1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-24 11:18:52 +01:00

Merge branch 'motor-drivers'

This commit is contained in:
Asbelos 2020-08-17 16:08:46 +01:00
commit a180700f3a
14 changed files with 209 additions and 223 deletions

View File

@ -89,7 +89,18 @@ int inline analogReadFast(uint8_t ADCpin)
return adc; return adc;
} }
#elif defined(ARDUINO_AVR_UNO_WIFI_REV2) || defined(ARDUINO_AVR_NANO_EVERY)
int inline analogReadFast(uint8_t ADCpin)
{ byte ADC0CTRLCoriginal = ADC0.CTRLC;
ADC0.CTRLC = (ADC0CTRLCoriginal & 0b00110000) + 0b01000011;
int adc = analogRead(ADCpin);
ADC0.CTRLC = ADC0CTRLCoriginal;
return adc;
}
#else #else
int inline analogReadFast(uint8_t ADCpin) int inline analogReadFast(uint8_t ADCpin)
{ byte ADCSRAoriginal = ADCSRA; { byte ADCSRAoriginal = ADCSRA;
ADCSRA = (ADCSRA & B11111000) | 4; ADCSRA = (ADCSRA & B11111000) | 4;

View File

@ -24,6 +24,14 @@
#include "DCCEXParser.h" #include "DCCEXParser.h"
#include "WifiInterface.h" #include "WifiInterface.h"
#ifdef ARDUINO_AVR_UNO
#include <SoftwareSerial.h>
SoftwareSerial Serial1(15,16); // YOU must get thee pins correct to use Wifi on a UNO
#define WIFI_BAUD 9600
#else
#define WIFI_BAUD 115200
#endif
// this code is here to demonstrate use of the DCC API and other techniques // this code is here to demonstrate use of the DCC API and other techniques
// myFilter is an example of an OPTIONAL command filter used to intercept < > commands from // myFilter is an example of an OPTIONAL command filter used to intercept < > commands from
@ -78,18 +86,22 @@ void setup() {
while(!DIAGSERIAL); while(!DIAGSERIAL);
// Responsibility 2: Start the DCC engine. // Responsibility 2: Start the DCC engine.
DCC::begin(); // Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// Responsibility 3: Optionally Start the WiFi interface if required. DCC::begin(STANDARD_MOTOR_SHIELD);
// Responsibility 3: **Optionally** Start the WiFi interface if required.
// NOTE: On a Uno you will have to provide a SoftwareSerial // NOTE: On a Uno you will have to provide a SoftwareSerial
// configured for the pins connected to the Wifi card // configured for the pins connected to the Wifi card
// and a 9600 baud rate. // and a 9600 baud rate.
// setup(serial, F(router name), F(password) , port) // setup(serial, F(router name), F(password) , port)
// // (port 3532 is 0xDCC decimal.)
#ifdef WIFI
Serial1.begin(115200);
WifiInterface::setup(Serial1, F(WIFI_CONNECT_TO_SSID), F(WIFI_CONNECT_PASSWORD),F("DCCEX"),F("CVReader"),3532); // (3532 is 0xDCC decimal... ) Serial1.begin(WIFI_BAUD);
#endif WifiInterface::setup(Serial1, F("BTHub5-M6PT"), F("49de8d4862"),F("DCCEX"),F("CVReader"),3532);
// This is just for demonstration purposes // This is just for demonstration purposes
DIAG(F("\n===== CVReader demonstrating DCC::getLocoId() call ==========\n")); DIAG(F("\n===== CVReader demonstrating DCC::getLocoId() call ==========\n"));
@ -115,13 +127,11 @@ void loop() {
serialParser.loop(DIAGSERIAL); serialParser.loop(DIAGSERIAL);
// Responsibility 3: Optionally handle any incoming WiFi traffic // Responsibility 3: Optionally handle any incoming WiFi traffic
#ifdef WIFI
WifiInterface::loop(); WifiInterface::loop();
#endif
// Your additional code // Your additional loop code
// OPtionally report any decrease in memory (will automatically trigger on first call) // Optionally report any decrease in memory (will automatically trigger on first call)
int freeNow=freeMemory(); int freeNow=freeMemory();
if (freeNow<ramLowWatermark) { if (freeNow<ramLowWatermark) {
ramLowWatermark=freeNow; ramLowWatermark=freeNow;

