1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-23 12:51:24 +01:00

It builds....

massive track reorganization
This commit is contained in:
Asbelos 2022-02-23 15:44:34 +00:00
parent 8db937e985
commit a7740d652d
16 changed files with 887 additions and 748 deletions

View File

@ -28,6 +28,7 @@
#include "defines.h"
#include "DCCWaveform.h"
#include "DCC.h"
#include "TrackManager.h"
#if defined(BIG_MEMORY) | defined(WIFI_ON) | defined(ETHERNET_ON)
// This section of CommandDistributor is simply not relevant on a uno or similar
@ -119,9 +120,9 @@ void CommandDistributor::broadcastLoco(byte slot) {
}
void CommandDistributor::broadcastPower() {
bool main=DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON;
bool prog=DCCWaveform::progTrack.getPowerMode()==POWERMODE::ON;
bool join=DCCWaveform::progTrackSyncMain;
bool main=TrackManager::getMainPower()==POWERMODE::ON;
bool prog=TrackManager::getProgPower()==POWERMODE::ON;
bool join=DCCWaveform::isJoined();
const FSH * reason=F("");
char state='1';
if (main && prog && join) reason=F(" JOIN");

View File

@ -89,7 +89,7 @@ void setup()
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
DCC::begin(MOTOR_SHIELD_TYPE);
TrackManager::Setup(MOTOR_SHIELD_TYPE);
// Start RMFT aka EX-RAIL (ignored if no automnation)
RMFT::begin();

