diff --git a/I2CManager_STM32.h b/I2CManager_STM32.h index a55fd2e..58a623d 100644 --- a/I2CManager_STM32.h +++ b/I2CManager_STM32.h @@ -38,7 +38,10 @@ * bus on the SAMD architecture ***************************************************************************/ #if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32) -void I2C1_IRQHandler() { +extern "C" void I2C1_EV_IRQHandler(void) { + I2CManager.handleInterrupt(); +} +extern "C" void I2C1_ER_IRQHandler(void) { I2CManager.handleInterrupt(); } #endif @@ -91,44 +94,60 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) { // Use 10x the rise time spec to enable integer divide of 62.5ns clock period uint16_t t_rise; uint32_t ccr_freq; - if (i2cClockSpeed < 200000L) { - // i2cClockSpeed = 100000L; - t_rise = 0x11; // (1000ns /62.5ns) + 1; - } - else if (i2cClockSpeed < 800000L) + + while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further + // writes to CR1 while STOP is being executed! + // Disable the I2C device, as TRISE can only be programmed whilst disabled + s->CR1 &= ~(I2C_CR1_PE); // Disable I2C + // Software reset the I2C peripheral + // s->CR1 |= I2C_CR1_SWRST; // reset the I2C + // delay(1); + // Release reset + // s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation + + if (i2cClockSpeed > 100000L) { - i2cClockSpeed = 400000L; - t_rise = 0x06; // (300ns / 62.5ns) + 1; - // } else if (i2cClockSpeed < 1200000L) { - // i2cClockSpeed = 1000000L; - // t_rise = 120; + if (i2cClockSpeed > 400000L) + i2cClockSpeed = 400000L; + + t_rise = 0x06; // (300ns /62.5ns) + 1; } else { i2cClockSpeed = 100000L; t_rise = 0x11; // (1000ns /62.5ns) + 1; } + // Configure the rise time register + s->TRISE = t_rise; - // Enable the I2C master mode - s->CR1 &= ~(I2C_CR1_PE); // Enable I2C - // Software reset the I2C peripheral - // s->CR1 |= I2C_CR1_SWRST; // reset the I2C - // Release reset - // s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation - - // Calculate baudrate - using a rise time appropriate for the speed + // DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed); + // Calculate baudrate ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2; // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 14: Duty, fast mode duty cycle // Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) - s->CCR = (uint16_t)ccr_freq; - - // Configure the rise time register - s->TRISE = t_rise; // 1000 ns / 62.5 ns = 16 + 1 + if (i2cClockSpeed > 100000L) + s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set + else + s->CCR = (uint16_t)ccr_freq; // Enable the I2C master mode s->CR1 |= I2C_CR1_PE; // Enable I2C + // Wait for bus to be clear? + unsigned long startTime = micros(); + bool timeout = false; + while (s->SR2 & I2C_SR2_BUSY) { + if (micros() - startTime >= 500UL) { + timeout = true; + break; + } + } + if (timeout) { + digitalWrite(D13, HIGH); + DIAG(F("I2C: SR2->BUSY timeout")); + // delay(1000); + } } /*************************************************************************** @@ -136,32 +155,46 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) { ***************************************************************************/ void I2CManagerClass::I2C_init() { - //Setting up the clocks - RCC->APB1ENR |= (1<<21); // Enable I2C CLOCK - RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9 + // Setting up the clocks + RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK + // Reset the I2C1 peripheral to initial state + RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST; + RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST; // Standard I2C pins are SCL on PB8 and SDA on PB9 + RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9 // Bits (17:16)= 1:0 --> Alternate Function for Pin PB8; // Bits (19:18)= 1:0 --> Alternate Function for Pin PB9 + GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9 GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode + GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9 GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability // Alt Function High register routing pins PB8 and PB9 for I2C1: // Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8 // Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9 + GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up - // Software reset the I2C peripheral + // // Software reset the I2C peripheral s->CR1 |= I2C_CR1_SWRST; // reset the I2C - s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation + asm("nop"); // wait a bit... suggestion from online! + s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation + // Clear all bits in I2C CR2 register except reserved bits + s->CR2 &= 0xE000; // Program the peripheral input clock in CR2 Register in order to generate correct timings s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz + // set own address to 00 - not really used in master mode + I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet + #if defined(I2C_USE_INTERRUPTS) // Setting NVIC - NVIC_SetPriority(I2C_IRQn, 1); // Match default priorities - NVIC_EnableIRQ(I2C_IRQn); + NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities + NVIC_EnableIRQ(I2C1_EV_IRQn); + NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities + NVIC_EnableIRQ(I2C1_ER_IRQn); // CR2 Interrupt Settings // Bit 15-13: reserved @@ -172,8 +205,8 @@ void I2CManagerClass::I2C_init() // Bit 8: ITERREN - Error interrupt