View File

@ -1,37 +1,36 @@
#ifndef Config_h #ifndef Config_h
#define Config_h #define Config_h
// Define these if you have a WiFi board on Serial1 // *** PLEASE NOTE *** THIS FILE IS **NOT** INTENDED TO BE EDITED WHEN CONFIGURING A SYSTEM.
#define WIFI // It will be overwritten if the library is updated.
#define WIFI_CONNECT_TO_SSID "RPi-JMRI"
#define WIFI_CONNECT_PASSWORD "rpI-jmri" // This file contains configurations for known/supported motor shields.
// A configuration defined by macro here can be used in your sketch.
// A custom hardware setup will require your sketch to create MotorDriver instances
// similar to those defined here, WITHOUT editing this file.
// This hardware configuration would normally be setup using a bunch of #ifdefs.
const byte UNUSED_PIN = 255; const byte UNUSED_PIN = 255;
const byte MAIN_POWER_PIN = 3; // MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, byte brake_pin, byte current_pin,
const byte MAIN_SIGNAL_PIN = 12; // float senseFactor, unsigned int tripMilliamps, byte faultPin);
const byte MAIN_SIGNAL_PIN_ALT = UNUSED_PIN; // for hardware that flipflops signal pins
const byte MAIN_SENSE_PIN = A0;
const byte MAIN_BRAKE_PIN = 9;
const byte MAIN_FAULT_PIN = UNUSED_PIN;
const int MAIN_MAX_MILLIAMPS=2000; // Arduino standard Motor Shield
const float MAIN_SENSE_FACTOR=2.99; // analgRead(MAIN_SENSE_PIN) * MAIN_SENSE_FACTOR = milliamps #define STANDARD_MOTOR_SHIELD \
new MotorDriver(3 , 12, UNUSED_PIN, UNUSED_PIN, A0, 2.99, 2000, UNUSED_PIN), \
new MotorDriver(11, 13, UNUSED_PIN, UNUSED_PIN, A1, 2.99, 250 , UNUSED_PIN)
const byte PROG_POWER_PIN = 11; // Pololu Motor Shield
const byte PROG_SIGNAL_PIN = 13; #define POLOLU_MOTOR_SHIELD \
const byte PROG_SIGNAL_PIN_ALT = UNUSED_PIN; // for hardware that flipflops signal pins new MotorDriver(4, 7, UNUSED_PIN, 9 , A0, 18, 2000, 12), \
const byte PROG_SENSE_PIN = A1; new MotorDriver(2, 8, UNUSED_PIN, 10, A1, 18, 250 , UNUSED_PIN)
const byte PROG_BRAKE_PIN = 8;
const byte PROG_FAULT_PIN = UNUSED_PIN;
const int PROG_MAX_MILLIAMPS=250;
const float PROG_SENSE_FACTOR=2.99; // analgRead(PROG_SENSE_PIN) * PROG_SENSE_FACTOR = milliamps
// Allocations with memory implications..! // Allocations with memory implications..!
// Base system takes approx 900 bytes + 8 per loco. Turnouts, Sensors etc are dynamically created // Base system takes approx 900 bytes + 8 per loco. Turnouts, Sensors etc are dynamically created
const byte MAX_LOCOS=50; #ifdef ARDUINO_AVR_UNO
const byte MAX_LOCOS=20;
#else
const byte MAX_LOCOS=50;
#endif
#endif #endif

View File

@ -20,7 +20,7 @@
#include "DCC.h" #include "DCC.h"
#include "DCCWaveform.h" #include "DCCWaveform.h"
#include "DIAG.h" #include "DIAG.h"
#include "Hardware.h"
// This module is responsible for converting API calls into // This module is responsible for converting API calls into
// messages to be sent to the waveform generator. // messages to be sent to the waveform generator.
@ -42,9 +42,9 @@ const byte FN_GROUP_4=0x08;
const byte FN_GROUP_5=0x10; const byte FN_GROUP_5=0x10;
void DCC::begin() { void DCC::begin(MotorDriver * mainDriver, MotorDriver* progDriver) {
debugMode=false; debugMode=false;
DCCWaveform::begin(); DCCWaveform::begin(mainDriver,progDriver);
} }
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) { void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {

3
DCC.h
View File

@ -20,6 +20,7 @@
#define DCC_h #define DCC_h
#include <Arduino.h> #include <Arduino.h>
#include "Config.h" #include "Config.h"
#include "MotorDriver.h"
typedef void (*ACK_CALLBACK)(int result); typedef void (*ACK_CALLBACK)(int result);
@ -49,7 +50,7 @@ SKIPTARGET=0xFF // jump to target
class DCC { class DCC {
public: public:
static void begin(); static void begin(MotorDriver * mainDriver, MotorDriver * progDriver);
static void loop(); static void loop();
// Public DCC API functions // Public DCC API functions

View File

@ -17,22 +17,29 @@
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>. * along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/ */
#include <Arduino.h> #include <Arduino.h>
#include "Hardware.h"
#include "DCCWaveform.h" #include "DCCWaveform.h"
#include "DIAG.h" #include "DIAG.h"
#include "MotorDriver.h"
#include <ArduinoTimers.h> // use IDE menu Tools..Manage Libraries to locate and install TimerOne
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true, (int)(MAIN_MAX_MILLIAMPS / MAIN_SENSE_FACTOR)); DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false, (int)(PROG_MAX_MILLIAMPS / PROG_SENSE_FACTOR)); DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
const int ACK_MIN_PULSE_RAW=65 / PROG_SENSE_FACTOR;
bool DCCWaveform::progTrackSyncMain=false; bool DCCWaveform::progTrackSyncMain=false;
void DCCWaveform::begin() { void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
Hardware::init(); mainTrack.motorDriver=mainDriver;
Hardware::setCallback(58, interruptHandler); progTrack.motorDriver=progDriver;
mainTrack.beginTrack();
progTrack.beginTrack(); TimerA.initialize();
TimerA.setPeriod(58);
TimerA.attachInterrupt(interruptHandler);
TimerA.start();
mainTrack.setPowerMode(POWERMODE::ON);
progTrack.setPowerMode(POWERMODE::ON);
} }
void DCCWaveform::loop() { void DCCWaveform::loop() {
@ -66,9 +73,8 @@ void DCCWaveform::interruptHandler() {
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain, int rawCurrentTrip) { DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
// establish appropriate pins // establish appropriate pins
rawCurrentTripValue=rawCurrentTrip;
isMainTrack = isMain; isMainTrack = isMain;
packetPending = false; packetPending = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket)); memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
@ -82,10 +88,6 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain, int rawCurrentTrip) {
lastSampleTaken = millis(); lastSampleTaken = millis();
ackPending=false; ackPending=false;
} }
void DCCWaveform::beginTrack() {
setPowerMode(POWERMODE::ON);
}
POWERMODE DCCWaveform::getPowerMode() { POWERMODE DCCWaveform::getPowerMode() {
return powerMode; return powerMode;
@ -94,8 +96,7 @@ POWERMODE DCCWaveform::getPowerMode() {
void DCCWaveform::setPowerMode(POWERMODE mode) { void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode = mode; powerMode = mode;
bool ison = (mode == POWERMODE::ON); bool ison = (mode == POWERMODE::ON);
Hardware::setPower(isMainTrack, ison); motorDriver->setPower( ison);
Hardware::setBrake(isMainTrack, !ison);
if (mode == POWERMODE::ON) delay(200); if (mode == POWERMODE::ON) delay(200);
} }
@ -104,7 +105,7 @@ void DCCWaveform::checkPowerOverload() {
if (millis() - lastSampleTaken < sampleDelay) return; if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis(); lastSampleTaken = millis();
int tripValue= rawCurrentTripValue; int tripValue= motorDriver->rawCurrentTripValue;
if (!isMainTrack && (ackPending || progTrackSyncMain)) tripValue=ACK_CURRENT_TRIP; if (!isMainTrack && (ackPending || progTrackSyncMain)) tripValue=ACK_CURRENT_TRIP;
switch (powerMode) { switch (powerMode) {
@ -113,7 +114,7 @@ void DCCWaveform::checkPowerOverload() {
break; break;
case POWERMODE::ON: case POWERMODE::ON:
// Check current // Check current
lastCurrent = Hardware::getCurrentRaw(isMainTrack); lastCurrent = motorDriver->getCurrentRaw();
if (lastCurrent <= tripValue) { if (lastCurrent <= tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT; sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100) if(power_good_counter<100)
@ -122,8 +123,8 @@ void DCCWaveform::checkPowerOverload() {
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT; if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else { } else {
setPowerMode(POWERMODE::OVERLOAD); setPowerMode(POWERMODE::OVERLOAD);
unsigned int mA=Hardware::getCurrentMilliamps(isMainTrack,lastCurrent); unsigned int mA=motorDriver->convertToMilliamps(lastCurrent);
unsigned int maxmA=Hardware::getCurrentMilliamps(isMainTrack,tripValue); unsigned int maxmA=motorDriver->convertToMilliamps(tripValue);
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%l ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, power_sample_overload_wait); DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%l ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, power_sample_overload_wait);
power_good_counter=0; power_good_counter=0;
sampleDelay = power_sample_overload_wait; sampleDelay = power_sample_overload_wait;
@ -183,10 +184,11 @@ void DCCWaveform::setSignal(bool high) {
if (progTrackSyncMain) { if (progTrackSyncMain) {
if (!isMainTrack) return; // ignore PROG track waveform while in sync if (!isMainTrack) return; // ignore PROG track waveform while in sync
// set both tracks to same signal // set both tracks to same signal
Hardware::setSyncSignal(high); motorDriver->setSignal(high);
progTrack.motorDriver->setSignal(high);
return; return;
} }
Hardware::setSignal(isMainTrack,high); motorDriver->setSignal(high);
} }
void DCCWaveform::interrupt2() { void DCCWaveform::interrupt2() {
@ -264,8 +266,8 @@ int DCCWaveform::getLastCurrent() {
void DCCWaveform::setAckBaseline(bool debug) { void DCCWaveform::setAckBaseline(bool debug) {
if (isMainTrack) return; if (isMainTrack) return;
ackThreshold=Hardware::getCurrentRaw(false) + ACK_MIN_PULSE_RAW; ackThreshold=motorDriver->getCurrentRaw() + (int)(65 / motorDriver->senseFactor);
if (debug) DIAG(F("\nACK-BASELINE %d/%dmA"),ackThreshold,Hardware::getCurrentMilliamps(false,ackThreshold)); if (debug) DIAG(F("\nACK-BASELINE %d/%dmA"),ackThreshold,motorDriver->convertToMilliamps(ackThreshold));
} }
void DCCWaveform::setAckPending(bool debug) { void DCCWaveform::setAckPending(bool debug) {
@ -282,7 +284,7 @@ void DCCWaveform::setAckPending(bool debug) {
byte DCCWaveform::getAck(bool debug) { byte DCCWaveform::getAck(bool debug) {
if (ackPending) return (2); // still waiting if (ackPending) return (2); // still waiting
if (debug) DIAG(F("\nACK-%S after %dmS max=%d/%dmA pulse=%duS"),ackDetected?F("OK"):F("FAIL"), ackCheckDuration, if (debug) DIAG(F("\nACK-%S after %dmS max=%d/%dmA pulse=%duS"),ackDetected?F("OK"):F("FAIL"), ackCheckDuration,
ackMaxCurrent,Hardware::getCurrentMilliamps(false,ackMaxCurrent), ackPulseDuration); ackMaxCurrent,motorDriver->convertToMilliamps(ackMaxCurrent), ackPulseDuration);
if (ackDetected) return (1); // Yes we had an ack if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK. return(0); // pending set off but not detected means no ACK.
} }
@ -296,7 +298,7 @@ void DCCWaveform::checkAck() {
return; return;
} }
lastCurrent=Hardware::getCurrentRaw(false); lastCurrent=motorDriver->getCurrentRaw();
if (lastCurrent > ackMaxCurrent) ackMaxCurrent=lastCurrent; if (lastCurrent > ackMaxCurrent) ackMaxCurrent=lastCurrent;
// An ACK is a pulse lasting between MIN_ACK_PULSE_DURATION and MAX_ACK_PULSE_DURATION uSecs (refer @haba) // An ACK is a pulse lasting between MIN_ACK_PULSE_DURATION and MAX_ACK_PULSE_DURATION uSecs (refer @haba)