355
DCC.cpp
View File

@ -56,10 +56,9 @@ const byte FN_GROUP_4=0x08;
const byte FN_GROUP_5=0x10;
FSH* DCC::shieldName=NULL;
byte DCC::joinRelay=UNUSED_PIN;
byte DCC::globalSpeedsteps=128;
void DCC::begin(const FSH * motorShieldName, MotorDriver * mainDriver, MotorDriver* progDriver) {
void DCC::begin(const FSH * motorShieldName) {
shieldName=(FSH *)motorShieldName;
StringFormatter::send(Serial,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
@ -72,16 +71,9 @@ void DCC::begin(const FSH * motorShieldName, MotorDriver * mainDriver, MotorDriv
EEStore::init();
#endif
DCCWaveform::begin(mainDriver,progDriver);
DCCWaveform::begin();
}
void DCC::setJoinRelayPin(byte joinRelayPin) {
joinRelay=joinRelayPin;
if (joinRelay!=UNUSED_PIN) {
pinMode(joinRelay,OUTPUT);
digitalWrite(joinRelay,LOW); // LOW is relay disengaged
}
}
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
byte speedCode = (tSpeed & 0x7F) + tDirection * 128;
@ -296,14 +288,6 @@ void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
void DCC::setProgTrackSyncMain(bool on) {
if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,on?HIGH:LOW);
DCCWaveform::progTrackSyncMain=on;
}
void DCC::setProgTrackBoost(bool on) {
DCCWaveform::progTrackBoosted=on;
}
FSH* DCC::getMotorShieldName() {
return shieldName;
}
@ -514,35 +498,35 @@ const ackOp FLASH LONG_LOCO_ID_PROG[] = {
};
void DCC::writeCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
ackManagerSetup(cv, byteValue, WRITE_BYTE_PROG, callback);
DCCACK::Setup(cv, byteValue, WRITE_BYTE_PROG, callback);
}
void DCC::writeCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else ackManagerSetup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback);
else DCCACK::Setup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback);
}
void DCC::verifyCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
ackManagerSetup(cv, byteValue, VERIFY_BYTE_PROG, callback);
DCCACK::Setup(cv, byteValue, VERIFY_BYTE_PROG, callback);
}
void DCC::verifyCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else ackManagerSetup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback);
else DCCACK::Setup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback);
}
void DCC::readCVBit(int16_t cv, byte bitNum, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else ackManagerSetup(cv, bitNum,READ_BIT_PROG, callback);
else DCCACK::Setup(cv, bitNum,READ_BIT_PROG, callback);
}
void DCC::readCV(int16_t cv, ACK_CALLBACK callback) {
ackManagerSetup(cv, 0,READ_CV_PROG, callback);
DCCACK::Setup(cv, 0,READ_CV_PROG, callback);
}
void DCC::getLocoId(ACK_CALLBACK callback) {
ackManagerSetup(0,0, LOCO_ID_PROG, callback);
DCCACK::Setup(0,0, LOCO_ID_PROG, callback);
}
void DCC::setLocoId(int id,ACK_CALLBACK callback) {
@ -551,9 +535,9 @@ void DCC::setLocoId(int id,ACK_CALLBACK callback) {
return;
}
if (id<=HIGHEST_SHORT_ADDR)
ackManagerSetup(id, SHORT_LOCO_ID_PROG, callback);
DCCACK::Setup(id, SHORT_LOCO_ID_PROG, callback);
else
ackManagerSetup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
@ -570,8 +554,8 @@ void DCC::forgetAllLocos() { // removes all speed reminders
byte DCC::loopStatus=0;
void DCC::loop() {
DCCWaveform::loop(ackManagerProg!=NULL); // power overload checks
ackManagerLoop(); // maintain prog track ack manager
DCCWaveform::loop(); // power overload checks
DCCACK::loop(); // maintain prog track ack manager
issueReminders();
}
@ -695,319 +679,6 @@ void DCC::updateLocoReminder(int loco, byte speedCode) {
DCC::LOCO DCC::speedTable[MAX_LOCOS];
int DCC::nextLoco = 0;
//ACK MANAGER
ackOp const * DCC::ackManagerProg;
ackOp const * DCC::ackManagerProgStart;
byte DCC::ackManagerByte;
byte DCC::ackManagerByteVerify;
byte DCC::ackManagerStash;
int DCC::ackManagerWord;
byte DCC::ackManagerRetry;
byte DCC::ackRetry = 2;
int16_t DCC::ackRetrySum;
int16_t DCC::ackRetryPSum;
int DCC::ackManagerCv;
byte DCC::ackManagerBitNum;
bool DCC::ackReceived;
bool DCC::ackManagerRejoin;
CALLBACK_STATE DCC::callbackState=READY;
ACK_CALLBACK DCC::ackManagerCallback;
void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
if (!DCCWaveform::progTrack.canMeasureCurrent()) {
callback(-2);
return;
}
ackManagerRejoin=DCCWaveform::progTrackSyncMain;
if (ackManagerRejoin ) {
// Change from JOIN must zero resets packet.
setProgTrackSyncMain(false);
DCCWaveform::progTrack.sentResetsSincePacket = 0;
}
DCCWaveform::progTrack.autoPowerOff=false;
if (DCCWaveform::progTrack.getPowerMode() == POWERMODE::OFF) {
DCCWaveform::progTrack.autoPowerOff=true; // power off afterwards
if (Diag::ACK) DIAG(F("Auto Prog power on"));
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
if (MotorDriver::commonFaultPin)
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
DCCWaveform::progTrack.sentResetsSincePacket = 0;
}
ackManagerCv = cv;
ackManagerProg = program;
ackManagerProgStart = program;
ackManagerRetry = ackRetry;
ackManagerByte = byteValueOrBitnum;
ackManagerByteVerify = byteValueOrBitnum;
ackManagerBitNum=byteValueOrBitnum;
ackManagerCallback = callback;
}
void DCC::ackManagerSetup(int wordval, ackOp const program[], ACK_CALLBACK callback) {
ackManagerWord=wordval;
ackManagerSetup(0, 0, program, callback);
}
const byte RESET_MIN=8; // tuning of reset counter before sending message
// checkRessets return true if the caller should yield back to loop and try later.
bool DCC::checkResets(uint8_t numResets) {
return DCCWaveform::progTrack.sentResetsSincePacket < numResets;
}
void DCC::ackManagerLoop() {
while (ackManagerProg) {
byte opcode=GETFLASH(ackManagerProg);
// breaks from this switch will step to next prog entry
// returns from this switch will stay on same entry
// (typically waiting for a reset counter or ACK waiting, or when all finished.)
switch (opcode) {
case BASELINE:
if (DCCWaveform::progTrack.getPowerMode()==POWERMODE::OVERLOAD) return;
if (checkResets(DCCWaveform::progTrack.autoPowerOff || ackManagerRejoin ? 20 : 3)) return;
DCCWaveform::progTrack.setAckBaseline();
callbackState=READY;
break;
case W0: // write 0 bit
case W1: // write 1 bit
{
if (checkResets(RESET_MIN)) return;
if (Diag::ACK) DIAG(F("W%d cv=%d bit=%d"),opcode==W1, ackManagerCv,ackManagerBitNum);
byte instruction = WRITE_BIT | (opcode==W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
callbackState=AFTER_WRITE;
}
break;
case WB: // write byte
{
if (checkResets( RESET_MIN)) return;
if (Diag::ACK) DIAG(F("WB cv=%d value=%d"),ackManagerCv,ackManagerByte);
byte message[] = {cv1(WRITE_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
callbackState=AFTER_WRITE;
}
break;
case VB: // Issue validate Byte packet
{
if (checkResets( RESET_MIN)) return;
if (Diag::ACK) DIAG(F("VB cv=%d value=%d"),ackManagerCv,ackManagerByte);
byte message[] = { cv1(VERIFY_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case V0:
case V1: // Issue validate bit=0 or bit=1 packet
{
if (checkResets(RESET_MIN)) return;
if (Diag::ACK) DIAG(F("V%d cv=%d bit=%d"),opcode==V1, ackManagerCv,ackManagerBitNum);
byte instruction = VERIFY_BIT | (opcode==V0?BIT_OFF:BIT_ON) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
DCCWaveform::progTrack.setAckPending();
}
break;
case WACK: // wait for ack (or absence of ack)
{
byte ackState=2; // keep polling
ackState=DCCWaveform::progTrack.getAck();
if (ackState==2) return; // keep polling
ackReceived=ackState==1;
break; // we have a genuine ACK result
}
case ITC0:
case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK)
if (ackReceived) {
callback(opcode==ITC0?0:1);
return;
}
break;
case ITCB: // If True callback(byte)
if (ackReceived) {
callback(ackManagerByte);
return;
}
break;
case ITCBV: // If True callback(byte) - Verify
if (ackReceived) {
if (ackManagerByte == ackManagerByteVerify) {
ackRetrySum ++;
LCD(1, F("v %d %d Sum=%d"), ackManagerCv, ackManagerByte, ackRetrySum);
}
callback(ackManagerByte);
return;
}
break;
case ITCB7: // If True callback(byte & 0x7F)
if (ackReceived) {
callback(ackManagerByte & 0x7F);
return;
}
break;
case NAKFAIL: // If nack callback(-1)
if (!ackReceived) {
callback(-1);
return;
}
break;
case FAIL: // callback(-1)
callback(-1);
return;
case BIV: // ackManagerByte initial value
ackManagerByte = ackManagerByteVerify;
break;
case STARTMERGE:
ackManagerBitNum=7;
ackManagerByte=0;
break;
case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes)
ackManagerByte <<= 1;
// ackReceived means bit is zero.
if (!ackReceived) ackManagerByte |= 1;
ackManagerBitNum--;
break;
case SETBIT:
ackManagerProg++;
ackManagerBitNum=GETFLASH(ackManagerProg);
break;
case SETCV:
ackManagerProg++;
ackManagerCv=GETFLASH(ackManagerProg);
break;
case SETBYTE:
ackManagerProg++;
ackManagerByte=GETFLASH(ackManagerProg);
break;
case SETBYTEH:
ackManagerByte=highByte(ackManagerWord);
break;
case SETBYTEL:
ackManagerByte=lowByte(ackManagerWord);
break;
case STASHLOCOID:
ackManagerStash=ackManagerByte; // stash value from CV17
break;
case COMBINELOCOID:
// ackManagerStash is cv17, ackManagerByte is CV 18
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
break;
case SKIPTARGET:
break;
default:
DIAG(F("!! ackOp %d FAULT!!"),opcode);
callback( -1);
return;
} // end of switch
ackManagerProg++;
}
}
void DCC::callback(int value) {
// check for automatic retry
if (value == -1 && ackManagerRetry > 0) {
ackRetrySum ++;
LCD(0, F("Retry %d %d Sum=%d"), ackManagerCv, ackManagerRetry, ackRetrySum);
ackManagerRetry --;
ackManagerProg = ackManagerProgStart;
return;
}
static unsigned long callbackStart;
// We are about to leave programming mode
// Rule 1: If we have written to a decoder we must maintain power for 100mS
// Rule 2: If we are re-joining the main track we must power off for 30mS
switch (callbackState) {
case AFTER_WRITE: // first attempt to callback after a write operation
if (!ackManagerRejoin && !DCCWaveform::progTrack.autoPowerOff) {
callbackState=READY;
break;
} // lines 906-910 added. avoid wait after write. use 1 PROG
callbackStart=millis();
callbackState=WAITING_100;
if (Diag::ACK) DIAG(F("Stable 100mS"));
break;
case WAITING_100: // waiting for 100mS
if (millis()-callbackStart < 100) break;
// stable after power maintained for 100mS
// If we are going to power off anyway, it doesnt matter
// but if we will keep the power on, we must off it for 30mS
if (DCCWaveform::progTrack.autoPowerOff) callbackState=READY;
else { // Need to cycle power off and on
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
callbackStart=millis();
callbackState=WAITING_30;
if (Diag::ACK) DIAG(F("OFF 30mS"));
}
break;
case WAITING_30: // waiting for 30mS with power off
if (millis()-callbackStart < 30) break;
//power has been off for 30mS
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
callbackState=READY;
break;
case READY: // ready after read, or write after power delay and off period.
// power off if we powered it on
if (DCCWaveform::progTrack.autoPowerOff) {
if (Diag::ACK) DIAG(F("Auto Prog power off"));
DCCWaveform::progTrack.doAutoPowerOff();
if (MotorDriver::commonFaultPin)
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
}
// Restore <1 JOIN> to state before BASELINE
if (ackManagerRejoin) {
setProgTrackSyncMain(true);
if (Diag::ACK) DIAG(F("Auto JOIN"));
}
ackManagerProg=NULL; // no more steps to execute
if (Diag::ACK) DIAG(F("Callback(%d)"),value);
(ackManagerCallback)( value);
}
}
void DCC::displayCabList(Print * stream) {

