1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-23 12:51:24 +01:00

update devel-stm32EC for recent devel changes

update devel-stm32EC for recent devel changes
This commit is contained in:
Ash-4 2024-01-21 00:44:10 -06:00 committed by GitHub
commit a368c6d3ec
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 276 additions and 204 deletions

View File

@ -49,6 +49,7 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "KeywordHasher.h"
#include "EXRAIL.h"
#endif

View File

@ -116,6 +116,7 @@ Once a new OPCODE is decided upon, update this list.
#include "EXRAIL2.h"
#include "Turntables.h"
#include "version.h"
#include "KeywordHasher.h"
// This macro can't be created easily as a portable function because the
// flashlist requires a far pointer for high flash access.
@ -126,57 +127,6 @@ Once a new OPCODE is decided upon, update this list.
StringFormatter::send(stream,F(" %d"),value); \
}
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_CABS = -11981;
const int16_t HASH_KEYWORD_RAM = 25982;
const int16_t HASH_KEYWORD_CMD = 9962;
const int16_t HASH_KEYWORD_ACK = 3113;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_DCC = 6436;
const int16_t HASH_KEYWORD_SLOW = -17209;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_JOIN = -30750;
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
#endif
#ifndef DISABLE_EEPROM
const int16_t HASH_KEYWORD_EEPROM = -7168;
#endif
const int16_t HASH_KEYWORD_LIMIT = 27413;
const int16_t HASH_KEYWORD_MAX = 16244;
const int16_t HASH_KEYWORD_MIN = 15978;
const int16_t HASH_KEYWORD_RESET = 26133;
const int16_t HASH_KEYWORD_RETRY = 25704;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
const int16_t HASH_KEYWORD_SERVO=27709;
const int16_t HASH_KEYWORD_TT=2688;
const int16_t HASH_KEYWORD_VPIN=-415;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_C='C';
const int16_t HASH_KEYWORD_G='G';
const int16_t HASH_KEYWORD_H='H';
const int16_t HASH_KEYWORD_I='I';
const int16_t HASH_KEYWORD_M='M';
const int16_t HASH_KEYWORD_O='O';
const int16_t HASH_KEYWORD_P='P';
const int16_t HASH_KEYWORD_R='R';
const int16_t HASH_KEYWORD_T='T';
const int16_t HASH_KEYWORD_X='X';
const int16_t HASH_KEYWORD_LCN = 15137;
const int16_t HASH_KEYWORD_HAL = 10853;
const int16_t HASH_KEYWORD_SHOW = -21309;
const int16_t HASH_KEYWORD_ANIN = -10424;
const int16_t HASH_KEYWORD_ANOUT = -26399;
const int16_t HASH_KEYWORD_WIFI = -5583;
const int16_t HASH_KEYWORD_ETHERNET = -30767;
const int16_t HASH_KEYWORD_WIT = 31594;
const int16_t HASH_KEYWORD_EXTT = 8573;
const int16_t HASH_KEYWORD_ADD = 3201;
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
@ -567,20 +517,20 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN>
if (p[0]=="MAIN"_hk) { // <1 MAIN>
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON);
}
#ifndef DISABLE_PROG
else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN>
else if (p[0] == "JOIN"_hk) { // <1 JOIN>
TrackManager::setJoin(true);
TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON);
}
else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG>
else if (p[0]=="PROG"_hk) { // <1 PROG>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::ON, t);
//StringFormatter::send(stream, F("<p1 %c>\n"), t+'A');
@ -600,17 +550,17 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN>
if (p[0]=="MAIN"_hk) { // <0 MAIN>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF);
}
#ifndef DISABLE_PROG
else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG>
else if (p[0]=="PROG"_hk) { // <0 PROG>
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setJoin(false);
TrackManager::setTrackPower(POWERMODE::OFF, t);
@ -704,7 +654,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
//if ((params<1) | (params>2)) break; // <J>
int16_t id=(params==2)?p[1]:0;
switch(p[0]) {
case HASH_KEYWORD_C: // <JC mmmm nn> sets time and speed
case "C"_hk: // <JC mmmm nn> sets time and speed
if (params==1) { // <JC> returns latest time
int16_t x = CommandDistributor::retClockTime();
StringFormatter::send(stream, F("<jC %d>\n"), x);