View File

@ -19,12 +19,13 @@
#ifndef DCCWaveform_h #ifndef DCCWaveform_h
#define DCCWaveform_h #define DCCWaveform_h
#include "Config.h" #include "Config.h"
#include "MotorDriver.h"
const int POWER_SAMPLE_ON_WAIT = 100; const int POWER_SAMPLE_ON_WAIT = 100;
const int POWER_SAMPLE_OFF_WAIT = 1000; const int POWER_SAMPLE_OFF_WAIT = 1000;
const int POWER_SAMPLE_OVERLOAD_WAIT = 20; const int POWER_SAMPLE_OVERLOAD_WAIT = 20;
const int MIN_ACK_PULSE_DURATION = 3000; const int MIN_ACK_PULSE_DURATION = 2000;
const int MAX_ACK_PULSE_DURATION = 8500; const int MAX_ACK_PULSE_DURATION = 8500;
@ -45,8 +46,8 @@ const byte resetPacket[] = {0x00, 0x00, 0x00};
class DCCWaveform { class DCCWaveform {
public: public:
DCCWaveform( byte preambleBits, bool isMain, int maxRawCurrent); DCCWaveform( byte preambleBits, bool isMain);
static void begin(); static void begin(MotorDriver * mainDriver, MotorDriver * progDriver);
static void loop(); static void loop();
static DCCWaveform mainTrack; static DCCWaveform mainTrack;
static DCCWaveform progTrack; static DCCWaveform progTrack;
@ -73,7 +74,7 @@ class DCCWaveform {
void setSignal(bool high); void setSignal(bool high);
bool isMainTrack; bool isMainTrack;
MotorDriver* motorDriver;
// Transmission controller // Transmission controller
byte transmitPacket[MAX_PACKET_SIZE]; // packet being transmitted byte transmitPacket[MAX_PACKET_SIZE]; // packet being transmitted
byte transmitLength; byte transmitLength;
@ -95,7 +96,6 @@ class DCCWaveform {
POWERMODE powerMode; POWERMODE powerMode;
unsigned long lastSampleTaken; unsigned long lastSampleTaken;
unsigned int sampleDelay; unsigned int sampleDelay;
int rawCurrentTripValue;
static const int ACK_CURRENT_TRIP=1000; // During ACK processing limit can be higher static const int ACK_CURRENT_TRIP=1000; // During ACK processing limit can be higher
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
unsigned int power_good_counter = 0; unsigned int power_good_counter = 0;

