1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-28 05:03:07 +01:00

RAILCOM cutout (mega)

This commit is contained in:
Asbelos 2025-01-12 20:37:39 +00:00
parent 7e8841611d
commit 680f765775
8 changed files with 121 additions and 66 deletions

View File

@ -1223,6 +1223,10 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
return true;
#ifdef HAS_ENOUGH_MEMORY
case "RAILCOM"_hk: // <D RAILCOM ON/OFF>
Diag::RAILCOM = onOff;
return true;
case "WIFI"_hk: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;

View File

@ -2,7 +2,7 @@
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021-2025 Chris Harlow
* © 2021 David Cutting
* All rights reserved.
*
@ -57,66 +57,59 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
TCCR1B = _BV(WGM13) | _BV(CS10); // Mode 8, clock select 1
TIMSK1 = _BV(TOIE1); // Enable Software interrupt
interrupts();
//diagnostic pinMode(4,OUTPUT);
}
void DCCTimer::startRailcomTimer(byte brakePin) {
(void) brakePin; // Ignored... works on pin 9 only
// diagnostic digitalWrite(4,HIGH);
/* The Railcom timer is started in such a way that it
- First triggers 28uS after the last TIMER1 tick.
- First triggers 58+29 uS after the previous TIMER1 tick.
This provides an accurate offset (in High Accuracy mode)
for the start of the Railcom cutout.
- Sets the Railcom pin high at first tick,
because its been setup with 100% PWM duty cycle.
- Sets the Railcom pin high at first tick and subsequent ticks
until its reset to setting pin 9 low at next tick.
- Cycles at 436uS so the second tick is the
correct distance from the cutout.
- Waveform code is responsible for altering the PWM
duty cycle to 0% any time between the first and last tick.
- Waveform code is responsible for resetting
any time between the first and second tick.
(there will be 7 DCC timer1 ticks in which to do this.)
*/
(void) brakePin; // Ignored... works on pin 9 only
const int cutoutDuration = 430; // Desired interval in microseconds
// Set up Timer2 for CTC mode (Clear Timer on Compare Match)
TCCR2A = 0; // Clear Timer2 control register A
TCCR2B = 0; // Clear Timer2 control register B
TCNT2 = 0; // Initialize Timer2 counter value to 0
// Configure Phase and Frequency Correct PWM mode
TCCR2A = (1 << COM2B1); // enable pwm on pin 9
TCCR2A |= (1 << WGM20);
const int cycle=cutoutDuration/2;
// Set Timer 2 prescaler to 32
TCCR2B = (1 << CS21) | (1 << CS20); // 32 prescaler
// Set the compare match value for desired interval
OCR2A = (F_CPU / 1000000) * cutoutDuration / 64 - 1;
// Calculate the compare match value for desired duty cycle
OCR2B = OCR2A+1; // set duty cycle to 100%= OCR2A)
const byte RailcomFudge0=58+58+29;
// Set Timer2 to CTC mode with set on compare match
TCCR2A = (1 << WGM21) | (1 << COM2B0) | (1 << COM2B1);
// Prescaler of 32
TCCR2B = (1 << CS21) | (1 << CS20);
OCR2A = cycle-1; // Compare match value for 430 uS
// Enable Timer2 output on pin 9 (OC2B)
DDRB |= (1 << DDB1);
// TODO Fudge TCNT2 to sync with last tcnt1 tick + 28uS
// RailcomFudge2 is the expected time from idealised
// setup call (at previous DCC timer interrupt) to the cutout.
// This value should be reduced to reflect the Timer1 value
// measuring the time since the previous hardware interrupt
byte tcfudge=TCNT1/16;
TCNT2=cycle-RailcomFudge0/2+tcfudge/2;
// Previous TIMER1 Tick was at rising end-of-packet bit
// Cutout starts half way through first preamble
// that is 2.5 * 58uS later.
// TCNT1 ticks 8 times / microsecond
// auto microsendsToFirstRailcomTick=(58+58+29)-(TCNT1/8);
// set the railcom timer counter allowing for phase-correct
// CHris's NOTE:
// I dont kniow quite how this calculation works out but
// it does seems to get a good answer.
TCNT2=193 + (ICR1 - TCNT1)/8;
}
}
void DCCTimer::ackRailcomTimer() {
OCR2B= 0x00; // brake pin pwm duty cycle 0 at next tick
// Change Timer2 to CTC mode with RESET pin 9 on next compare match
TCCR2A = (1 << WGM21) | (1 << COM2B1);
// diagnostic digitalWrite(4,LOW);
}

