signalPin, signalPin2, currentPin, faultPin, brakePin;
FASTPIN fastPowerPin,fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin;
bool dualSignal; // true to use signalPin2
bool invertBrake; // brake pin passed as negative means pin is inverted
float senseFactor;
unsigned int tripMilliamps;
int rawCurrentTripValue;
int simulatedOverload;
};
#endif

View File

@ -1,3 +1,23 @@
/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef ARDUINO_AVR_UNO_WIFI_REV2
#include <Arduino.h>
#include "WifiInboundHandler.h"
#include "RingStream.h"
@ -228,3 +248,5 @@ void WifiInboundHandler::purgeCurrentCIPSEND() {
pendingCipsend=false;
clientPendingCIPSEND=-1;
}
#endif

View File

@ -17,7 +17,8 @@
You should have received a copy of the GNU General Public License
along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef ARDUINO_AVR_UNO_WIFI_REV2
// This code is NOT compiled on a unoWifiRev2 processor which uses a different architecture
#include "WifiInterface.h" /* config.h included there */
#include <avr/pgmspace.h>
#include "DIAG.h"
@ -25,11 +26,9 @@
#include "WifiInboundHandler.h"
const char FLASH READY_SEARCH[] = "\r\nready\r\n";
const char FLASH OK_SEARCH[] = "\r\nOK\r\n";
const char FLASH END_DETAIL_SEARCH[] = "@ 1000";
const char FLASH SEND_OK_SEARCH[] = "\r\nSEND OK\r\n";
const char FLASH IPD_SEARCH[] = "+IPD";
const unsigned long LOOP_TIMEOUT = 2000;
bool WifiInterface::connected = false;
Stream * WifiInterface::wifiStream;
@ -43,7 +42,7 @@ Stream * WifiInterface::wifiStream;
//
// Figure out number of serial ports depending on hardware
//
#if defined(ARDUINO_AVR_UNO)
#if defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO)
#define NUM_SERIAL 0
#endif
@ -59,7 +58,8 @@ bool WifiInterface::setup(long serial_link_speed,
const FSH *wifiESSID,
const FSH *wifiPassword,
const FSH *hostname,
const int port) {
const int port,
const byte channel) {
wifiSerialState wifiUp = WIFI_NOAT;
@ -74,7 +74,7 @@ bool WifiInterface::setup(long serial_link_speed,
#if NUM_SERIAL > 0
Serial1.begin(serial_link_speed);
wifiUp = setup(Serial1, wifiESSID, wifiPassword, hostname, port);
wifiUp = setup(Serial1, wifiESSID, wifiPassword, hostname, port, channel);
#endif
// Other serials are tried, depending on hardware.
@ -82,7 +82,7 @@ bool WifiInterface::setup(long serial_link_speed,
if (wifiUp == WIFI_NOAT)
{
Serial2.begin(serial_link_speed);
wifiUp = setup(Serial2, wifiESSID, wifiPassword, hostname, port);
wifiUp = setup(Serial2, wifiESSID, wifiPassword, hostname, port, channel);
}
#endif
@ -90,7 +90,7 @@ bool WifiInterface::setup(long serial_link_speed,
if (wifiUp == WIFI_NOAT)
{
Serial3.begin(serial_link_speed);
wifiUp = setup(Serial3, wifiESSID, wifiPassword, hostname, port);
wifiUp = setup(Serial3, wifiESSID, wifiPassword, hostname, port, channel);
}
#endif
@ -108,7 +108,7 @@ bool WifiInterface::setup(long serial_link_speed,
}
wifiSerialState WifiInterface::setup(Stream & setupStream, const FSH* SSid, const FSH* password,
const FSH* hostname, int port) {
const FSH* hostname, int port, byte channel) {
wifiSerialState wifiState;
static uint8_t ntry = 0;
ntry++;
@ -117,7 +117,7 @@ wifiSerialState WifiInterface::setup(Stream & setupStream, const FSH* SSid, con
DIAG(F("\n++ Wifi Setup Try %d ++\n"), ntry);
wifiState = setup2( SSid, password, hostname, port);
wifiState = setup2( SSid, password, hostname, port, channel);
if (wifiState == WIFI_NOAT) {
DIAG(F("\n++ Wifi Setup NO AT ++\n"));
@ -126,7 +126,7 @@ wifiSerialState WifiInterface::setup(Stream & setupStream, const FSH* SSid, con
if (wifiState == WIFI_CONNECTED) {
StringFormatter::send(wifiStream, F("ATE0\r\n")); // turn off the echo