@ -713,28 +663,28 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
CommandDistributor::setClockTime(p[1], p[2], 1);
return;
case HASH_KEYWORD_G: // <JG> current gauge limits
case "G"_hk: // <JG> current gauge limits
if (params>1) break;
TrackManager::reportGauges(stream); // <g limit...limit>
return;
case HASH_KEYWORD_I: // <JI> current values
case "I"_hk: // <JI> current values
if (params>1) break;
TrackManager::reportCurrent(stream); // <g limit...limit>
return;
case HASH_KEYWORD_A: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
case "A"_hk: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
if (params!=1) break; // <JA>
StringFormatter::send(stream, F("<jA>\n"));
return;
case HASH_KEYWORD_M: // <JM> intercepted by EXRAIL
case "M"_hk: // <JM> intercepted by EXRAIL
if (params>1) break; // invalid cant do
// <JM> requests stash size so say none.
StringFormatter::send(stream,F("<jM 0>\n"));
return;
case HASH_KEYWORD_R: // <JR> returns rosters
case "R"_hk: // <JR> returns rosters
StringFormatter::send(stream, F("<jR"));
#ifdef EXRAIL_ACTIVE
if (params==1) {
@ -753,7 +703,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#endif
StringFormatter::send(stream, F(">\n"));
return;
case HASH_KEYWORD_T: // <JT> returns turnout list
case "T"_hk: // <JT> returns turnout list
StringFormatter::send(stream, F("<jT"));
if (params==1) { // <JT>
for ( Turnout * t=Turnout::first(); t; t=t->next()) {
@ -780,7 +730,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return;
// No turntables without HAL support
#ifndef IO_NO_HAL
case HASH_KEYWORD_O: // <JO returns turntable list
case "O"_hk: // <JO returns turntable list
StringFormatter::send(stream, F("<jO"));
if (params==1) { // <JO>
for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) {
@ -805,7 +755,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
}
}
return;
case HASH_KEYWORD_P: // <JP id> returns turntable position list for the turntable id
case "P"_hk: // <JP id> returns turntable position list for the turntable id
if (params==2) { // <JP id>
Turntable *tto=Turntable::get(id);
if (!tto || tto->isHidden()) {
@ -972,14 +922,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
switch (p[1]) {
// Turnout messages use 1=throw, 0=close.
case 0:
case HASH_KEYWORD_C:
case "C"_hk:
state = true;
break;
case 1:
case HASH_KEYWORD_T:
case "T"_hk:
state= false;
break;
case HASH_KEYWORD_X:
case "X"_hk:
{
Turnout *tt = Turnout::get(p[0]);
if (tt) {
@ -996,14 +946,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
}
default: // Anything else is some kind of turnout create function.
if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // <T id SERVO n n n n>
if (params == 6 && p[1] == "SERVO"_hk) { // <T id SERVO n n n n>
if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5]))
return false;
} else
if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // <T id VPIN n>
if (params == 3 && p[1] == "VPIN"_hk) { // <T id VPIN n>
if (!VpinTurnout::create(p[0], p[2])) return false;
} else
if (params >= 3 && p[1] == HASH_KEYWORD_DCC) {
if (params >= 3 && p[1] == "DCC"_hk) {
// <T id DCC addr subadd> 0<=addr<=511, 0<=subadd<=3 (like <a> command).<T>
if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // <T id DCC n m>
if (!DCCTurnout::create(p[0], p[2], p[3])) return false;
@ -1069,41 +1019,41 @@ bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
switch (p[0])
{
#ifndef DISABLE_PROG
case HASH_KEYWORD_PROGBOOST:
case "PROGBOOST"_hk:
TrackManager::progTrackBoosted=true;
return true;
#endif
case HASH_KEYWORD_RESET:
case "RESET"_hk:
DCCTimer::reset();
break; // and <X> if we didnt restart
case HASH_KEYWORD_SPEED28:
case "SPEED28"_hk:
DCC::setGlobalSpeedsteps(28);
DIAG(F("28 Speedsteps"));
return true;
case HASH_KEYWORD_SPEED128:
case "SPEED128"_hk:
DCC::setGlobalSpeedsteps(128);
DIAG(F("128 Speedsteps"));
return true;
#ifndef DISABLE_PROG
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
case "ACK"_hk: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