View File

@ -21,18 +21,16 @@
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef ARDUINO_ARCH_ESP32
// This code is replaced entirely on an ESP32 see DCCWaveformRMT.cpp
// This code is replaced entirely on an ESP32
#include <Arduino.h>
#include "DCCWaveform.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "DCCACK.h"
#include "DIAG.h"
bool DCCWaveform::cutoutNextTime=false;
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
@ -72,9 +70,18 @@ void DCCWaveform::loop() {
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
// member functions would be cleaner but have more overhead
#if defined(HAS_ENOUGH_MEMORY)
if (cutoutNextTime) {
cutoutNextTime=false;
railcomSampleWindow=false; // about to cutout, stop reading railcom data.
railcomCutoutCounter++;
DCCTimer::startRailcomTimer(9);
}
#endif
byte sigMain=signalTransform[mainTrack.state];
byte sigProg=TrackManager::progTrackSyncMain? sigMain : signalTransform[progTrack.state];
@ -116,19 +123,24 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
bytes_sent = 0;
bits_sent = 0;
}
bool DCCWaveform::railcomPossible=false; // High accuracy only
volatile bool DCCWaveform::railcomActive=false; // switched on by user
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
volatile bool DCCWaveform::railcomSampleWindow=false; // true during packet transmit
volatile byte DCCWaveform::railcomCutoutCounter=0; // cyclic cutout
volatile byte DCCWaveform::railcomLastAddressHigh=0;
volatile byte DCCWaveform::railcomLastAddressLow=0;
bool DCCWaveform::setRailcom(bool on, bool debug) {
if (on) {
// TODO check possible
if (on && railcomPossible) {
railcomActive=true;
railcomDebug=debug;
}
else {
railcomActive=false;
railcomDebug=false;
railcomSampleWindow=false;
}
return railcomActive;
}
@ -141,14 +153,37 @@ void DCCWaveform::interrupt2() {
// or WAVE_HIGH_0 for a 0 bit.
if (remainingPreambles > 0 ) {
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
remainingPreambles--;
// As we get to the end of the preambles, open the reminder window.
// This delays any reminder insertion until the last moment so
// that the reminder doesn't block a more urgent packet.
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<4 && remainingPreambles>1;
if (remainingPreambles==1) promotePendingPacket();
else if (remainingPreambles==10 && isMainTrack && railcomActive) DCCTimer::ackRailcomTimer();
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<10 && remainingPreambles>1;
if (remainingPreambles==1)
promotePendingPacket();
#if defined(HAS_ENOUGH_MEMORY)
else if (isMainTrack && railcomActive) {
if (remainingPreambles==(requiredPreambles-1)) {
// First look if we need to start a railcom cutout on next interrupt
cutoutNextTime= true;
} else if (remainingPreambles==(requiredPreambles-12)) {
// cutout has ended so its now possible to poll the railcom detectors
// requiredPreambles is one higher that preamble length so
// if preamble length is 16 then this evaluates to 5
// Remember address bytes of last sent packet so that Railcom can
// work out where the channel2 data came from.
railcomLastAddressHigh=transmitPacket[0];
railcomLastAddressLow =transmitPacket[1];
railcomSampleWindow=true;
} else if (remainingPreambles==(requiredPreambles-3)) {
// cutout can be ended when read
// see above for requiredPreambles
DCCTimer::ackRailcomTimer();
}
}
#endif
// Update free memory diagnostic as we don't have anything else to do this time.
// Allow for checkAck and its called functions using 22 bytes more.
else DCCTimer::updateMinimumFreeMemoryISR(22);
@ -172,13 +207,7 @@ void DCCWaveform::interrupt2() {
bytes_sent = 0;
// preamble for next packet will start...
remainingPreambles = requiredPreambles;
// set the railcom coundown to trigger half way
// through the first preamble bit.
// Note.. we are still sending the last packet bit
// and we then have to allow for the packet end bit
if (isMainTrack && railcomActive) DCCTimer::startRailcomTimer(9);
}
}
}
}
#pragma GCC pop_options
@ -213,7 +242,7 @@ void DCCWaveform::promotePendingPacket() {
transmitRepeats--;
return;
}
if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
@ -231,7 +260,7 @@ void DCCWaveform::promotePendingPacket() {
// Fortunately reset and idle packets are the same length
// Note: If railcomDebug is on, then we send resets to the main
// track instead of idles. This means that all data will be zeros
// and only the porersets will be ones, making it much
// and only the presets will be ones, making it much
// easier to read on a logic analyser.
memcpy( transmitPacket, (isMainTrack && (!railcomDebug)) ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);