checkForOK(200, OK_SEARCH, true);
checkForOK(200, true);
}
@ -140,7 +140,7 @@ wifiSerialState WifiInterface::setup(Stream & setupStream, const FSH* SSid, con
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
wifiSerialState WifiInterface::setup2(const FSH* SSid, const FSH* password,
const FSH* hostname, int port) {
const FSH* hostname, int port, byte channel) {
bool ipOK = false;
bool oldCmd = false;
@ -149,136 +149,161 @@ wifiSerialState WifiInterface::setup2(const FSH* SSid, const FSH* password,
// First check... Restarting the Arduino does not restart the ES.
// There may alrerady be a connection with data in the pipeline.
// If there is, just shortcut the setup and continue to read the data as normal.
if (checkForOK(200,IPD_SEARCH, true)) {
if (checkForOK(200,F("+IPD"), true)) {
DIAG(F("\nPreconfigured Wifi already running with data waiting\n"));
// loopstate=4; // carry on from correct place... or not as the case may be
return WIFI_CONNECTED;
}
StringFormatter::send(wifiStream, F("AT\r\n")); // Is something here that understands AT?
if(!checkForOK(200, OK_SEARCH, true))
if(!checkForOK(200, true))
return WIFI_NOAT; // No AT compatible WiFi module here
StringFormatter::send(wifiStream, F("ATE1\r\n")); // Turn on the echo, se we can see what's happening
checkForOK(2000, OK_SEARCH, true); // Makes this visible on the console
checkForOK(2000, true); // Makes this visible on the console
// Display the AT version information
StringFormatter::send(wifiStream, F("AT+GMR\r\n"));
checkForOK(2000, OK_SEARCH, true, false); // Makes this visible on the console
checkForOK(2000, true, false); // Makes this visible on the console
#ifdef DONT_TOUCH_WIFI_CONF
DIAG(F("\nDONT_TOUCH_WIFI_CONF was set: Using existing config\n"));
#else
StringFormatter::send(wifiStream, F("AT+CWMODE=1\r\n")); // configure as "station" = WiFi client
checkForOK(1000, OK_SEARCH, true); // Not always OK, sometimes "no change"
// If the source code looks unconfigured, check if the
// ESP8266 is preconfigured. We check the first 13 chars
// of the SSid.
const char *yourNetwork = "Your network ";
if (strncmp_P(yourNetwork, (const char*)SSid, 13) == 0 || ((const char *)SSid)[0] == '\0') {
delay(8000); // give a preconfigured ES8266 a chance to connect to a router
// typical connect time approx 7 seconds
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n"));
if (checkForOK(5000, (const char*) F("+CIFSR:STAIP"), true,false))
if (!checkForOK(1000, (const char*) F("0.0.0.0"), true,false))
ipOK = true;
} else { // Should this really be "else" here /haba
if (!ipOK) {
checkForOK(1000, true); // Not always OK, sometimes "no change"
// Older ES versions have AT+CWJAP, newer ones have AT+CWJAP_CUR and AT+CWHOSTNAME
StringFormatter::send(wifiStream, F("AT+CWJAP?\r\n"));
if (checkForOK(2000, OK_SEARCH, true)) {
if (checkForOK(2000, true)) {
oldCmd=true;
while (wifiStream->available()) StringFormatter::printEscape( wifiStream->read()); /// THIS IS A DIAG IN DISGUISE
// AT command early version supports CWJAP/CWSAP
if (SSid) {
StringFormatter::send(wifiStream, F("AT+CWJAP=\"%S\",\"%S\"\r\n"), SSid, password);
ipOK = checkForOK(WIFI_CONNECT_TIMEOUT, OK_SEARCH, true);
}
DIAG(F("\n**\n"));
const char *yourNetwork = "Your network ";
if (strncmp_P(yourNetwork, (const char*)SSid, 13) == 0 || strncmp_P("", (const char*)SSid, 13) == 0) {
if (strncmp_P(yourNetwork, (const char*)password, 13) == 0) {
// If the source code looks unconfigured, check if the
// ESP8266 is preconfigured in station mode.
// We check the first 13 chars of the SSid and the password
// give a preconfigured ES8266 a chance to connect to a router