View File

@ -1,124 +0,0 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
//#include <TimerOne.h> // use IDE menu Tools..Manage Libraries to locate and install TimerOne
#include <ArduinoTimers.h> // use IDE menu Tools..Manage Libraries to locate and install TimerOne
#include "AnalogReadFast.h"
#include "Hardware.h"
#include "Config.h"
#include "DIAG.h"
#if defined(ARDUINO_ARCH_AVR)
#include <DIO2.h> // use IDE menu Tools..Manage Libraries to locate and install DIO2
#define WritePin digitalWrite2
#define ReadPin digitalRead2
#else
#define WritePin digitalWrite
#define ReadPin digitalRead
#endif
void Hardware::init() {
pinMode(MAIN_POWER_PIN, OUTPUT);
pinMode(MAIN_BRAKE_PIN, OUTPUT);
pinMode(MAIN_SIGNAL_PIN, OUTPUT);
if (MAIN_SIGNAL_PIN_ALT != UNUSED_PIN) pinMode(MAIN_SIGNAL_PIN_ALT, OUTPUT);
pinMode(MAIN_SENSE_PIN, INPUT);
if (MAIN_FAULT_PIN != UNUSED_PIN) pinMode(MAIN_FAULT_PIN, INPUT);
pinMode(PROG_POWER_PIN, OUTPUT);
pinMode(PROG_BRAKE_PIN, OUTPUT);
pinMode(PROG_SIGNAL_PIN, OUTPUT);
if (PROG_SIGNAL_PIN_ALT != UNUSED_PIN) pinMode(PROG_SIGNAL_PIN_ALT, OUTPUT);
pinMode(PROG_SENSE_PIN, INPUT);
if (PROG_FAULT_PIN != UNUSED_PIN) pinMode(PROG_FAULT_PIN, INPUT);
}
void Hardware::setPower(bool isMainTrack, bool on) {
WritePin(isMainTrack ? MAIN_POWER_PIN : PROG_POWER_PIN, on ? HIGH : LOW);
}
void Hardware::setBrake(bool isMainTrack, bool on) {
WritePin(isMainTrack ? MAIN_BRAKE_PIN : PROG_BRAKE_PIN, on ? HIGH : LOW);
}
void Hardware::setSignal(bool isMainTrack, bool high) {
byte pin = isMainTrack ? MAIN_SIGNAL_PIN : PROG_SIGNAL_PIN;
byte pin2 = isMainTrack ? MAIN_SIGNAL_PIN_ALT : PROG_SIGNAL_PIN_ALT;
WritePin(pin, high ? HIGH : LOW);
if (pin2 != UNUSED_PIN) WritePin(pin2, high ? LOW : HIGH);
}
void Hardware::setSyncSignal(bool high) {
// This sets the same signal down both tracks at the same time.
// Speed notes....
// Objective is to get the two track signals to change as close as possible
// the high ? HIGH:LOW will only be evaluated once
// The UNUSED_PIN check will be done at compile time.
// If even more speed is required, its possible (not SAMD) to pre-prepare the
// DIO pinnumber->pincode translation so the WritePin (digitalWrite2) does not
// have to calculate the register and bit numbers every time.
WritePin(MAIN_SIGNAL_PIN, high ? HIGH : LOW);
WritePin(PROG_SIGNAL_PIN, high ? HIGH : LOW);
if (MAIN_SIGNAL_PIN_ALT != UNUSED_PIN) WritePin(MAIN_SIGNAL_PIN_ALT, high ? LOW : HIGH);
if (PROG_SIGNAL_PIN_ALT != UNUSED_PIN) WritePin(PROG_SIGNAL_PIN_ALT, high ? LOW : HIGH);
}
int Hardware::getCurrentRaw(bool isMainTrack) {
// tooo much crap for a interrupt routine. Will see how that goes.
byte faultpin = isMainTrack ? MAIN_FAULT_PIN : PROG_FAULT_PIN;
byte powerpin = isMainTrack ? MAIN_POWER_PIN : PROG_POWER_PIN;
if (faultpin != UNUSED_PIN && ReadPin(faultpin) == LOW && ReadPin(powerpin) == HIGH)
return (int) (32000 / (isMainTrack ? MAIN_SENSE_FACTOR : PROG_SENSE_FACTOR)); // 32A should be enough
// IMPORTANT: This function can be called in Interrupt() time within the 56uS timer
// The default analogRead takes ~100uS which is catastrphic
// so analogReadFast is used here. (-2uS)
return analogReadFast(isMainTrack ? MAIN_SENSE_PIN : PROG_SENSE_PIN);
}
unsigned int Hardware::getCurrentMilliamps(bool isMainTrack, int raw) {
return (unsigned int)(raw * (isMainTrack ? MAIN_SENSE_FACTOR : PROG_SENSE_FACTOR));
}
void Hardware::setCallback(int duration, void (*isr)()) {
TimerA.initialize();
TimerA.setPeriod(duration);
TimerA.attachInterrupt(isr);
TimerA.start();
}
// shortcut to cpu dependent high speed write
void Hardware::pinWrite(int pin, bool high) {
WritePin(pin,high);
}
// Railcom support functions, not yet implemented
//void Hardware::setSingleCallback(int duration, void (*isr)()) {
// Timer2.initialize(duration);
// Timer2.disablePwm(TIMER1_A_PIN);
// Timer2.disablePwm(TIMER1_B_PIN);
// Timer2.attachInterrupt(isr);
//}
//void Hardware::resetSingleCallback(int duration) {
// if (duration==0) Timer2.stop();
// else Timer2.initialize(duration);
//}