if (params >= 3) {
if (p[1] == HASH_KEYWORD_LIMIT) {
if (p[1] == "LIMIT"_hk) {
DCCACK::setAckLimit(p[2]);
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == HASH_KEYWORD_MIN) {
} else if (p[1] == "MIN"_hk) {
DCCACK::setMinAckPulseDuration(p[2]);
LCD(0, F("Ack Min=%uus"), p[2]); // <D ACK MIN 1500>
} else if (p[1] == HASH_KEYWORD_MAX) {
} else if (p[1] == "MAX"_hk) {
DCCACK::setMaxAckPulseDuration(p[2]);
LCD(0, F("Ack Max=%uus"), p[2]); // <D ACK MAX 9000>
} else if (p[1] == HASH_KEYWORD_RETRY) {
} else if (p[1] == "RETRY"_hk) {
if (p[2] >255) p[2]=3;
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
}
} else {
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
DIAG(F("Ack diag %S"), onOff ? F("on") : F("off"));
Diag::ACK = onOff;
@ -1121,66 +1071,66 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
{
if (params == 0)
return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
switch (p[0])
{
case HASH_KEYWORD_CABS: // <D CABS>
case "CABS"_hk: // <D CABS>
DCC::displayCabList(stream);
return true;
case HASH_KEYWORD_RAM: // <D RAM>
case "RAM"_hk: // <D RAM>
DIAG(F("Free memory=%d"), DCCTimer::getMinimumFreeMemory());
return true;
case HASH_KEYWORD_CMD: // <D CMD ON/OFF>
case "CMD"_hk: // <D CMD ON/OFF>
Diag::CMD = onOff;
return true;
#ifdef HAS_ENOUGH_MEMORY
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
case "WIFI"_hk: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
case "ETHERNET"_hk: // <D ETHERNET ON/OFF>
Diag::ETHERNET = onOff;
return true;
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
case "WIT"_hk: // <D WIT ON/OFF>
Diag::WITHROTTLE = onOff;
return true;
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
case "LCN"_hk: // <D LCN ON/OFF>
Diag::LCN = onOff;
return true;
#endif
#ifndef DISABLE_EEPROM
case HASH_KEYWORD_EEPROM: // <D EEPROM NumEntries>
case "EEPROM"_hk: // <D EEPROM NumEntries>
if (params >= 2)
EEStore::dump(p[1]);
return true;
#endif
case HASH_KEYWORD_SERVO: // <D SERVO vpin position [profile]>
case "SERVO"_hk: // <D SERVO vpin position [profile]>
case HASH_KEYWORD_ANOUT: // <D ANOUT vpin position [profile]>
case "ANOUT"_hk: // <D ANOUT vpin position [profile]>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
case HASH_KEYWORD_ANIN: // <D ANIN vpin> Display analogue input value
case "ANIN"_hk: // <D ANIN vpin> Display analogue input value
DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1]));
break;
return true;
#if !defined(IO_NO_HAL)
case HASH_KEYWORD_HAL:
if (p[1] == HASH_KEYWORD_SHOW)
case "HAL"_hk:
if (p[1] == "SHOW"_hk)
IODevice::DumpAll();
else if (p[1] == HASH_KEYWORD_RESET)
else if (p[1] == "RESET"_hk)
IODevice::reset();
break;
return true;
#endif
case HASH_KEYWORD_TT: // <D TT vpin steps activity>
case "TT"_hk: // <D TT vpin steps activity>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
default: // invalid/unknown
return parseC(stream, params, p);
@ -1232,7 +1182,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 3: // <I id position activity> | <I id DCC home> - rotate to position for EX-Turntable or create DCC turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_DCC) {
if (p[1] == "DCC"_hk) {
if (tto || p[2] < 0 || p[2] > 3600) return false;
if (!DCCTurntable::create(p[0])) return false;
Turntable *tto = Turntable::get(p[0]);
@ -1249,7 +1199,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 4: // <I id EXTT vpin home> create an EXTT turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_EXTT) {
if (p[1] == "EXTT"_hk) {
if (tto || p[3] < 0 || p[3] > 3600) return false;
if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false;
Turntable *tto = Turntable::get(p[0]);
@ -1264,7 +1214,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 5: // <I id ADD position value angle> add a position
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_ADD) {
if (p[1] == "ADD"_hk) {
// tto must exist, no more than 48 positions, angle 0 - 3600
if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false;
tto->addPosition(p[2], p[3], p[4]);