// typical connect time approx 7 seconds
delay(8000);
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n"));
if (checkForOK(5000, F("+CIFSR:STAIP"), true,false))
if (!checkForOK(1000, F("0.0.0.0"), true,false))
ipOK = true;
}
} else {
// SSID was configured, so we assume station (client) mode.
if (oldCmd) {
// AT command early version supports CWJAP/CWSAP
StringFormatter::send(wifiStream, F("AT+CWJAP=\"%S\",\"%S\"\r\n"), SSid, password);
ipOK = checkForOK(WIFI_CONNECT_TIMEOUT, true);
} else {
// later version supports CWJAP_CUR
StringFormatter::send(wifiStream, F("AT+CWHOSTNAME=\"%S\"\r\n"), hostname); // Set Host name for Wifi Client
checkForOK(2000, OK_SEARCH, true); // dont care if not supported
checkForOK(2000, true); // dont care if not supported
if (SSid) {
StringFormatter::send(wifiStream, F("AT+CWJAP_CUR=\"%S\",\"%S\"\r\n"), SSid, password);
ipOK = checkForOK(WIFI_CONNECT_TIMEOUT, OK_SEARCH, true);
}
ipOK = checkForOK(WIFI_CONNECT_TIMEOUT, true);
}
if (ipOK) {
// But we really only have the ESSID and password correct
// Let's check for IP
// Let's check for IP (via DHCP)
ipOK = false;
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n"));
if (checkForOK(5000, (const char*) F("+CIFSR:STAIP"), true,false))
if (!checkForOK(1000, (const char*) F("0.0.0.0"), true,false))
if (checkForOK(5000, F("+CIFSR:STAIP"), true,false))
if (!checkForOK(1000, F("0.0.0.0"), true,false))
ipOK = true;
}
}
}
if (!ipOK) {
// If we have not managed to get this going in station mode, go for AP mode
StringFormatter::send(wifiStream, F("AT+CWMODE=2\r\n")); // configure as AccessPoint.
checkForOK(1000, OK_SEARCH, true); // Not always OK, sometimes "no change"
// StringFormatter::send(wifiStream, F("AT+RST\r\n"));
// checkForOK(1000, true); // Not always OK, sometimes "no change"
int i=0;
do {
// configure as AccessPoint. Try really hard as this is the
// last way out to get any Wifi connectivity.
StringFormatter::send(wifiStream, F("AT+CWMODE=2\r\n"));
} while (!checkForOK(1000+i*500, true) && i++<10);
while (wifiStream->available()) StringFormatter::printEscape( wifiStream->read()); /// THIS IS A DIAG IN DISGUISE
// Figure out MAC addr
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n"));
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n")); // not TOMATO
// looking fpr mac addr eg +CIFSR:APMAC,"be:dd:c2:5c:6b:b7"
if (checkForOK(5000, (const char*) F("+CIFSR:APMAC,\""), true,false)) {
if (checkForOK(5000, F("+CIFSR:APMAC,\""), true,false)) {
// Copy 17 byte mac address
for (int i=0; i<17;i++) {
while(!wifiStream->available());
macAddress[i]=wifiStream->read();
StringFormatter::printEscape(macAddress[i]);
}
} else {
memset(macAddress,'f',sizeof(macAddress));
}
char macTail[]={macAddress[9],macAddress[10],macAddress[12],macAddress[13],macAddress[15],macAddress[16],'\0'};
if (oldCmd) {
while (wifiStream->available()) StringFormatter::printEscape( wifiStream->read()); /// THIS IS A DIAG IN DISGUISE
checkForOK(1000, true, false); // suck up remainder of AT+CIFSR
int i=0;
i=0;
do {
if (strncmp_P(yourNetwork, (const char*)password, 13) == 0) {
// unconfigured
StringFormatter::send(wifiStream, F("AT+CWSAP=\"DCCEX_%s\",\"PASS_%s\",1,4\r\n"), macTail, macTail);
StringFormatter::send(wifiStream, F("AT+CWSAP%s=\"DCCEX_%s\",\"PASS_%s\",%d,4\r\n"),
oldCmd ? "" : "_CUR", macTail, macTail, channel);
} else {
// password configured by user
StringFormatter::send(wifiStream, F("AT+CWSAP=\"DCCEX_%s\",\"%s\",1,4\r\n"), macTail, password);
StringFormatter::send(wifiStream, F("AT+CWSAP%s=\"DCCEX_%s\",\"%S\",%d,4\r\n"), oldCmd ? "" : "_CUR",
macTail, password, channel);
}