81
MotorDriver.cpp Normal file
View File

@ -0,0 +1,81 @@
/*
* © 2020, Chris Harlow. All rights reserved.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "MotorDriver.h"
#include "AnalogReadFast.h"
#include "DIAG.h"
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAMC) || defined(ARDUINO_ARCH_MEGAAVR)
#define WritePin digitalWrite
#define ReadPin digitalRead
#else
// use the DIO2 libraray for much faster pin access
#define GPIO2_PREFER_SPEED 1
#include <DIO2.h> // use IDE menu Tools..Manage Libraries to locate and install DIO2
#define WritePin digitalWrite2
#define ReadPin digitalRead2
#endif
MotorDriver::MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, byte brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
powerPin=power_pin;
signalPin=signal_pin;
signalPin2=signal_pin2;
brakePin=brake_pin;
currentPin=current_pin;
senseFactor=sense_factor;
faultPin=fault_pin;
tripMilliamps=trip_milliamps;
rawCurrentTripValue=(int)(trip_milliamps / sense_factor);
pinMode(powerPin, OUTPUT);
pinMode(brakePin, OUTPUT);
pinMode(signalPin, OUTPUT);
if (signalPin2 != UNUSED_PIN) pinMode(signalPin2, OUTPUT);
pinMode(currentPin, INPUT);
if (faultPin != UNUSED_PIN) pinMode(faultPin, INPUT);
}
void MotorDriver::setPower(bool on) {
WritePin(powerPin, on ? HIGH : LOW);
}
void MotorDriver::setBrake( bool on) {
WritePin(brakePin, on ? HIGH : LOW);
}
void MotorDriver::setSignal( bool high) {
WritePin(signalPin, high ? HIGH : LOW);
if (signalPin2 != UNUSED_PIN) WritePin(signalPin2, high ? LOW : HIGH);
}
int MotorDriver::getCurrentRaw() {
if (faultPin != UNUSED_PIN && ReadPin(faultPin) == LOW && ReadPin(powerPin) == HIGH)
return (int)(32000/senseFactor);
// IMPORTANT: This function can be called in Interrupt() time within the 56uS timer
// The default analogRead takes ~100uS which is catastrphic
// so analogReadFast is used here. (-2uS)
return analogReadFast(currentPin);
}
unsigned int MotorDriver::convertToMilliamps( int raw) {
return (unsigned int)(raw * senseFactor);
}

View File

@ -16,21 +16,24 @@
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>. * along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/ */
#ifndef Hardware_h #ifndef MotorDriver_h
#define Hardware_h #define MotorDriver_h
// Virtualised hardware Interface // Virtualised Motor shield 1-track hardware Interface
class Hardware {
class MotorDriver {
public: public:
static void init(); MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, byte brake_pin, byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin);
static void setPower(bool isMainTrack, bool on); void setPower( bool on);
static void setSignal(bool isMainTrack, bool high); void setSignal( bool high);
static void setSyncSignal( bool high); void setBrake( bool on);
static unsigned int getCurrentMilliamps(bool isMainTrack, int rawValue); int getCurrentRaw();
static int getCurrentRaw(bool isMainTrack); unsigned int convertToMilliamps( int rawValue);
static void setBrake(bool isMainTrack, bool on);
static void setCallback(int duration, void (*isr)()); byte powerPin, signalPin, signalPin2, brakePin,currentPin,faultPin;
static void pinWrite(int pin, bool high); // gets better perf and less code than arduino digitalWrite float senseFactor;
// static void setSingleCallback(int duration, void (*isr)()); unsigned int tripMilliamps;
// static void resetSingleCallback(int duration); int rawCurrentTripValue;
const byte UNUSED_PIN = 255;
}; };
#endif #endif