85
DCC.h
View File

@ -36,48 +36,9 @@
#error short addr greater than 127 does not make sense
#endif
#endif
#include "DCCACK.h"
const uint16_t LONG_ADDR_MARKER = 0x4000;
typedef void (*ACK_CALLBACK)(int16_t result);
enum ackOp : byte
{ // Program opcodes for the ack Manager
BASELINE, // ensure enough resets sent before starting and obtain baseline current
W0,
W1, // issue write bit (0..1) packet
WB, // issue write byte packet
VB, // Issue validate Byte packet
V0, // Issue validate bit=0 packet
V1, // issue validate bit=1 packlet
WACK, // wait for ack (or absence of ack)
ITC1, // If True Callback(1) (if prevous WACK got an ACK)
ITC0, // If True callback(0);
ITCB, // If True callback(byte)
ITCBV, // If True callback(byte) - end of Verify Byte
ITCB7, // If True callback(byte &0x7F)
NAKFAIL, // if false callback(-1)
FAIL, // callback(-1)
BIV, // Set ackManagerByte to initial value for Verify retry
STARTMERGE, // Clear bit and byte settings ready for merge pass
MERGE, // Merge previous wack response with byte value and decrement bit number (use for readimng CV bytes)
SETBIT, // sets bit number to next prog byte
SETCV, // sets cv number to next prog byte
SETBYTE, // sets current byte to next prog byte
SETBYTEH, // sets current byte to word high byte
SETBYTEL, // sets current byte to word low byte
STASHLOCOID, // keeps current byte value for later
COMBINELOCOID, // combines current value with stashed value and returns it
ITSKIP, // skip to SKIPTARGET if ack true
SKIPTARGET = 0xFF // jump to target
};
enum CALLBACK_STATE : byte {
AFTER_WRITE, // Start callback sequence after something was written to the decoder
WAITING_100, // Waiting for 100mS of stable power
WAITING_30, // waiting to 30ms of power off gap.
READY, // Ready to complete callback
};
// Allocations with memory implications..!
// Base system takes approx 900 bytes + 8 per loco. Turnouts, Sensors etc are dynamically created
@ -92,8 +53,7 @@ const byte MAX_LOCOS = 50;
class DCC
{
public:
static void begin(const FSH * motorShieldName, MotorDriver *mainDriver, MotorDriver *progDriver);
static void setJoinRelayPin(byte joinRelayPin);
static void begin(const FSH * motorShieldName);
static void loop();
// Public DCC API functions
@ -110,9 +70,7 @@ public:
static void updateGroupflags(byte &flags, int16_t functionNumber);
static void setAccessory(int aAdd, byte aNum, bool activate);
static bool writeTextPacket(byte *b, int nBytes);
static void setProgTrackSyncMain(bool on); // when true, prog track becomes driveable
static void setProgTrackBoost(bool on); // when true, special prog track current limit does not apply
// ACKable progtrack calls bitresults callback 0,0 or -1, cv returns value or -1
static void readCV(int16_t cv, ACK_CALLBACK callback);
static void readCVBit(int16_t cv, byte bitNum, ACK_CALLBACK callback); // -1 for error
@ -133,13 +91,7 @@ public:
static inline void setGlobalSpeedsteps(byte s) {
globalSpeedsteps = s;
};
static inline int16_t setAckRetry(byte retry) {
ackRetry = retry;
ackRetryPSum = ackRetrySum;
ackRetrySum = 0; // reset running total
return ackRetryPSum;
};
struct LOCO
{
int loco;
@ -148,9 +100,9 @@ public:
unsigned long functions;
};
static LOCO speedTable[MAX_LOCOS];
static byte cv1(byte opcode, int cv);
static byte cv2(int cv);
private:
static byte joinRelay;
static byte loopStatus;
static void setThrottle2(uint16_t cab, uint8_t speedCode);
static void updateLocoReminder(int loco, byte speedCode);
@ -160,34 +112,11 @@ private:
static FSH *shieldName;
static byte globalSpeedsteps;
static byte cv1(byte opcode, int cv);
static byte cv2(int cv);
static int lookupSpeedTable(int locoId);
static void issueReminders();
static void callback(int value);
// ACK MANAGER
static ackOp const *ackManagerProg;
static ackOp const *ackManagerProgStart;
static byte ackManagerByte;
static byte ackManagerByteVerify;
static byte ackManagerBitNum;
static int ackManagerCv;
static byte ackManagerRetry;
static byte ackRetry;
static int16_t ackRetrySum;
static int16_t ackRetryPSum;
static int ackManagerWord;
static byte ackManagerStash;
static bool ackReceived;
static bool ackManagerRejoin;
static ACK_CALLBACK ackManagerCallback;
static CALLBACK_STATE callbackState;
static void ackManagerSetup(int cv, byte bitNumOrbyteValue, ackOp const program[], ACK_CALLBACK callback);
static void ackManagerSetup(int wordval, ackOp const program[], ACK_CALLBACK callback);
static void ackManagerLoop();
static bool checkResets( uint8_t numResets);
static const int PROG_REPEATS = 8; // repeats of programming commands (some decoders need at least 8 to be reliable)
// NMRA codes #
static const byte SET_SPEED = 0x3f;