} while (i++<2 && !checkForOK(WIFI_CONNECT_TIMEOUT, OK_SEARCH, true)); // do twice if necessary but ignore failure as AP mode may still be ok
} else {
StringFormatter::send(wifiStream, F("AT+CWSAP_CUR=\"DCCEX_%s\",\"PASS_%s\",1,4\r\n"), macTail, macTail);
checkForOK(20000, OK_SEARCH, true); // can ignore failure as SSid mode may still be ok
} while (!checkForOK(WIFI_CONNECT_TIMEOUT, true) && i++<2); // do twice if necessary but ignore failure as AP mode may still be ok
if (i >= 2)
DIAG(F("\nWarning: Setting AP SSID and password failed\n")); // but issue warning
if (!oldCmd) {
StringFormatter::send(wifiStream, F("AT+CIPRECVMODE=0\r\n"), port); // make sure transfer mode is correct
checkForOK(2000, OK_SEARCH, true);
checkForOK(2000, true);
}
}
StringFormatter::send(wifiStream, F("AT+CIPSERVER=0\r\n")); // turn off tcp server (to clean connections before CIPMUX=1)
checkForOK(1000, OK_SEARCH, true); // ignore result in case it already was off
checkForOK(1000, true); // ignore result in case it already was off
StringFormatter::send(wifiStream, F("AT+CIPMUX=1\r\n")); // configure for multiple connections
if (!checkForOK(1000, OK_SEARCH, true)) return WIFI_DISCONNECTED;
if (!checkForOK(1000, true)) return WIFI_DISCONNECTED;
StringFormatter::send(wifiStream, F("AT+CIPSERVER=1,%d\r\n"), port); // turn on server on port
if (!checkForOK(1000, OK_SEARCH, true)) return WIFI_DISCONNECTED;
if (!checkForOK(1000, true)) return WIFI_DISCONNECTED;
#endif //DONT_TOUCH_WIFI_CONF
StringFormatter::send(wifiStream, F("AT+CIFSR\r\n")); // Display ip addresses to the DIAG
if (!checkForOK(1000, OK_SEARCH, true, false)) return WIFI_DISCONNECTED;
DIAG(F("\nPORT=%d\n"),port);
if (!checkForOK(1000, F("IP,\"") , true, false)) return WIFI_DISCONNECTED;
// Copy the IP address
{
const byte MAX_IP_LENGTH=15;
char ipString[MAX_IP_LENGTH+1];
ipString[MAX_IP_LENGTH]='\0'; // protection against missing " character on end.
for(byte ipLen=0;ipLen<MAX_IP_LENGTH;ipLen++) {
while(!wifiStream->available());
int ipChar=wifiStream->read();
StringFormatter::printEscape(ipChar);
if (ipChar=='"') {
ipString[ipLen]='\0';
break;
}
ipString[ipLen]=ipChar;
}
LCD(4,F("%s"),ipString); // There is not enough room on some LCDs to put a title to this
}
// suck up anything after the IP.
if (!checkForOK(1000, true, false)) return WIFI_DISCONNECTED;
LCD(5,F("PORT=%d\n"),port);
return WIFI_CONNECTED;
}
@ -300,15 +325,19 @@ void WifiInterface::ATCommand(const byte * command) {
}
else {
StringFormatter:: send(wifiStream, F("AT+%s\r\n"), command);
checkForOK(10000, OK_SEARCH, true);
checkForOK(10000, true);
}
}
bool WifiInterface::checkForOK( const unsigned int timeout, const char * waitfor, bool echo, bool escapeEcho) {
bool WifiInterface::checkForOK( const unsigned int timeout, bool echo, bool escapeEcho) {
return checkForOK(timeout,F("\r\nOK\r\n"),echo,escapeEcho);
}
bool WifiInterface::checkForOK( const unsigned int timeout, const FSH * waitfor, bool echo, bool escapeEcho) {
unsigned long startTime = millis();
char const *locator = waitfor;
char *locator = (char *)waitfor;
DIAG(F("\nWifi Check: [%E]"), waitfor);
while ( millis() - startTime < timeout) {
while (wifiStream->available()) {
@ -317,7 +346,7 @@ bool WifiInterface::checkForOK( const unsigned int timeout, const char * waitfor
if (escapeEcho) StringFormatter::printEscape( ch); /// THIS IS A DIAG IN DISGUISE
else DIAG(F("%c"), ch);
}
if (ch != GETFLASH(locator)) locator = waitfor;
if (ch != GETFLASH(locator)) locator = (char *)waitfor;
if (ch == GETFLASH(locator)) {
locator++;
if (!GETFLASH(locator)) {
@ -337,3 +366,5 @@ void WifiInterface::loop() {
WifiInboundHandler::loop();
}
}
#endif