View File

@ -3,7 +3,7 @@
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2021 Chris Harlow
* © 2020-2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -23,11 +23,8 @@
*/
#ifndef DCCWaveform_h
#define DCCWaveform_h
#include "MotorDriver.h"
#ifdef ARDUINO_ARCH_ESP32
#include "DCCRMT.h"
#include "TrackManager.h"
#endif
@ -86,8 +83,30 @@ class DCCWaveform {
bool isReminderWindowOpen();
void promotePendingPacket();
static bool setRailcom(bool on, bool debug);
static bool isRailcom() {return railcomActive;}
inline static bool isRailcom() {
return railcomActive;
};
inline static byte getRailcomCutoutCounter() {
return railcomCutoutCounter;
};
inline static bool isRailcomSampleWindow() {
return railcomSampleWindow;
};
inline static bool isRailcomPossible() {
return railcomPossible;
};
inline static void setRailcomPossible(bool yes) {
railcomPossible=yes;
if (!yes) setRailcom(false,false);
};
inline static uint16_t getRailcomLastLocoAddress() {
// first 2 bits 00=short loco, 11=long loco , 01/10 = accessory
byte addressType=railcomLastAddressHigh & 0xC0;
if (addressType==0xC0) return ((railcomLastAddressHigh & 0x3f)<<8) | railcomLastAddressLow;
if (addressType==0x00) return railcomLastAddressHigh & 0x3F;
return 0;
}
private:
#ifndef ARDUINO_ARCH_ESP32
volatile bool packetPending;
@ -112,9 +131,13 @@ class DCCWaveform {
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte pendingLength;
byte pendingRepeats;
static bool railcomPossible; // High accuracy mode only
static volatile bool railcomActive; // switched on by user
static volatile bool railcomDebug; // switched on by user
static volatile bool railcomSampleWindow; // when safe to sample
static volatile byte railcomCutoutCounter; // incremented for each cutout
static volatile byte railcomLastAddressHigh,railcomLastAddressLow;
static bool cutoutNextTime; // railcom
#ifdef ARDUINO_ARCH_ESP32
static RMTChannel *rmtMainChannel;
static RMTChannel *rmtProgChannel;

View File

@ -25,6 +25,7 @@
#ifdef ARDUINO_ARCH_ESP32
#include "DCCWaveform.h"
#include "DCCACK.h"
#include "TrackManager.h"
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);

View File

@ -1,5 +1,5 @@
/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020=2025, Chris Harlow. All rights reserved.
*
* This file is part of Asbelos DCC API
*
@ -27,6 +27,8 @@ bool Diag::WIFI=false;
bool Diag::WITHROTTLE=false;
bool Diag::ETHERNET=false;
bool Diag::LCN=false;
bool Diag::RAILCOM=false;
void StringFormatter::diag( const FSH* input...) {

View File

@ -1,5 +1,5 @@
/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020-2025, Chris Harlow. All rights reserved.
*
* This file is part of Asbelos DCC API
*
@ -30,6 +30,7 @@ class Diag {
static bool WITHROTTLE;
static bool ETHERNET;
static bool LCN;
static bool RAILCOM;
};

View File

@ -332,7 +332,8 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
canDo &= track[t]->trackPWM;
}
}
if (!canDo) {
if (canDo) DIAG(F("HA mode"));
else {
// if we discover that HA mode was globally impossible
// we must adjust the trackPWM capabilities
FOR_EACH_TRACK(t) {
@ -341,6 +342,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
}
DCCTimer::clearPWM(); // has to be AFTER trackPWM changes because if trackPWM==true this is undone for that track
}
DCCWaveform::setRailcomPossible(canDo);
#else
// For ESP32 we just reinitialize the DCC Waveform
DCCWaveform::begin();