467
DCCACK.cpp Normal file
View File

@ -0,0 +1,467 @@
/*
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2021 Harald Barth
* © 2020-2022 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "DCCACK.h"
#include "DIAG.h"
#include "DCC.h"
#include "DCCWaveform.h"
#include "TrackManager.h"
unsigned int DCCACK::minAckPulseDuration = 4000; // micros
unsigned int DCCACK::maxAckPulseDuration = 8500; // micros
MotorDriver * DCCACK::progDriver=NULL;
ackOp const * DCCACK::ackManagerProg;
ackOp const * DCCACK::ackManagerProgStart;
byte DCCACK::ackManagerByte;
byte DCCACK::ackManagerByteVerify;
byte DCCACK::ackManagerStash;
int DCCACK::ackManagerWord;
byte DCCACK::ackManagerRetry;
byte DCCACK::ackRetry = 2;
int16_t DCCACK::ackRetrySum;
int16_t DCCACK::ackRetryPSum;
int DCCACK::ackManagerCv;
byte DCCACK::ackManagerBitNum;
bool DCCACK::ackReceived;
bool DCCACK::ackManagerRejoin;
volatile uint8_t DCCACK::numAckGaps=0;
volatile uint8_t DCCACK::numAckSamples=0;
uint8_t DCCACK::trailingEdgeCounter=0;
unsigned int DCCACK::ackPulseDuration; // micros
unsigned long DCCACK::ackPulseStart; // micros
volatile bool DCCACK::ackDetected;
unsigned long DCCACK::ackCheckStart; // millis
volatile bool DCCACK::ackPending;
bool DCCACK::autoPowerOff;
int DCCACK::ackThreshold;
int DCCACK::ackLimitmA;
int DCCACK::ackMaxCurrent;
unsigned int DCCACK::ackCheckDuration; // millis
CALLBACK_STATE DCCACK::callbackState=READY;
ACK_CALLBACK DCCACK::ackManagerCallback;
void DCCACK::Setup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
progDriver=TrackManager::getProgDriver();
if (progDriver==NULL) {
callback(-3); // we dont have a prog track!
return;
}
if (!progDriver->canMeasureCurrent()) {
callback(-2); // our prog track cant measure current
return;
}
ackManagerRejoin=DCCWaveform::isJoined();
if (ackManagerRejoin ) {
// Change from JOIN must zero resets packet.
DCCWaveform::setJoin(false);
DCCWaveform::progTrack.sentResetsSincePacket = 0;
}
autoPowerOff=false;
if (progDriver->getPower() == POWERMODE::OFF) {
autoPowerOff=true; // power off afterwards
if (Diag::ACK) DIAG(F("Auto Prog power on"));
progDriver->setPower(POWERMODE::ON);
/* TODO !!! in MotorDriver surely!
if (MotorDriver::commonFaultPin)
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
DCCWaveform::progTrack.sentResetsSincePacket = 0;
**/
}
ackManagerCv = cv;
ackManagerProg = program;
ackManagerProgStart = program;
ackManagerRetry = ackRetry;
ackManagerByte = byteValueOrBitnum;
ackManagerByteVerify = byteValueOrBitnum;
ackManagerBitNum=byteValueOrBitnum;
ackManagerCallback = callback;
}
void DCCACK::Setup(int wordval, ackOp const program[], ACK_CALLBACK callback) {
ackManagerWord=wordval;
Setup(0, 0, program, callback);
}
const byte RESET_MIN=8; // tuning of reset counter before sending message
// checkRessets return true if the caller should yield back to loop and try later.
bool DCCACK::checkResets(uint8_t numResets) {
return DCCWaveform::progTrack.sentResetsSincePacket < numResets;
}
// Operations applicable to PROG track ONLY.
// (yes I know I could have subclassed the main track but...)
void DCCACK::setAckBaseline() {
int baseline=progDriver->getCurrentRaw();
ackThreshold= baseline + progDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %uus and %uus"),
baseline,progDriver->raw2mA(baseline),
ackThreshold,progDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
}
void DCCACK::setAckPending() {
ackMaxCurrent=0;
ackPulseStart=0;
ackPulseDuration=0;
ackDetected=false;
ackCheckStart=millis();
numAckSamples=0;
numAckGaps=0;
ackPending=true; // interrupt routines will now take note
}
byte DCCACK::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%uuS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,progDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
void DCCACK::loop() {
while (ackManagerProg) {
byte opcode=GETFLASH(ackManagerProg);
// breaks from this switch will step to next prog entry
// returns from this switch will stay on same entry
// (typically waiting for a reset counter or ACK waiting, or when all finished.)
switch (opcode) {
case BASELINE:
if (progDriver->getPower()==POWERMODE::OVERLOAD) return;
if (checkResets(autoPowerOff || ackManagerRejoin ? 20 : 3)) return;
setAckBaseline();
callbackState=AFTER_READ;
break;
case W0: // write 0 bit
case W1: // write 1 bit
{
if (checkResets(RESET_MIN)) return;
if (Diag::ACK) DIAG(F("W%d cv=%d bit=%d"),opcode==W1, ackManagerCv,ackManagerBitNum);
byte instruction = WRITE_BIT | (opcode==W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum;
byte message[] = {DCC::cv1(BIT_MANIPULATE, ackManagerCv), DCC::cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
setAckPending();
callbackState=AFTER_WRITE;
}
break;
case WB: // write byte
{
if (checkResets( RESET_MIN)) return;
if (Diag::ACK) DIAG(F("WB cv=%d value=%d"),ackManagerCv,ackManagerByte);
byte message[] = {DCC::cv1(WRITE_BYTE, ackManagerCv), DCC::cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
setAckPending();
callbackState=AFTER_WRITE;
}
break;
case VB: // Issue validate Byte packet
{
if (checkResets( RESET_MIN)) return;
if (Diag::ACK) DIAG(F("VB cv=%d value=%d"),ackManagerCv,ackManagerByte);
byte message[] = { DCC::cv1(VERIFY_BYTE, ackManagerCv), DCC::cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
setAckPending();
}
break;
case V0:
case V1: // Issue validate bit=0 or bit=1 packet
{
if (checkResets(RESET_MIN)) return;
if (Diag::ACK) DIAG(F("V%d cv=%d bit=%d"),opcode==V1, ackManagerCv,ackManagerBitNum);
byte instruction = VERIFY_BIT | (opcode==V0?BIT_OFF:BIT_ON) | ackManagerBitNum;
byte message[] = {DCC::cv1(BIT_MANIPULATE, ackManagerCv), DCC::cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
setAckPending();
}
break;
case WACK: // wait for ack (or absence of ack)
{
byte ackState=2; // keep polling
ackState=getAck();
if (ackState==2) return; // keep polling
ackReceived=ackState==1;
break; // we have a genuine ACK result
}
case ITC0:
case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK)
if (ackReceived) {
callback(opcode==ITC0?0:1);
return;
}
break;
case ITCB: // If True callback(byte)
if (ackReceived) {
callback(ackManagerByte);
return;
}
break;
case ITCBV: // If True callback(byte) - Verify
if (ackReceived) {
if (ackManagerByte == ackManagerByteVerify) {
ackRetrySum ++;
LCD(1, F("v %d %d Sum=%d"), ackManagerCv, ackManagerByte, ackRetrySum);
}
callback(ackManagerByte);
return;
}
break;
case ITCB7: // If True callback(byte & 0x7F)
if (ackReceived) {
callback(ackManagerByte & 0x7F);
return;
}
break;
case NAKFAIL: // If nack callback(-1)
if (!ackReceived) {
callback(-1);
return;
}
break;
case FAIL: // callback(-1)
callback(-1);
return;
case BIV: // ackManagerByte initial value
ackManagerByte = ackManagerByteVerify;
break;
case STARTMERGE:
ackManagerBitNum=7;
ackManagerByte=0;
break;
case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes)
ackManagerByte <<= 1;
// ackReceived means bit is zero.
if (!ackReceived) ackManagerByte |= 1;
ackManagerBitNum--;
break;
case SETBIT:
ackManagerProg++;
ackManagerBitNum=GETFLASH(ackManagerProg);
break;
case SETCV:
ackManagerProg++;
ackManagerCv=GETFLASH(ackManagerProg);
break;
case SETBYTE:
ackManagerProg++;
ackManagerByte=GETFLASH(ackManagerProg);
break;
case SETBYTEH:
ackManagerByte=highByte(ackManagerWord);
break;
case SETBYTEL:
ackManagerByte=lowByte(ackManagerWord);
break;
case STASHLOCOID:
ackManagerStash=ackManagerByte; // stash value from CV17
break;
case COMBINELOCOID:
// ackManagerStash is cv17, ackManagerByte is CV 18
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
break;
case SKIPTARGET:
break;
default:
DIAG(F("!! ackOp %d FAULT!!"),opcode);
callback( -1);
return;
} // end of switch
ackManagerProg++;
}
}
void DCCACK::callback(int value) {
// check for automatic retry
if (value == -1 && ackManagerRetry > 0) {
ackRetrySum ++;
LCD(0, F("Retry %d %d Sum=%d"), ackManagerCv, ackManagerRetry, ackRetrySum);
ackManagerRetry --;
ackManagerProg = ackManagerProgStart;
return;
}
static unsigned long callbackStart;
// We are about to leave programming mode
// Rule 1: If we have written to a decoder we must maintain power for 100mS
// Rule 2: If we are re-joining the main track we must power off for 30mS
switch (callbackState) {
case AFTER_READ:
if (ackManagerRejoin && autoPowerOff) {
progDriver->setPower(POWERMODE::OFF);
callbackStart=millis();
callbackState=WAITING_30;
if (Diag::ACK) DIAG(F("OFF 30mS"));
} else {
callbackState=READY;
}
break;
case AFTER_WRITE: // first attempt to callback after a write operation
if (!ackManagerRejoin && !autoPowerOff) {
callbackState=READY;
break;
} // lines 906-910 added. avoid wait after write. use 1 PROG
callbackStart=millis();
callbackState=WAITING_100;
if (Diag::ACK) DIAG(F("Stable 100mS"));
break;
case WAITING_100: // waiting for 100mS
if (millis()-callbackStart < 100) break;
// stable after power maintained for 100mS
// If we are going to power off anyway, it doesnt matter
// but if we will keep the power on, we must off it for 30mS
if (autoPowerOff) callbackState=READY;
else { // Need to cycle power off and on
progDriver->setPower(POWERMODE::OFF);
callbackStart=millis();
callbackState=WAITING_30;
if (Diag::ACK) DIAG(F("OFF 30mS"));
}
break;
case WAITING_30: // waiting for 30mS with power off
if (millis()-callbackStart < 30) break;
//power has been off for 30mS
progDriver->setPower(POWERMODE::ON);
callbackState=READY;
break;
case READY: // ready after read, or write after power delay and off period.
// power off if we powered it on
if (autoPowerOff) {
if (Diag::ACK) DIAG(F("Auto Prog power off"));
progDriver->setPower(POWERMODE::OFF);
/* TODO
if (MotorDriver::commonFaultPin)
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
**/
}
// Restore <1 JOIN> to state before BASELINE
if (ackManagerRejoin) {
DCCWaveform::setJoin(true);
if (Diag::ACK) DIAG(F("Auto JOIN"));
}
ackManagerProg=NULL; // no more steps to execute
if (Diag::ACK) DIAG(F("Callback(%d)"),value);
(ackManagerCallback)( value);
}
}
void DCCACK::checkAck(byte sentResetsSincePacket) {
if (!ackPending) return;
// This function operates in interrupt() time so must be fast and can't DIAG
if (sentResetsSincePacket > 6) { //ACK timeout
ackCheckDuration=millis()-ackCheckStart;
ackPending = false;
return;
}
int current=progDriver->getCurrentRaw();
numAckSamples++;
if (current > ackMaxCurrent) ackMaxCurrent=current;
// An ACK is a pulse lasting between minAckPulseDuration and maxAckPulseDuration uSecs (refer @haba)
if (current>ackThreshold) {
if (trailingEdgeCounter > 0) {
numAckGaps++;
trailingEdgeCounter = 0;
}
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
// if we reach to this point, we have
// detected trailing edge of pulse
if (trailingEdgeCounter == 0) {
ackPulseDuration=micros()-ackPulseStart;
}
// but we do not trust it yet and return (which will force another
// measurement) and first the third time around with low current
// the ack detection will be finalized.
if (trailingEdgeCounter < 2) {
trailingEdgeCounter++;
return;
}
trailingEdgeCounter = 0;
if (ackPulseDuration>=minAckPulseDuration && ackPulseDuration<=maxAckPulseDuration) {
ackCheckDuration=millis()-ackCheckStart;
ackDetected=true;
ackPending=false;
DCCWaveform::progTrack.clearRepeats(); // shortcut remaining repeat packets
return; // we have a genuine ACK result
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}