View File

@ -20,7 +20,6 @@
#ifndef WifiInterface_h
#define WifiInterface_h
#include "FSH.h"
#include "config.h"
#include "DCCEXParser.h"
#include <Arduino.h>
#include <avr/pgmspace.h>
@ -35,23 +34,20 @@ public:
const FSH *wifiESSID,
const FSH *wifiPassword,
const FSH *hostname,
const int port = 2560);
const int port,
const byte channel);
static void loop();
static void ATCommand(const byte *command);
private:
static wifiSerialState setup(Stream &setupStream, const FSH *SSSid, const FSH *password,
const FSH *hostname, int port);
const FSH *hostname, int port, byte channel);
static Stream *wifiStream;
static DCCEXParser parser;
static wifiSerialState setup2(const FSH *SSSid, const FSH *password,
const FSH *hostname, int port);
static bool checkForOK(const unsigned int timeout, const char *waitfor, bool echo, bool escapeEcho = true);
const FSH *hostname, int port, byte channel);
static bool checkForOK(const unsigned int timeout, bool echo, bool escapeEcho = true);
static bool checkForOK(const unsigned int timeout, const FSH *waitfor, bool echo, bool escapeEcho = true);
static bool connected;
static bool closeAfter;
static byte loopstate;
static int datalength;
static int connectionId;
static unsigned long loopTimeoutStart;
};
#endif