enable // Bit 7-6: reserved // Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz) - // s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts - s->CR2 |= 0x0300; // Enable Event and Error interrupts + s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts + // s->CR2 |= 0x0300; // Enable Event and Error interrupts #endif // Calculate baudrate and set default rate for now @@ -181,14 +214,26 @@ void I2CManagerClass::I2C_init() // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 14: Duty, fast mode duty cycle // Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) - s->CCR = 0x0050; + s->CCR = 0x50; // Configure the rise time register - max allowed in 1000ns s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1 // Enable the I2C master mode s->CR1 |= I2C_CR1_PE; // Enable I2C - // Setting bus idle mode and wait for sync + // Wait for bus to be clear? + unsigned long startTime = micros(); + bool timeout = false; + while (s->SR2 & I2C_SR2_BUSY) { + if (micros() - startTime >= 500UL) { + timeout = true; + break; + } + } + if (timeout) { + DIAG(F("I2C: SR2->BUSY timeout")); + // delay(1000); + } } /*************************************************************************** @@ -198,49 +243,56 @@ void I2CManagerClass::I2C_sendStart() { // Set counters here in case this is a retry. rxCount = txCount = 0; - uint8_t temp; - - // On a single-master I2C bus, the start bit won't be sent until the bus - // state goes to IDLE so we can request it without waiting. On a - // multi-master bus, the bus may be BUSY under control of another master, + // On a single-master I2C bus, the start bit won't be sent until the bus + // state goes to IDLE so we can request it without waiting. On a + // multi-master bus, the bus may be BUSY under control of another master, // in which case we can avoid some arbitration failures by waiting until // the bus state is IDLE. We don't do that here. - // If anything to send, initiate write. Otherwise initiate read. - if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) - { - // Send start for read operation - s->CR1 |= I2C_CR1_ACK; // Enable the ACK - s->CR1 |= I2C_CR1_START; // Generate START - // Send address with read flag (1) or'd in - s->DR = (deviceAddress << 1) | 1; // send the address - while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set - // Special case for 1 byte reads! - if (bytesToReceive == 1) - { - s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit - temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition - s->CR1 |= I2C_CR1_STOP; // Stop I2C + // Send start for read operation + while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further + // writes to CR1 while STOP is being executed! + // Wait for bus to be clear? + unsigned long startTime = micros(); + bool timeout = false; + while (s->SR2 & I2C_SR2_BUSY) { + if (micros() - startTime >= 500UL) { + timeout = true; + break; } - else - temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit } - else { - // Send start for write operation - s->CR1 |= I2C_CR1_ACK; // Enable the ACK - s->CR1 |= I2C_CR1_START; // Generate START - // Send address with write flag (0) or'd in - s->DR = (deviceAddress << 1) | 0; // send the address - while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set - temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit + if (timeout) { + DIAG(F("I2C_sendStart: SR2->BUSY timeout")); + // delay(1000); } + s->CR1 |= I2C_CR1_ACK; // Enable the ACK + s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception + s->CR1 |= I2C_CR1_START; // Generate START } /*************************************************************************** * Initiate a stop bit for transmission (does not interrupt) ***************************************************************************/ void I2CManagerClass::I2C_sendStop() { - s->CR1 |= I2C_CR1_STOP; // Stop I2C + uint32_t temp; + + s->CR1 |= I2C_CR1_STOP; // Stop I2C + temp = s->SR1 | s->SR2; // Read the status registers to clear them + while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further + // writes to CR1 while STOP is being executed! + // Wait for bus to be clear? + unsigned long startTime = micros(); + bool timeout = false; + while (s->SR2 & I2C_SR2_BUSY) { + if (micros() - startTime >= 500UL) { + timeout = true; + break; + } + } + if (timeout) { + DIAG(F("I2C_sendStop: SR2->BUSY timeout")); + // delay(1000); + } } /*************************************************************************** @@ -252,9 +304,11 @@ void I2CManagerClass::I2C_close() { s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral // Should never happen, but wait for up to 500us only. unsigned long startTime = micros(); - while ((s->CR1 && I2C_CR1_PE) != 0) { + while ((s->CR1 & I2C_CR1_PE) != 0) { if (micros() - startTime >= 500UL) break; } + NVIC_DisableIRQ(I2C1_EV_IRQn); + NVIC_DisableIRQ(I2C1_ER_IRQn); } /*************************************************************************** @@ -263,50 +317,158 @@ void I2CManagerClass::I2C_close() { * (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()). ***************************************************************************/ void I2CManagerClass::I2C_handleInterrupt() { + volatile uint16_t temp_sr1, temp_sr2, temp; + static bool led_lit = false; - if (s->SR1 && I2C_SR1_ARLO) { + temp_sr1 = s->SR1; + // if (temp_sr1 & I2C_SR1_ADDR) + // temp_sr2 = s->SR2; + + // Check