156
DCCACK.h Normal file
View File

@ -0,0 +1,156 @@
/*
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2021 Harald Barth
* © 2020-2022 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef DCCACK_h
#define DCCACK_h
#include "MotorDriver.h"
typedef void (*ACK_CALLBACK)(int16_t result);
enum ackOp : byte
{ // Program opcodes for the ack Manager
BASELINE, // ensure enough resets sent before starting and obtain baseline current
W0,
W1, // issue write bit (0..1) packet
WB, // issue write byte packet
VB, // Issue validate Byte packet
V0, // Issue validate bit=0 packet
V1, // issue validate bit=1 packlet
WACK, // wait for ack (or absence of ack)
ITC1, // If True Callback(1) (if prevous WACK got an ACK)
ITC0, // If True callback(0);
ITCB, // If True callback(byte)
ITCBV, // If True callback(byte) - end of Verify Byte
ITCB7, // If True callback(byte &0x7F)
NAKFAIL, // if false callback(-1)
FAIL, // callback(-1)
BIV, // Set ackManagerByte to initial value for Verify retry
STARTMERGE, // Clear bit and byte settings ready for merge pass
MERGE, // Merge previous wack response with byte value and decrement bit number (use for readimng CV bytes)
SETBIT, // sets bit number to next prog byte
SETCV, // sets cv number to next prog byte
SETBYTE, // sets current byte to next prog byte
SETBYTEH, // sets current byte to word high byte
SETBYTEL, // sets current byte to word low byte
STASHLOCOID, // keeps current byte value for later
COMBINELOCOID, // combines current value with stashed value and returns it
ITSKIP, // skip to SKIPTARGET if ack true
SKIPTARGET = 0xFF // jump to target
};
enum CALLBACK_STATE : byte {
AFTER_READ, // Start callback sequence after something was read from the decoder
AFTER_WRITE, // Start callback sequence after something was written to the decoder
WAITING_100, // Waiting for 100mS of stable power
WAITING_30, // waiting to 30ms of power off gap.
READY, // Ready to complete callback
};
class DCCACK {
public:
static byte getAck(); //prog track only 0=NACK, 1=ACK 2=keep waiting
static void checkAck(byte sentResetsSincePacket); // Interrupt time ack checker
static inline void setAckLimit(int mA) {
ackLimitmA = mA;
}
static inline void setMinAckPulseDuration(unsigned int i) {
minAckPulseDuration = i;
}
static inline void setMaxAckPulseDuration(unsigned int i) {
maxAckPulseDuration = i;
}
static void Setup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback);
static void Setup(int wordval, ackOp const program[], ACK_CALLBACK callback);
static void loop();
static bool isActive() { return ackManagerProg!=NULL;}
static inline int16_t setAckRetry(byte retry) {
ackRetry = retry;
ackRetryPSum = ackRetrySum;
ackRetrySum = 0; // reset running total
return ackRetryPSum;
};
private:
static const byte SET_SPEED = 0x3f;
static const byte WRITE_BYTE = 0x7C;
static const byte VERIFY_BYTE = 0x74;
static const byte BIT_MANIPULATE = 0x78;
static const byte WRITE_BIT = 0xF0;
static const byte VERIFY_BIT = 0xE0;
static const byte BIT_ON = 0x08;
static const byte BIT_OFF = 0x00;
static void setAckBaseline();
static void setAckPending();
static void callback(int value);
static const int PROG_REPEATS = 8; // repeats of programming commands (some decoders need at least 8 to be reliable)
// ACK management (Prog track only)
static void checkAck();
static bool checkResets(uint8_t numResets);
static volatile bool ackPending;
static volatile bool ackDetected;
static int ackThreshold;
static int ackLimitmA;
static int ackMaxCurrent;
static unsigned long ackCheckStart; // millis
static unsigned int ackCheckDuration; // millis
static unsigned int ackPulseDuration; // micros
static unsigned long ackPulseStart; // micros
static unsigned int minAckPulseDuration ; // micros
static unsigned int maxAckPulseDuration ; // micros
static MotorDriver* progDriver;
static volatile uint8_t numAckGaps;
static volatile uint8_t numAckSamples;
static uint8_t trailingEdgeCounter;
static ackOp const * ackManagerProg;
static ackOp const * ackManagerProgStart;
static byte ackManagerByte;
static byte ackManagerByteVerify;
static byte ackManagerStash;
static int ackManagerWord;
static byte ackManagerRetry;
static byte ackRetry;
static int16_t ackRetrySum;
static int16_t ackRetryPSum;
static int ackManagerCv;
static byte ackManagerBitNum;
static bool ackReceived;
static bool ackManagerRejoin;
static bool autoPowerOff;
static CALLBACK_STATE callbackState;
static ACK_CALLBACK ackManagerCallback;
};
#endif

