1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00

Initial STM32F4xx fast ADC read implementation

This commit is contained in:
pmantoine 2023-01-28 13:58:55 +08:00
parent fcf16c1367
commit 6cc66e26c1
5 changed files with 136 additions and 30 deletions

View File

@ -99,6 +99,9 @@ void setup()
// Initialise HAL layer before reading EEprom or setting up MotorDrivers // Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin(); IODevice::begin();
// As the setup of a motor shield may require a read of the current sense input from the ADC,
// let's make sure to initialise the ADCee class!
ADCee::begin();
// Responsibility 3: Start the DCC engine. // Responsibility 3: Start the DCC engine.
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s) // Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require // Standard supported devices have pre-configured macros but custome hardware installations require

View File

@ -1,5 +1,5 @@
/* /*
* © 2022 Paul M. Antoine * © 2022-2023 Paul M. Antoine
* © 2021 Mike S * © 2021 Mike S
* © 2021-2022 Harald Barth * © 2021-2022 Harald Barth
* © 2021 Fred Decker * © 2021 Fred Decker
@ -102,9 +102,14 @@ private:
// that an offset can be initialized. // that an offset can be initialized.
class ADCee { class ADCee {
public: public:
// init does add the pin to the list of scanned pins (if this // begin is called for any setup that must be done before
// **init** can be called. On some architectures this involves ADC
// initialisation and clock routing, sampling times etc.
static void begin();
// init adds the pin to the list of scanned pins (if this
// platform's implementation scans pins) and returns the first // platform's implementation scans pins) and returns the first
// read value. It is called before the regular scan is started. // read value (which is why it required begin to have been called first!)
// It must be called before the regular scan is started.
static int init(uint8_t pin); static int init(uint8_t pin);
// read does read the pin value from the scanned cache or directly // read does read the pin value from the scanned cache or directly
// if this is a platform that does not scan. fromISR is a hint if // if this is a platform that does not scan. fromISR is a hint if
@ -117,9 +122,6 @@ private:
// On platforms that scan, it is called from waveform ISR // On platforms that scan, it is called from waveform ISR
// only on a regular basis. // only on a regular basis.
static void scan(); static void scan();
// begin is called for any setup that must be done before
// scan can be called.
static void begin();
// bit array of used pins (max 16) // bit array of used pins (max 16)
static uint16_t usedpins; static uint16_t usedpins;
// cached analog values (malloc:ed to actual number of ADC channels) // cached analog values (malloc:ed to actual number of ADC channels)

View File

@ -168,23 +168,6 @@ int ADCee::init(uint8_t pin) {
if (id > NUM_ADC_INPUTS) if (id > NUM_ADC_INPUTS)
return -1023; return -1023;
// Dummy read using Arduino library
analogReadResolution(12);
value = analogRead(pin);
// Reconfigure ADC
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
ADC->CTRLB.reg &= 0b1111100011001111; // mask PRESCALER and RESSEL bits
ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 16
ADC_CTRLB_RESSEL_12BIT; // Result 12 bits, 10 bits possible
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time
ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0
ADC->SAMPCTRL.reg = 0x00ul; // sampling Time Length = 0
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
// Permanently configure SAMD IO MUX for that pin // Permanently configure SAMD IO MUX for that pin
pinPeripheral(pin, PIO_ANALOG); pinPeripheral(pin, PIO_ANALOG);
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[pin].ulADCChannelNumber; // Selection for the positive ADC input ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[pin].ulADCChannelNumber; // Selection for the positive ADC input
@ -205,9 +188,11 @@ int ADCee::init(uint8_t pin) {
return value; return value;
} }
int16_t ADCee::ADCmax() { int16_t ADCee::ADCmax() {
return 4095; return 4095;
} }
/* /*
* Read function ADCee::read(pin) to get value instead of analogRead(pin) * Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/ */