View File

@ -67,6 +67,7 @@
#undef FWD
#undef GREEN
#undef HAL
#undef HAL_IGNORE_DEFAULTS
#undef IF
#undef IFAMBER
#undef IFCLOSED
@ -218,6 +219,7 @@
#define FWD(speed)
#define GREEN(signal_id)
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id)
#define IFAMBER(signal_id)
#define IFCLOSED(turnout_id)

View File

@ -28,25 +28,7 @@
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_M='M';
#include "KeywordHasher.h"
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
@ -58,8 +40,8 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
opcode=0;
}
break;
@ -125,7 +107,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
case 'J': // throttle info commands
if (paramCount<1) return;
switch(p[0]) {
case HASH_KEYWORD_A: // <JA> returns automations/routes
case "A"_hk: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
@ -152,7 +134,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
break;
case HASH_KEYWORD_M:
case "M"_hk:
// NOTE: we only need to handle valid calls here because
// DCCEXParser has to have code to handle the <J<> cases where
// exrail isnt involved anyway.
@ -236,13 +218,13 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
case "PAUSE"_hk: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
case "RESUME"_hk: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
@ -256,7 +238,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
case "START"_hk: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
@ -273,7 +255,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
@ -282,7 +264,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount!=2 ) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
case "KILL"_hk: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
@ -297,27 +279,27 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
case "RESERVE"_hk: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case HASH_KEYWORD_FREE: // force free a section
case "FREE"_hk: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case HASH_KEYWORD_LATCH:
case "LATCH"_hk:
return setFlag(p[1], LATCH_FLAG);
case HASH_KEYWORD_UNLATCH:
case "UNLATCH"_hk:
return setFlag(p[1], 0, LATCH_FLAG);
case HASH_KEYWORD_RED:
case "RED"_hk:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
case "AMBER"_hk:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
case "GREEN"_hk:
doSignal(p[1],SIGNAL_GREEN);
return true;

View File

@ -74,13 +74,81 @@
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
#include "myAutomation.h"
// Pass 1d Detect sequence duplicates.
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
#undef ROUTE
#define ROUTE(id, description) id,
#undef SEQUENCE
#define SEQUENCE(id) id,
constexpr int16_t compileTimeSequenceList[]={
#include "myAutomation.h"
0
};
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
// Compile time function to check for sequence nos.
constexpr bool hasseq(const int16_t value, const uint16_t pos=0 ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1);
}
// Compile time function to check for duplicate sequence nos.
constexpr bool hasdup(const int16_t value, const uint16_t pos ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1)
|| hasdup(compileTimeSequenceList[pos],pos+1);
}
static_assert(!hasdup(compileTimeSequenceList[0],1),"Duplicate SEQUENCE/ROUTE/AUTOMATION detected");
//pass 1s static asserts to
// - check call and follows etc for existing sequence numbers
// - check range on LATCH/UNLATCH
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef CALL
#define CALL(id) static_assert(hasseq(id),"Sequence not found");
#undef FOLLOW
#define FOLLOW(id) static_assert(hasseq(id),"Sequence not found");
#undef START
#define START(id) static_assert(hasseq(id),"Sequence not found");
#undef SENDLOCO
#define SENDLOCO(cab,id) static_assert(hasseq(id),"Sequence not found");
#undef LATCH
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef UNLATCH
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef RESERVE
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef FREE
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef SPEED
#define SPEED(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef FWD
#define FWD(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef REV
#define REV(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#include "myAutomation.h"
// Pass 1h Implements HAL macro by creating exrailHalSetup function
// Also allows creating EXTurntable object
#include "EXRAIL2MacroReset.h"
#undef HAL
#define HAL(haltype,params...) haltype::create(params);
void exrailHalSetup() {
#undef HAL_IGNORE_DEFAULTS
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
bool exrailHalSetup() {
bool ignore_defaults=false;
#include "myAutomation.h"
return ignore_defaults;
}
// Pass 1c detect compile time featurtes
@ -396,6 +464,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define FWD(speed) OPCODE_FWD,V(speed),
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),