View File

@ -45,5 +45,5 @@
#include "Outputs.h"
#include "EXRAIL.h"
#include "CommandDistributor.h"
#include "TrackManager.h"
#endif

View File

@ -402,9 +402,9 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
}
else break; // will reply <X>
}
if (main) DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
if (prog) DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
DCC::setProgTrackSyncMain(join);
if (main) TrackManager::setMainPower(POWERMODE::ON);
if (prog) TrackManager::setProgPower(POWERMODE::ON);
DCCWaveform::setJoin(join);
CommandDistributor::broadcastPower();
return;
@ -429,12 +429,12 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
else break; // will reply <X>
}
if (main) DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
if (main) TrackManager::setMainPower(POWERMODE::OFF);
if (prog) {
DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
DCCWaveform::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setProgPower(POWERMODE::OFF);
}
DCC::setProgTrackSyncMain(false);
DCCWaveform::setJoin(false);
CommandDistributor::broadcastPower();
return;
@ -445,18 +445,14 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
return;
case 'c': // SEND METER RESPONSES <c>
// <c MeterName value C/V unit min max res warn>
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"), DCCWaveform::mainTrack.getCurrentmA(),
DCCWaveform::mainTrack.getMaxmA(), DCCWaveform::mainTrack.getTripmA());
StringFormatter::send(stream, F("<a %d>\n"), DCCWaveform::mainTrack.get1024Current()); //'a' message deprecated, remove once JMRI 4.22 is available
return;
// No longer supported because of multiple tracks <c MeterName value C/V unit min max res warn>
break;
case 'Q': // SENSORS <Q>
Sensor::printAll(stream);
return;
case 's': // <s>
StringFormatter::send(stream, F("<p%d>\n"), DCCWaveform::mainTrack.getPowerMode() == POWERMODE::ON);
StringFormatter::send(stream, F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
Turnout::printAll(stream); //send all Turnout states
Output::printAll(stream); //send all Output states
@ -508,8 +504,7 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
case '+': // Complex Wifi interface command (not usual parse)
if (atCommandCallback && !ringStream) {
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
TrackManager::setPower(POWERMODE::OFF);
atCommandCallback((HardwareSerial *)stream,com);
return;
}
@ -743,17 +738,17 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
if (params >= 3) {
if (p[1] == HASH_KEYWORD_LIMIT) {
DCCWaveform::progTrack.setAckLimit(p[2]);
DCCACK::setAckLimit(p[2]);
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == HASH_KEYWORD_MIN) {
DCCWaveform::progTrack.setMinAckPulseDuration(p[2]);
DCCACK::setMinAckPulseDuration(p[2]);
LCD(0, F("Ack Min=%uus"), p[2]); // <D ACK MIN 1500>
} else if (p[1] == HASH_KEYWORD_MAX) {
DCCWaveform::progTrack.setMaxAckPulseDuration(p[2]);
DCCACK::setMaxAckPulseDuration(p[2]);
LCD(0, F("Ack Max=%uus"), p[2]); // <D ACK MAX 9000>
} else if (p[1] == HASH_KEYWORD_RETRY) {
if (p[2] >255) p[2]=3;
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCC::setAckRetry(p[2])); // <D ACK RETRY 2>
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
}
} else {
StringFormatter::send(stream, F("Ack diag %S\n"), onOff ? F("on") : F("off"));
@ -784,7 +779,7 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
#endif
case HASH_KEYWORD_PROGBOOST:
DCC::setProgTrackBoost(true);
DCCWaveform::progTrackBoosted=true;
return true;
case HASH_KEYWORD_RESET:

View File

@ -25,7 +25,9 @@
#include <Arduino.h>
#include "DCCWaveform.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "DCCACK.h"
#include "DIAG.h"
#include "freeMemory.h"
@ -34,30 +36,17 @@ DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
bool DCCWaveform::progTrackSyncMain=false;
bool DCCWaveform::progTrackBoosted=false;
int DCCWaveform::progTripValue=0;
volatile uint8_t DCCWaveform::numAckGaps=0;
volatile uint8_t DCCWaveform::numAckSamples=0;
uint8_t DCCWaveform::trailingEdgeCounter=0;
int16_t DCCWaveform::joinRelay=UNUSED_PIN;
void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
mainTrack.motorDriver=mainDriver;
progTrack.motorDriver=progDriver;
progTripValue = progDriver->mA2raw(TRIP_CURRENT_PROG); // need only calculate once hence static
mainTrack.setPowerMode(POWERMODE::OFF);
progTrack.setPowerMode(POWERMODE::OFF);
// Fault pin config for odd motor boards (example pololu)
MotorDriver::commonFaultPin = ((mainDriver->getFaultPin() == progDriver->getFaultPin())
&& (mainDriver->getFaultPin() != UNUSED_PIN));
// Only use PWM if both pins are PWM capable. Otherwise JOIN does not work
MotorDriver::usePWM= mainDriver->isPWMCapable() && progDriver->isPWMCapable();
DIAG(F("Signal pin config: %S accuracy waveform"),
MotorDriver::usePWM ? F("high") : F("normal") );
void DCCWaveform::begin() {
TrackManager::setPower(POWERMODE::OFF);
DCCTimer::begin(DCCWaveform::interruptHandler);
}
void DCCWaveform::loop(bool ackManagerActive) {
mainTrack.checkPowerOverload(false);
progTrack.checkPowerOverload(ackManagerActive);
void DCCWaveform::loop() {
DCCACK::loop();
TrackManager::loop(DCCACK::isActive() || progTrackSyncMain || progTrackBoosted );
}
#pragma GCC push_options
@ -69,8 +58,8 @@ void DCCWaveform::interruptHandler() {
byte sigProg=progTrackSyncMain? sigMain : signalTransform[progTrack.state];
// Set the signal state for both tracks
mainTrack.motorDriver->setSignal(sigMain);
progTrack.motorDriver->setSignal(sigProg);
TrackManager::setDCCSignal(sigMain);
TrackManager::setPROGSignal(sigProg);
// Move on in the state engine
mainTrack.state=stateTransform[mainTrack.state];
@ -80,10 +69,22 @@ void DCCWaveform::interruptHandler() {
// WAVE_PENDING means we dont yet know what the next bit is
if (mainTrack.state==WAVE_PENDING) mainTrack.interrupt2();
if (progTrack.state==WAVE_PENDING) progTrack.interrupt2();
else if (progTrack.ackPending) progTrack.checkAck();
else DCCACK::checkAck(progTrack.sentResetsSincePacket);
}
#pragma GCC push_options
void DCCWaveform::setJoinRelayPin(byte joinRelayPin) {
joinRelay=joinRelayPin;
if (joinRelay!=UNUSED_PIN) {
pinMode(joinRelay,OUTPUT);
digitalWrite(joinRelay,LOW); // LOW is relay disengaged
}
}
void DCCWaveform::setJoin(bool joined) {
progTrackSyncMain=joined;
if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,joined?HIGH:LOW);
}
// An instance of this class handles the DCC transmissions for one track. (main or prog)
// Interrupts are marshalled via the statics.
@ -105,87 +106,10 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
requiredPreambles = preambleBits+1;
bytes_sent = 0;
bits_sent = 0;
sampleDelay = 0;
lastSampleTaken = millis();
ackPending=false;
}
POWERMODE DCCWaveform::getPowerMode() {
return powerMode;
}
void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode = mode;
bool ison = (mode == POWERMODE::ON);
motorDriver->setPower( ison);
sentResetsSincePacket=0;
}
void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= motorDriver->getRawCurrentTripValue();
if (!isMainTrack && !ackManagerActive && !progTrackSyncMain && !progTrackBoosted)
tripValue=progTripValue;
// Trackname for diag messages later
const FSH*trackname = isMainTrack ? F("MAIN") : F("PROG");
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=motorDriver->getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPowerMode(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (MotorDriver::commonFaultPin) {
if (lastCurrent <= tripValue) {
setPowerMode(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %S"), trackname);
} else {
DIAG(F("%S FAULT PIN ACTIVE - OVERLOAD"), trackname);
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
}
}
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPowerMode(POWERMODE::OVERLOAD);
unsigned int mA=motorDriver->raw2mA(lastCurrent);
unsigned int maxmA=motorDriver->raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("%S TRACK POWER OVERLOAD current=%d max=%d offtime=%d"), trackname, mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("%S TRACK POWER RESET delay=%d"), trackname, sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}
// For each state of the wave nextState=stateTransform[currentState]
const WAVE_STATE DCCWaveform::stateTransform[]={
/* WAVE_START -> */ WAVE_PENDING,
@ -282,88 +206,6 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
sentResetsSincePacket=0;
}
// Operations applicable to PROG track ONLY.
// (yes I know I could have subclassed the main track but...)
void DCCWaveform::setAckBaseline() {
if (isMainTrack) return;
int baseline=motorDriver->getCurrentRaw();
ackThreshold= baseline + motorDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %uus and %uus"),
baseline,motorDriver->raw2mA(baseline),
ackThreshold,motorDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
}
void DCCWaveform::setAckPending() {
if (isMainTrack) return;
ackMaxCurrent=0;
ackPulseStart=0;
ackPulseDuration=0;
ackDetected=false;
ackCheckStart=millis();
numAckSamples=0;
numAckGaps=0;
ackPending=true; // interrupt routines will now take note
}
byte DCCWaveform::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%uuS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,motorDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void DCCWaveform::checkAck() {
// This function operates in interrupt() time so must be fast and can't DIAG
if (sentResetsSincePacket > 6) { //ACK timeout
ackCheckDuration=millis()-ackCheckStart;
ackPending = false;
return;
}
int current=motorDriver->getCurrentRaw();
numAckSamples++;
if (current > ackMaxCurrent) ackMaxCurrent=current;
// An ACK is a pulse lasting between minAckPulseDuration and maxAckPulseDuration uSecs (refer @haba)
if (current>ackThreshold) {
if (trailingEdgeCounter > 0) {
numAckGaps++;
trailingEdgeCounter = 0;
}
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
// if we reach to this point, we have
// detected trailing edge of pulse
if (trailingEdgeCounter == 0) {
ackPulseDuration=micros()-ackPulseStart;
}
// but we do not trust it yet and return (which will force another
// measurement) and first the third time around with low current
// the ack detection will be finalized.
if (trailingEdgeCounter < 2) {
trailingEdgeCounter++;
return;
}
trailingEdgeCounter = 0;
if (ackPulseDuration>=minAckPulseDuration && ackPulseDuration<=maxAckPulseDuration) {
ackCheckDuration=millis()-ackCheckStart;
ackDetected=true;
ackPending=false;
transmitRepeats=0; // shortcut remaining repeat packets
return; // we have a genuine ACK result
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}
#pragma GCC pop_options