View File

@ -1,10 +1,9 @@
/**********************************************************************
Config.h
COPYRIGHT (c) 2013-2016 Gregg E. Berman
config.h
COPYRIGHT (c) 2020 Fred Decker
The configuration file for DCC++ EX Command Station
The configuration file for DCC-EX Command Station
**********************************************************************/
@ -52,10 +51,14 @@ The configuration file for DCC++ EX Command Station
// WIFI_SSID is the network name IF you want to use your existing home network.
// Do NOT change this if you want to use the WiFi in Access Point (AP) mode.
//
// If you do NOT set the WIFI_SSID, the WiFi chip will first try
// to connect to the previously configured network and if that fails
// fall back to Access Point mode. The SSID of the AP will be
// automatically set to DCCEX_*.
// If you do NOT set the WIFI_SSID and do NOT set the WIFI_PASSWORD,
// then the WiFi chip will first try to connect to the previously
// configured network and if that fails fall back to Access Point mode.
// The SSID of the AP will be automatically set to DCCEX_*.
// If you DO set the WIFI_SSID then the WiFi chip will try to connect
// to that (home) network in station (client) mode. If a WIFI_PASSWORD
// is set (recommended), that password will be used for AP mode.
// The AP mode password must be at least 8 characters long.
//
// Your SSID may not conain ``"'' (double quote, ASCII 0x22).
#define WIFI_SSID "Your network name"
@ -69,6 +72,12 @@ The configuration file for DCC++ EX Command Station
// WIFI_HOSTNAME: You probably don't need to change this
#define WIFI_HOSTNAME "dccex"
//
// WIFI_CHANNEL: If the line "#define ENABLE_WIFI true" is uncommented,
// WiFi will be enabled (Mega only). The default channel is set to "1" whether
// this line exists or not. If you need to use an alternate channel (we recommend
// using only 1,6, or 11) you may change it here.
#define WIFI_CHANNEL 1
//
/////////////////////////////////////////////////////////////////////////////////////
//
// Wifi connect timeout in milliseconds. Default is 14000 (14 seconds). You only need
@ -90,26 +99,6 @@ The configuration file for DCC++ EX Command Station
//
//#define IP_ADDRESS { 192, 168, 1, 200 }
/////////////////////////////////////////////////////////////////////////////////////
//
// DEFINE MAC ADDRESS ARRAY FOR ETHERNET COMMUNICATIONS INTERFACE
//
// Uncomment to use with Ethernet Shields
//
// Ethernet Shields do not have have a MAC address in hardware. There may be one on
// a sticker on the Shield that you should use. Otherwise choose one of the ones below
// Be certain that no other device on your network has this same MAC address!
//
// 52:b8:8a:8e:ce:21
// e3:e9:73:e1:db:0d
// 54:2b:13:52:ac:0c
// NOTE: This is not used with ESP8266 WiFi modules.
//#define MAC_ADDRESS { 0x52, 0xB8, 0x8A, 0x8E, 0xCE, 0x21 } // MAC address of your networking card found on the sticker on your card or take one from above
//
// #define MAC_ADDRESS { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xEF }
/////////////////////////////////////////////////////////////////////////////////////
//

View File

@ -21,10 +21,13 @@
////////////////////////////////////////////////////////////////////////////////
//
// WIFI_ON: All prereqs for running with WIFI are met
//
// Note: WIFI_CHANNEL may not exist in early config.h files so is added here if needed.
#if ENABLE_WIFI && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_SAMD_ZERO) || defined(ARDUINO_AVR_UNO_WIFI_REV2))
#define WIFI_ON true
#ifndef WIFI_CHANNEL
#define WIFI_CHANNEL 1
#endif
#else
#define WIFI_ON false
#endif

