1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-22 10:38:52 +01:00

To make usage easier, use F29 to F31 for frequencies

This commit is contained in:
Harald Barth 2024-01-20 23:34:17 +01:00
parent a5b73c823a
commit 99a09c713f
6 changed files with 50 additions and 32 deletions

13
DCC.cpp
View File

@ -153,7 +153,7 @@ uint8_t DCC::getThrottleSpeedByte(int cab) {
return speedTable[reg].speedCode;
}
// returns 0 to 3 for frequency
// returns 0 to 7 for frequency
uint8_t DCC::getThrottleFrequency(int cab) {
#if defined(ARDUINO_AVR_UNO)
(void)cab;
@ -161,10 +161,11 @@ uint8_t DCC::getThrottleFrequency(int cab) {
#else
int reg=lookupSpeedTable(cab);
if (reg<0)
return 0; // use default frequency
uint8_t res = (uint8_t)(speedTable[reg].functions >>30);
return 0; // use default frequency
// shift out first 29 bits so we have the 3 "frequency bits" left
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
return res; // shift out first 30 bits so we have the "frequency bits" left
return res;
#endif
}
@ -200,7 +201,9 @@ bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
// We use the reminder table up to 28 for normal functions.
// We use 29 to 31 for DC frequency as well.
// We use 29 to 31 for DC frequency as well so up to 28
// are "real" functions and 29 to 31 are frequency bits
// controlled by function buttons
if (functionNumber > 31)
return true;

View File

@ -137,22 +137,27 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// Speed mapping is done like this:
// No functions buttons: 000 0 -> low 131Hz
// Only F29 pressed 001 1 -> mid 490Hz
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
uint8_t abits;
uint8_t bbits;
if (pin == 9 || pin == 10) { // timer 2 is different
if (fbits >= 3)
if (fbits >= 4)
abits = B00000011;
else
abits = B00000001;
if (fbits >= 3)
if (fbits >= 4)
bbits = B0001;
else if (fbits == 2)
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0100;
else
else // fbits == 0
bbits = B0110;
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
@ -162,9 +167,9 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
} else { // not timer 9 or 10
abits = B01;
if (fbits >= 3)
if (fbits >= 4)
bbits = B1001;
else if (fbits == 2)
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0011;

View File

@ -154,9 +154,13 @@ void DCCTimer::reset() {
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f >= 3)
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f == 2)
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);

View File

@ -260,9 +260,13 @@ void DCCTimer::reset() {
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f >= 3)
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f == 2)
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);

View File

@ -679,27 +679,29 @@ void RMFT2::loop2() {
}
break;
case 1:
//if (loco) DCC::setFn(loco,29,true);
if (loco) {
DCC::setFn(loco,30,true);
DCC::setFn(loco,29,true);
DCC::setFn(loco,30,false);
DCC::setFn(loco,31,false);
}
break;
case 2:
//if (loco) DCC::setFn(loco,30,true);
if (loco) {
DCC::setFn(loco,29,false);
DCC::setFn(loco,30,true);
DCC::setFn(loco,31,false);
}
break;
case 3:
if (loco) {
DCC::setFn(loco,29,false);
DCC::setFn(loco,30,false);
DCC::setFn(loco,31,true);
}
break;
case 3:
//if (loco) DCC::setFn(loco,31,true);
if (loco) {
DCC::setFn(loco,30,true);
DCC::setFn(loco,31,true);
}
break;
default:
; // do nothing
break;
}
break;

View File

@ -350,10 +350,10 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
}
#endif
//DIAG(F("Brake pin %d freqency %d"), brakePin, f);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
DCCTimer::DCCEXanalogWrite(brakePin,brake);
#else // all AVR here
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps 0 to 3
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
analogWrite(brakePin,brake);
#endif
}
@ -406,26 +406,26 @@ void MotorDriver::throttleInrush(bool on) {
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
return;
byte duty = on ? 208 : 0;
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
if (invertBrake)
duty = 255-duty;
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
} else {
ledcDetachPin(brakePin);
}
#elif defined(ARDUINO_ARCH_STM32)
if(on) {
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXanalogWrite(brakePin,duty);
} else {
pinMode(brakePin, OUTPUT);
}
#else // all AVR here
if(on){
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 3);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
}
analogWrite(brakePin,duty);
#endif