to see if start bit sent - SB interrupt! + if (temp_sr1 & I2C_SR1_SB) + { + // If anything to send, initiate write. Otherwise initiate read. + if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) + { + // Send address with read flag (1) or'd in + s->DR = (deviceAddress << 1) | 1; // send the address + // while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set + // // // Special case for 1 byte reads! + // if (bytesToReceive == 1) + // { + // s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit + // temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition + // s->CR1 |= I2C_CR1_STOP; // Stop I2C + // } + // else + // temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit + } + else + { + // Send address with write flag (0) or'd in + s->DR = (deviceAddress << 1) | 0; // send the address + // while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set + // temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit + } + // while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set + // temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit + } + else if (temp_sr1 & I2C_SR1_ADDR) { + // Receive 1 byte (AN2824 figure 2) + if (bytesToReceive == 1) { + s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte + // EV6_1 must be atomic operation (AN2824) + // noInterrupts(); + (void)s->SR2; // read SR2 to complete clearing the ADDR bit + I2C_sendStop(); // send stop + // interrupts(); + } + // Receive 2 bytes (AN2824 figure 2) + else if (bytesToReceive == 2) { + s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next) + // EV6_1 must be atomic operation (AN2824) + // noInterrupts(); + (void)s->SR2; // read SR2 to complete clearing the ADDR bit + s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte + // interrupts(); + } + else + temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit + } + else if (temp_sr1 & I2C_SR1_AF) + { + s->SR1 &= ~(I2C_SR1_AF); // Clear AF + s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK + while (s->SR1 & I2C_SR1_AF); // Check AF cleared + I2C_sendStop(); // Clear the bus + completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; + state = I2C_STATE_COMPLETED; + } + else if (temp_sr1 & I2C_SR1_ARLO) + { // Arbitration lost, restart - I2C_sendStart(); // Reinitiate request - } else if (s->SR1 && I2C_SR1_BERR) { + s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO + s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK + I2C_sendStop(); + I2C_sendStart(); // Reinitiate request + // state = I2C_STATE_COMPLETED; + } + else if (temp_sr1 & I2C_SR1_BERR) + { // Bus error + s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR + s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK + I2C_sendStop(); // Clear the bus completionStatus = I2C_STATUS_BUS_ERROR; state = I2C_STATE_COMPLETED; - } else if (s->SR1 && I2C_SR1_TXE) { + } + else if (temp_sr1 & I2C_SR1_TXE) + { + // temp_sr2 = s->SR2; // Master write completed - if (s->SR1 && (1<<10)) { - // Nacked, send stop. + if (temp_sr1 & I2C_SR1_AF) { + // Nacked + s->SR1 &= ~(I2C_SR1_AF); // Clear AF + s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK + // send stop. I2C_sendStop(); completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; state = I2C_STATE_COMPLETED; } else if (bytesToSend) { // Acked, so send next byte + while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding s->DR = sendBuffer[txCount++]; bytesToSend--; - } else if (bytesToReceive) { - // Last sent byte acked and no more to send. Send repeated start, address and read bit. + // } else if (bytesToReceive) { + // // Last sent byte acked and no more to send. Send repeated start, address and read bit. + // s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK + // I2C_sendStart(); // s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1; } else { + // No bytes left to send or receive // Check both TxE/BTF == 1 before generating stop - while (!(s->SR1 && I2C_SR1_TXE)); // Check TxE - while (!(s->SR1 && I2C_SR1_BTF)); // Check BTF + // while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE + while ((s->SR1 & I2C_SR1_BTF)); // Check BTF // No more data to send/receive. Initiate a STOP condition and finish + s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK I2C_sendStop(); + // completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; } - } else if (s->SR1 && I2C_SR1_RXNE) { + } + else if (temp_sr1 & I2C_SR1_RXNE) + { // Master read completed without errors if (bytesToReceive == 1) { -// s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte + s->CR1 &= ~I2C_CR1_ACK; // NAK final byte I2C_sendStop(); // send stop receiveBuffer[rxCount++] = s->DR; // Store received byte bytesToReceive = 0; + // completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; - } else if (bytesToReceive) { -// s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte + } + else if (bytesToReceive == 2) + { + // Also needs to be atomic! + // noInterrupts(); + I2C_sendStop(); receiveBuffer[rxCount++] = s->DR; // Store received byte + // interrupts(); + } + else if (bytesToReceive) + { + s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte + receiveBuffer[rxCount++] = s->DR; // Store received byte bytesToReceive--; } } + else + { + // DIAG(F("Unhandled I2C interrupt!")); + led_lit = ~led_lit; + digitalWrite(D13, led_lit); + // delay(1000); + } } #endif /* I2CMANAGER_STM32_H */