View File

@ -1,152 +0,0 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This file is a demonstattion of calling the DCC-EX API
*/
#include "DCCEX.h"
#ifdef ARDUINO_AVR_UNO
#include <SoftwareSerial.h>
SoftwareSerial Serial1(15,16); // YOU must get these pins correct to use Wifi on a UNO
#define WIFI_BAUD 9600
#else
#define WIFI_BAUD 115200
#endif
// this code is here to demonstrate use of the DCC API and other techniques
// myFilter is an example of an OPTIONAL command filter used to intercept < > commands from
// the usb or wifi streamm. It demonstrates how a command may be intercepted
// or even a new command created without having to break open the API library code.
// The filter is permitted to use or modify the parameter list before passing it on to
// the standard parser. By setting the opcode to 0, the standard parser will
// just ignore the command on the assumption that you have already handled it.
//
// The filter must be enabled by calling the DCC EXParser::setFilter method, see use in setup().
void myComandFilter(Print * stream, byte & opcode, byte & paramCount, int p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
switch (opcode) {
case '!': // Create a bespoke new command to clear all loco reminders <!> or specific locos e.g <! 3 4 99>
if (paramCount==0) DCC::forgetAllLocos();
else for (int i=0;i<paramCount;i++) DCC::forgetLoco(p[i]);
opcode=0; // tell parser to ignore this command as we have done it already
break;
default: // drop through and parser will use the command unaltered.
break;
}
}
// This is an OPTIONAL example of a HTTP filter...
// If you have configured wifi and an HTTP request is received on the Wifi connection
// it will normally be rejected 404 Not Found.
// If you wish to handle HTTP requests, you can create a filter and ask the WifiInterface to
// call your code for each detected http request.
void myHttpFilter(Print * stream, byte * cmd) {
(void)cmd; // Avoid compiler warning because this example doesnt use this parameter
// BEWARE - As soon as you start responding, the cmd buffer is trashed!
// You must get everything you need from it before using StringFormatter::send!
StringFormatter::send(stream,F("HTTP/1.1 200 OK\nContent-Type: text/html\nConnnection: close\n\n"));
StringFormatter::send(stream,F("<html><body>This is my HTTP filter responding.<br/></body></html>"));
}
// Callback functions are necessary if you call any API that must wait for a response from the
// programming track. The API must return immediately otherwise other loop() functions would be blocked.
// Your callback function will be invoked when the data arrives from the prog track.
// See the DCC:getLocoId example in the setup function.
void myCallback(int result) {
DIAG(F("\n getting Loco Id callback result=%d"),result);
}
// Create a serial command parser... This is OPTIONAL if you don't need to handle JMRI type commands
// from the Serial port.
DCCEXParser serialParser;
// Try monitoring the memory
#include "freeMemory.h"
int ramLowWatermark=32767; // This figure gets overwritten dynamically in loop()
void setup() {
// The main sketch has responsibilities during setup()
// Responsibility 1: Start the usb connection for diagnostics and possible JMRI input
// DIAGSERAL is normally Serial but uses SerialUSB on a SAMD processor
DIAGSERIAL.begin(115200);
while(!DIAGSERIAL);
// Responsibility 2: Start the DCC engine.
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
// Optionally a Timer number (1..4) may be passed to DCC::begin to override the default Timer1 used for the
// waveform generation. e.g. DCC::begin(STANDARD_MOTOR_SHIELD,2); to use timer 2
DCC::begin(STANDARD_MOTOR_SHIELD);
// Responsibility 3: **Optionally** Start the WiFi interface if required.
// NOTE: On a Uno you will have to provide a SoftwareSerial
// configured for the pins connected to the Wifi card
// and a 9600 baud rate.
// setup(serial, F(router name) or NULL, F(router password), F(hostname), F(AcessPoint name) or NULL , port)
// (port 3532 is 0xDCC decimal.)
Serial1.begin(WIFI_BAUD);
WifiInterface::setup(Serial1, F("BTHub5-M6PT"), F("49de8d4862"),F("DCCEX"),3532);
// Optionally tell the Wifi parser to use my http filter.
// This will intercept http commands from Wifi.
WifiInterface::setHTTPCallback(myHttpFilter);
// This is just for demonstration purposes
DIAG(F("\n===== DCCEX demonstrating DCC::getLocoId() call ==========\n"));
DCC::getLocoId(myCallback); // myCallback will be called with the result
DIAG(F("\n===== DCC::getLocoId has returned, but the callback wont be executed until we are in loop() ======\n"));
// Optionally tell the command parser to use my example filter.
// This will intercept JMRI commands from both USB and Wifi
DCCEXParser::setFilter(myComandFilter);
DIAG(F("\nReady for JMRI commands\n"));
}
void loop() {
// The main sketch has responsibilities during loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(DIAGSERIAL);
// Responsibility 3: Optionally handle any incoming WiFi traffic
WifiInterface::loop();
// Your additional loop code
// Optionally report any decrease in memory (will automatically trigger on first call)
int freeNow=freeMemory();
if (freeNow<ramLowWatermark) {
ramLowWatermark=freeNow;
DIAG(F("\nFree RAM=%d\n"),ramLowWatermark);
}
}