View File

@ -1 +1 @@
#define GITHUB_SHA "devel-202401100719Z"
#define GITHUB_SHA "devel-202401202116Z"

View File

@ -110,7 +110,6 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
uint32_t ccr_freq;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!

View File

@ -33,7 +33,7 @@
// Link to halSetup function. If not defined, the function reference will be NULL.
extern __attribute__((weak)) void halSetup();
extern __attribute__((weak)) void exrailHalSetup();
extern __attribute__((weak)) bool exrailHalSetup();
//==================================================================================================================
// Static methods
@ -60,34 +60,31 @@ void IODevice::begin() {
halSetup();
// include any HAL devices defined in exrail.
bool ignoreDefaults=false;
if (exrailHalSetup)
exrailHalSetup();
ignoreDefaults=exrailHalSetup();
if (ignoreDefaults) return;
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
// Allocates 32 pins 100-131
if (checkNoOverlap(100, 16, 0x40)) {
const bool silent=true; // no message if these conflict
if (checkNoOverlap(100, 16, 0x40, silent)) {
PCA9685::create(100, 16, 0x40);
} else {
DIAG(F("Default PCA9685 at I2C 0x40 disabled due to configured user device"));
}
if (checkNoOverlap(116, 16, 0x41)) {
}
if (checkNoOverlap(116, 16, 0x41, silent)) {
PCA9685::create(116, 16, 0x41);
} else {
DIAG(F("Default PCA9685 at I2C 0x41 disabled due to configured user device"));
}
}
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20)) {
if (checkNoOverlap(164, 16, 0x20, silent)) {
MCP23017::create(164, 16, 0x20);
} else {
DIAG(F("Default MCP23017 at I2C 0x20 disabled due to configured user device"));
}
if (checkNoOverlap(180, 16, 0x21)) {
}
if (checkNoOverlap(180, 16, 0x21, silent)) {
MCP23017::create(180, 16, 0x21);
} else {
DIAG(F("Default MCP23017 at I2C 0x21 disabled due to configured user device"));
}
}
}
// reset() function to reinitialise all devices
@ -339,7 +336,10 @@ IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
// returns true if pins DONT overlap with existing device
// TODO: Move the I2C address reservation and checks into the I2CManager code.
// That will enable non-HAL devices to reserve I2C addresses too.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddress) {
// Silent is used by the default setup so that there is no message if the default
// device has already been handled by the user setup.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
I2CAddress i2cAddress, bool silent) {
#ifdef DIAG_IO
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
#endif
@ -352,14 +352,14 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddres
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
firstPin, lastPin);
return false;
}
}
// Check for overlapping I2C address
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
return false;
}
}

View File

@ -167,7 +167,8 @@ public:
void setGPIOInterruptPin(int16_t pinNumber);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, I2CAddress i2cAddress=0);
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
I2CAddress i2cAddress=0, bool silent=false);
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
// pin range.

View File

@ -1,5 +1,6 @@
/*
* © 2022, Peter Cole. All rights reserved.
* © 2024, Harald Barth. All rights reserved.
*
* This file is part of EX-CommandStation
*
@ -100,8 +101,14 @@ private:
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
_digitalPinBytes = digitalBytesNeeded;
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
}
@ -117,7 +124,16 @@ private:
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
_analoguePinBytes = analogueBytesNeeded;
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
}
}
} else {
@ -241,7 +257,7 @@ private:
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (currentMicros - _lastDigitalRead > _digitalRefresh && _numDigitalPins>0) { // Delay for digital read refresh
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
@ -249,7 +265,7 @@ private:
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh && _numAnaloguePins>0) { // Delay for analogue read refresh
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
@ -364,14 +380,14 @@ private:
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates;
uint8_t* _analogueInputStates;
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
uint8_t* _analoguePinMap;
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
I2CRB _i2crb;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states