View File

@ -84,10 +84,10 @@ the state of any outputs being monitored or controlled by a separate interface o
#include "Outputs.h" #include "Outputs.h"
#include "EEStore.h" #include "EEStore.h"
#include "StringFormatter.h" #include "StringFormatter.h"
#include "Hardware.h"
void Output::activate(int s){ void Output::activate(int s){
data.oStatus=(s>0); // if s>0, set status to active, else inactive data.oStatus=(s>0); // if s>0, set status to active, else inactive
Hardware::pinWrite(data.pin,data.oStatus ^ bitRead(data.iFlag,0)); // set state of output pin to HIGH or LOW depending on whether bit zero of iFlag is set to 0 (ACTIVE=HIGH) or 1 (ACTIVE=LOW) digitalWrite(data.pin,data.oStatus ^ bitRead(data.iFlag,0)); // set state of output pin to HIGH or LOW depending on whether bit zero of iFlag is set to 0 (ACTIVE=HIGH) or 1 (ACTIVE=LOW)
if(num>0) if(num>0)
EEPROM.put(num,data.oStatus); EEPROM.put(num,data.oStatus);
@ -146,7 +146,7 @@ void Output::load(){
EEPROM.get(EEStore::pointer(),data); EEPROM.get(EEStore::pointer(),data);
tt=create(data.id,data.pin,data.iFlag); tt=create(data.id,data.pin,data.iFlag);
tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):data.oStatus; // restore status to EEPROM value is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):data.oStatus; // restore status to EEPROM value is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
Hardware::pinWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0)); digitalWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0));
pinMode(tt->data.pin,OUTPUT); pinMode(tt->data.pin,OUTPUT);
tt->num=EEStore::pointer(); tt->num=EEStore::pointer();
EEStore::advance(sizeof(tt->data)); EEStore::advance(sizeof(tt->data));
@ -195,7 +195,7 @@ Output *Output::create(int id, int pin, int iFlag, int v){
if(v==1){ if(v==1){
tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):0; // sets status to 0 (INACTIVE) is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):0; // sets status to 0 (INACTIVE) is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
Hardware::pinWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0)); digitalWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0));
pinMode(tt->data.pin,OUTPUT); pinMode(tt->data.pin,OUTPUT);
} }

View File

@ -69,7 +69,7 @@ decide to ignore the <q ID> return and only react to <Q ID> triggers.
#include "Sensors.h" #include "Sensors.h"
#include "EEStore.h" #include "EEStore.h"
#include "StringFormatter.h" #include "StringFormatter.h"
#include "Hardware.h"
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
@ -114,7 +114,7 @@ Sensor *Sensor::create(int snum, int pin, int pullUp){
tt->active=false; tt->active=false;
tt->signal=1; tt->signal=1;
pinMode(pin,INPUT); // set mode to input pinMode(pin,INPUT); // set mode to input
Hardware::pinWrite(pin,pullUp); // don't use Arduino's internal pull-up resistors for external infrared sensors --- each sensor must have its own 1K external pull-up resistor digitalWrite(pin,pullUp); // don't use Arduino's internal pull-up resistors for external infrared sensors --- each sensor must have its own 1K external pull-up resistor
return tt; return tt;

View File

@ -26,6 +26,9 @@
#define DIAGSERIAL SerialUSB #define DIAGSERIAL SerialUSB
#elif defined(ARDUINO_ARCH_AVR) #elif defined(ARDUINO_ARCH_AVR)
#define DIAGSERIAL Serial #define DIAGSERIAL Serial
#elif defined(ARDUINO_ARCH_MEGAAVR)
#define DIAGSERIAL Serial
#define __FlashStringHelper char
#endif #endif
class StringFormatter class StringFormatter

View File

@ -19,7 +19,7 @@
#include "Turnouts.h" #include "Turnouts.h"
#include "EEStore.h" #include "EEStore.h"
#include "StringFormatter.h" #include "StringFormatter.h"
#include "Hardware.h"
#include "PWMServoDriver.h" #include "PWMServoDriver.h"
//#include "DIAG.h" // uncomment if you need DIAG below //#include "DIAG.h" // uncomment if you need DIAG below