View File

@ -1,29 +0,0 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This is a basic, no frills DCC-EX example of a DCC++ compatible setup.
* There are more advanced examples in the examples folder i
*/
#include "DCCEX.h"
// Create parser for <> commands coming from keyboard or JMRI on thr USB connection.
DCCEXParser serialParser;
void setup() {
// Responsibility 1: Start the usb connection for diagnostics and possible JMRI input
Serial.begin(115200);
// Responsibility 2: Start the DCC engine with information about your Motor Shield.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorDriverss.h
DCC::begin(STANDARD_MOTOR_SHIELD);
}
void loop() {
// Responsibility 1: Handle DCC background processes (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(Serial);
}

View File

@ -1,73 +0,0 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This file is a demonstattion of setting up a DCC-EX
* Command station to support direct connection of WiThrottle devices
* such as "Engine Driver". If you contriol your layout through JMRI
* then DON'T connect throttles to this wifi, connect them to JMRI.
*
* This is just 3 statements longer than the basic setup.
*
* THIS SETUP DOES NOT APPLY TO ARDUINO UNO WITH ONLY A SINGLE SERIAL PORT.
* REFER TO SEPARATE EXAMPLE.
*/
#include "DCCEX.h"
// Create a serial command parser... Enables certain diagnostics and commands
// to be issued from the USB serial console
// This is NOT intended for JMRI....
DCCEXParser serialParser;
void setup() {
// The main sketch has responsibilities during setup()
// Responsibility 1: Start the usb connection for diagnostics
// This is normally Serial but uses SerialUSB on a SAMD processor
Serial.begin(115200);
// Responsibility 3: Start the DCC engine.
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
// Optionally a Timer number (1..4) may be passed to DCC::begin to override the default Timer1 used for the
// waveform generation. e.g. DCC::begin(STANDARD_MOTOR_SHIELD,2); to use timer 2
DCC::begin(STANDARD_MOTOR_SHIELD);
// Start the WiFi interface.
// NOTE: References to Serial1 are for the serial port used to connect
// your wifi chip/shield.
Serial1.begin(115200); // BAUD rate of your Wifi chip/shield
WifiInterface::setup(Serial1,
F("BTHub5-M6PT"), // Router name
F("49de8d4862"), // Router password
F("DCCEX"), // Hostname (ignored by some wifi chip firmware)
3532); // port (3532 is 0xDCC)
}
void loop() {
// The main sketch has responsibilities during loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(Serial);
// Responsibility 3: Optionally handle any incoming WiFi traffic
WifiInterface::loop();
}

View File

@ -1,7 +1,11 @@
#ifndef version_h
#define version_h
#define VERSION "3.0.3"
#include "StringFormatter.h"
#define VERSION "3.0.4"
// 3.0.4 Includes:
// Wifi startup bugfixes
// 3.0.3 Includes:
// <W addr> command to write loco address and clear consist
// <R> command will allow for consist address