View File

@ -131,31 +131,148 @@ void DCCTimer::reset() {
while(true) {}; while(true) {};
} }
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
// TODO: may need to use uint32_t on STMF4xx variants with > 16 analog inputs!
uint16_t ADCee::usedpins = 0;
int * ADCee::analogvals = NULL;
uint32_t * analogchans = NULL;
bool adc1configured = false;
int16_t ADCee::ADCmax() { int16_t ADCee::ADCmax() {
return 4095; return 4095;
} }
int ADCee::init(uint8_t pin) { int ADCee::init(uint8_t pin) {
return analogRead(pin); uint id = pin - A0;
int value = 0;
PinName stmpin = digitalPin[analogInputPin[id]];
uint32_t stmgpio = stmpin / 16; // 16-bits per GPIO port group on STM32
uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC channel (only valid for ADC1!)
GPIO_TypeDef * gpioBase;
// Port config - find which port we're on and power it up
switch(stmgpio) {
case 0x00:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; //Power up PORTA
gpioBase = GPIOA;
break;
case 0x01:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; //Power up PORTB
gpioBase = GPIOB;
break;
case 0x02:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; //Power up PORTC
gpioBase = GPIOC;
break;
}
// Set pin mux mode to analog input
gpioBase->MODER |= (0b011 << (stmpin << 1)); // Set pin mux to analog mode
// Set the sampling rate for that analog input
if (adcchan < 10)
ADC1->SMPR2 |= (0b111 << (adcchan * 3)); // Channel sampling rate 480 cycles. 16MHz bus clock for ADC. 1/16MHz = 62.5ns. 480*62.5ns=30us
else
ADC1->SMPR1 |= (0b111 << ((adcchan - 10) * 3)); // Channel sampling rate 480 cycles. 16MHz bus clock for ADC. 1/16MHz = 62.5ns. 480*62.5ns=30us
// Read the inital ADC value for this analog input
ADC1->SQR3 = adcchan; // 1st conversion in regular sequence
ADC1->CR2 |= (1 << 30); // Start 1st conversion SWSTART
while(!(ADC1->SR & (1 << 1))); // Wait until conversion is complete
value = ADC1->DR; // Read value from register
if (analogvals == NULL)
{
analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int));
analogchans = (uint32_t *)calloc(NUM_ADC_INPUTS+1, sizeof(uint32_t));
}
analogvals[id] = value; // Store sampled value
analogchans[id] = adcchan; // Keep track of which ADC channel is used for reading this pin
usedpins |= (1 << id); // This pin is now ready
return value;
} }
/* /*
* Read function ADCee::read(pin) to get value instead of analogRead(pin) * Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/ */
int ADCee::read(uint8_t pin, bool fromISR) { int ADCee::read(uint8_t pin, bool fromISR) {
int current; uint8_t id = pin - A0;
if (!fromISR) noInterrupts(); // Was this pin initialised yet?
current = analogRead(pin); if ((usedpins & (1<<id) ) == 0)
if (!fromISR) interrupts(); return -1023;
return current; // We do not need to check (analogvals == NULL)
// because usedpins would still be 0 in that case
return analogvals[id];
} }
/* /*
* Scan function that is called from interrupt * Scan function that is called from interrupt
*/ */
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() { void ADCee::scan() {
static uint id = 0; // id and mask are the same thing but it is faster to
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
static bool waiting = false;
if (waiting) {
// look if we have a result
if ((ADC1->SR & (1 << 1)))
return; // no result, continue to wait
// found value
analogvals[id] = ADC1->DR;
// advance at least one track
// for scope debug TrackManager::track[1]->setBrake(0);
waiting = false;
id++;
mask = mask << 1;
if (id == NUM_ADC_INPUTS+1) {
id = 0;
mask = 1;
}
}
if (!waiting) {
if (usedpins == 0) // otherwise we would loop forever
return;
// look for a valid track to sample or until we are around
while (true) {
if (mask & usedpins) {
// start new ADC aquire on id
ADC1->SQR3 = analogchans[id]; //1st conversion in regular sequence
ADC1->CR2 |= (1 << 30); //Start 1st conversion SWSTART
// for scope debug TrackManager::track[1]->setBrake(1);
waiting = true;
return;
}
id++;
mask = mask << 1;
if (id == NUM_ADC_INPUTS+1) {
id = 0;
mask = 1;
}
}
}
} }
#pragma GCC pop_options
void ADCee::begin() { void ADCee::begin() {
noInterrupts(); noInterrupts();
//ADC1 config sequence
// TODO: currently defaults to ADC1, may need more to handle other members of STM32F4xx family
RCC->APB2ENR |= (1 << 8); //Enable ADC1 clock (Bit8)
// Set ADC prescaler - DIV8 ~ 40ms, DIV6 ~ 30ms, DIV4 ~ 20ms, DIV2 ~ 11ms
ADC->CCR = (0 << 16); // Set prescaler 0=DIV2, 1=DIV4, 2=DIV6, 3=DIV8
ADC1->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8)
ADC1->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00)
ADC1->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion
ADC1->CR2 &= ~(1 << 1); //Single conversion
ADC1->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0
ADC1->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->CR2 |= (1 << 0); // Switch on ADC1
interrupts(); interrupts();
} }
#endif #endif

View File

@ -62,7 +62,6 @@ const bool signalTransform[]={
/* WAVE_PENDING (should not happen) -> */ LOW}; /* WAVE_PENDING (should not happen) -> */ LOW};
void DCCWaveform::begin() { void DCCWaveform::begin() {
ADCee::begin();
DCCTimer::begin(DCCWaveform::interruptHandler); DCCTimer::begin(DCCWaveform::interruptHandler);
} }