57
KeywordHasher.h Normal file
View File

@ -0,0 +1,57 @@
/*
* © 2024 Vincent Hamp and Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Reader be aware:
This function implements the _hk data type so that a string keyword
is hashed to the same value as the DCCEXParser uses to hash incoming
keywords.
Thus "MAIN"_hk generates exactly the same run time vakue
as const int16_t HASH_KEYWORD_MAIN=11339
*/
#ifndef KeywordHAsher_h
#define KeywordHasher_h
#include <Arduino.h>
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
(*sv >= '0' && *sv <= '9')
? (10*running+*sv-'0') // Numeric hash
: ((running << 5) + running) ^ *sv
); //
}
constexpr int16_t operator""_hk(const char * keyword, size_t len)
{
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
}
/* Some historical values for testing:
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
*/
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
#endif

View File

@ -28,6 +28,7 @@
#include "DIAG.h"
#include "CommandDistributor.h"
#include "DCCEXParser.h"
#include "KeywordHasher.h"
// Virtualised Motor shield multi-track hardware Interface
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
@ -35,21 +36,6 @@
FOR_EACH_TRACK(t) \
if (track[t]->getMode()==findmode) \
track[t]->function;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_PROG = -29718;
#endif
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_OFF = 22479;
const int16_t HASH_KEYWORD_NONE = -26550;
const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
const int16_t HASH_KEYWORD_AUTO = -5457;
#ifdef BOOSTER_INPUT
const int16_t HASH_KEYWORD_BOOST = 11269;
#endif
const int16_t HASH_KEYWORD_INV = 11857;
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
@ -362,38 +348,38 @@ bool TrackManager::parseEqualSign(Print *stream, int16_t params, int16_t p[])
}
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
p[0]-="A"_hk; // convert A... to 0....
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
return false;
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
if (params==2 && p[1]=="MAIN"_hk) // <= id MAIN>
return setTrackMode(p[0],TRACK_MODE_MAIN);
#ifndef DISABLE_PROG
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
if (params==2 && p[1]=="PROG"_hk) // <= id PROG>
return setTrackMode(p[0],TRACK_MODE_PROG);
#endif
if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE>
if (params==2 && (p[1]=="OFF"_hk || p[1]=="NONE"_hk)) // <= id OFF> <= id NONE>
return setTrackMode(p[0],TRACK_MODE_NONE);
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
if (params==2 && p[1]=="EXT"_hk) // <= id EXT>
return setTrackMode(p[0],TRACK_MODE_EXT);
#ifdef BOOSTER_INPUT
if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST>
if (params==2 && p[1]=="BOOST"_hk) // <= id BOOST>
return setTrackMode(p[0],TRACK_MODE_BOOST);
#endif
if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO>
if (params==2 && p[1]=="AUTO"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV);
if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO>
if (params==2 && p[1]=="INV"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV);
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
if (params==3 && p[1]=="DC"_hk && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
if (params==3 && p[1]=="DCX"_hk && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]);
return false;

View File

@ -3,7 +3,16 @@
#include "StringFormatter.h"
#define VERSION "5.2.22ethCdf"
#define VERSION "5.2.27stm32EC"
// 5.2.27 - Bugfix: IOExpander memory allocation
// 5.2.26 - Silently ignore overridden HAL defaults
// - include HAL_IGNORE_DEFAULTS macro in EXRAIL
// 5.2.25 - Fix bug causing <X> after working <D commands
// 5.2.24 - Exrail macro asserts to catch
// : duplicate/missing automation/route/sequence/call ids
// : latches and reserves out of range
// : speeds out of range
// 5.2.23 - KeywordHasher _hk (no functional change)
// 5.2.22 - Bugfixes: Empty turnout descriptions ok; negative route numbers valid.
// 5.2.21 - Add STARTUP_DELAY config option to delay CS bootup
// 5.2.20 - Check return of Ethernet.begin()