View File

@ -26,10 +26,7 @@
#include "MotorDriver.h"
// Wait times for power management. Unit: milliseconds
const int POWER_SAMPLE_ON_WAIT = 100;
const int POWER_SAMPLE_OFF_WAIT = 1000;
const int POWER_SAMPLE_OVERLOAD_WAIT = 20;
// Number of preamble bits.
const int PREAMBLE_BITS_MAIN = 16;
@ -45,7 +42,6 @@ enum WAVE_STATE : byte {WAVE_START=0,WAVE_MID_1=1,WAVE_HIGH_0=2,WAVE_MID_0=3,WA
// one instance is created for each track.
enum class POWERMODE : byte { OFF, ON, OVERLOAD };
const byte idlePacket[] = {0xFF, 0x00, 0xFF};
const byte resetPacket[] = {0x00, 0x00, 0x00};
@ -53,66 +49,24 @@ const byte resetPacket[] = {0x00, 0x00, 0x00};
class DCCWaveform {
public:
DCCWaveform( byte preambleBits, bool isMain);
static void begin(MotorDriver * mainDriver, MotorDriver * progDriver);
static void loop(bool ackManagerActive);
static void begin();
static void loop();
static DCCWaveform mainTrack;
static DCCWaveform progTrack;
void beginTrack();
void setPowerMode(POWERMODE);
POWERMODE getPowerMode();
void checkPowerOverload(bool ackManagerActive);
inline int get1024Current() {
if (powerMode == POWERMODE::ON)
return (int)(lastCurrent*(long int)1024/motorDriver->getRawCurrentTripValue());
return 0;
}
inline int getCurrentmA() {
if (powerMode == POWERMODE::ON)
return motorDriver->raw2mA(lastCurrent);
return 0;
}
inline int getMaxmA() {
if (maxmA == 0) { //only calculate this for first request, it doesn't change
maxmA = motorDriver->raw2mA(motorDriver->getRawCurrentTripValue()); //TODO: replace with actual max value or calc
}
return maxmA;
}
inline int getTripmA() {
if (tripmA == 0) { //only calculate this for first request, it doesn't change
tripmA = motorDriver->raw2mA(motorDriver->getRawCurrentTripValue());
}
return tripmA;
}
static void setJoin(bool join);
static bool isJoined() { return progTrackSyncMain;}
void clearRepeats() {pendingRepeats=0;}
void schedulePacket(const byte buffer[], byte byteCount, byte repeats);
volatile bool packetPending;
volatile byte sentResetsSincePacket;
volatile bool autoPowerOff=false;
void setAckBaseline(); //prog track only
void setAckPending(); //prog track only
byte getAck(); //prog track only 0=NACK, 1=ACK 2=keep waiting
static bool progTrackSyncMain; // true when prog track is a siding switched to main
static bool progTrackBoosted; // true when prog track is not current limited
inline void doAutoPowerOff() {
if (autoPowerOff) {
setPowerMode(POWERMODE::OFF);
autoPowerOff=false;
}
};
inline bool canMeasureCurrent() {
return motorDriver->canMeasureCurrent();
};
inline void setAckLimit(int mA) {
ackLimitmA = mA;
}
inline void setMinAckPulseDuration(unsigned int i) {
minAckPulseDuration = i;
}
inline void setMaxAckPulseDuration(unsigned int i) {
maxAckPulseDuration = i;
}
volatile byte sentResetsSincePacket;
static void setJoinRelayPin(byte joinRelayPin);
static int16_t joinRelay;
private:
static bool progTrackSyncMain; // true when prog track is a siding switched to main
// For each state of the wave nextState=stateTransform[currentState]
static const WAVE_STATE stateTransform[6];
@ -122,10 +76,8 @@ class DCCWaveform {
static void interruptHandler();
void interrupt2();
void checkAck();
bool isMainTrack;
MotorDriver* motorDriver;
// Transmission controller
byte transmitPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte transmitLength;
@ -138,38 +90,6 @@ class DCCWaveform {
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte pendingLength;
byte pendingRepeats;
int lastCurrent;
static int progTripValue;
int maxmA;
int tripmA;
// current sampling
POWERMODE powerMode;
unsigned long lastSampleTaken;
unsigned int sampleDelay;
// Trip current for programming track, 250mA. Change only if you really
// need to be non-NMRA-compliant because of decoders that are not either.
static const int TRIP_CURRENT_PROG=250;
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
unsigned int power_good_counter = 0;
// ACK management (Prog track only)
volatile bool ackPending;
volatile bool ackDetected;
int ackThreshold;
int ackLimitmA = 60;
int ackMaxCurrent;
unsigned long ackCheckStart; // millis
unsigned int ackCheckDuration; // millis
unsigned int ackPulseDuration; // micros
unsigned long ackPulseStart; // micros
unsigned int minAckPulseDuration = 4000; // micros
unsigned int maxAckPulseDuration = 8500; // micros
volatile static uint8_t numAckGaps;
volatile static uint8_t numAckSamples;
static uint8_t trailingEdgeCounter;
};
#endif

View File

@ -50,7 +50,7 @@
#include "DCCEXParser.h"
#include "Turnouts.h"
#include "CommandDistributor.h"
#include "TrackManager.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
@ -465,10 +465,14 @@ void RMFT2::createNewTask(int route, uint16_t cab) {
void RMFT2::driveLoco(byte speed) {
if (loco<=0) return; // Prevent broadcast!
if (diag) DIAG(F("EXRAIL drive %d %d %d"),loco,speed,forward^invert);
if (DCCWaveform::mainTrack.getPowerMode()==POWERMODE::OFF) {
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
/* TODO.....
power on appropriate track if DC or main if dcc
if (TrackManager::getMainPowerMode()==POWERMODE::OFF) {
TrackManager::setMainPower(POWERMODE::ON);
CommandDistributor::broadcastPower();
}
**********/
DCC::setThrottle(loco,speed, forward^invert);
speedo=speed;
}
@ -648,9 +652,8 @@ void RMFT2::loop2() {
break;
case OPCODE_POWEROFF:
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
DCC::setProgTrackSyncMain(false);
TrackManager::setPower(POWERMODE::OFF);
DCCWaveform::setJoin(false);
CommandDistributor::broadcastPower();
break;
@ -789,14 +792,13 @@ void RMFT2::loop2() {
return;
case OPCODE_JOIN:
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
DCC::setProgTrackSyncMain(true);
TrackManager::setPower(POWERMODE::ON);
DCCWaveform::setJoin(true);
CommandDistributor::broadcastPower();
break;
case OPCODE_UNJOIN:
DCC::setProgTrackSyncMain(false);
DCCWaveform::setJoin(false);
CommandDistributor::broadcastPower();
break;

View File

@ -82,6 +82,12 @@ MotorDriver::MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8
else
DIAG(F("MotorDriver currentPin=A%d, senseOffset=%d, rawCurrentTripValue(relative to offset)=%d"),
currentPin-A0, senseOffset,rawCurrentTripValue);
// prepare values for current detection
sampleDelay = 0;
lastSampleTaken = millis();
progTripValue = mA2raw(TRIP_CURRENT_PROG);
}
bool MotorDriver::isPWMCapable() {
@ -89,7 +95,8 @@ bool MotorDriver::isPWMCapable() {
}
void MotorDriver::setPower(bool on) {
void MotorDriver::setPower(POWERMODE mode) {
bool on=mode==POWERMODE::ON;
if (on) {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
@ -98,6 +105,7 @@ void MotorDriver::setPower(bool on) {
setHIGH(fastPowerPin);
}
else setLOW(fastPowerPin);
powerMode=mode;
}
// setBrake applies brake if on == true. So to get
@ -190,3 +198,65 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
result.maskLOW = ~result.maskHIGH;
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
// Trackname for diag messages later
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (commonFaultPin) {
if (lastCurrent <= tripValue) {
setPower(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %d"), trackno);
} else {
DIAG(F("TRACK %d FAULT PIN ACTIVE - OVERLOAD"), trackno);
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
}
}
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPower(POWERMODE::OVERLOAD);
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("TRACK %d POWER OVERLOAD current=%d max=%d offtime=%d"), trackno, mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPower(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("TRACK %d POWER RESET delay=%d"), trackno, sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}

View File

@ -43,11 +43,15 @@ struct FASTPIN {
};
#endif
enum class POWERMODE : byte { OFF, ON, OVERLOAD };
class MotorDriver {
public:
MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin);
virtual void setPower( bool on);
virtual void setPower( POWERMODE mode);
virtual POWERMODE getPower() { return powerMode;}
virtual void setSignal( bool high);
virtual void setBrake( bool on);
virtual int getCurrentRaw();
@ -63,6 +67,7 @@ class MotorDriver {
inline byte getFaultPin() {
return faultPin;
}
void checkPowerOverload(bool useProgLimit, byte trackno);
private:
void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result);
void getFastPin(const FSH* type,int pin, FASTPIN & result) {
@ -76,6 +81,26 @@ class MotorDriver {
int senseOffset;
unsigned int tripMilliamps;
int rawCurrentTripValue;
// current sampling
POWERMODE powerMode;
unsigned long lastSampleTaken;
unsigned int sampleDelay;
int progTripValue;
int lastCurrent;
int maxmA;
int tripmA;
// Wait times for power management. Unit: milliseconds
static const int POWER_SAMPLE_ON_WAIT = 100;
static const int POWER_SAMPLE_OFF_WAIT = 1000;
static const int POWER_SAMPLE_OVERLOAD_WAIT = 20;
// Trip current for programming track, 250mA. Change only if you really
// need to be non-NMRA-compliant because of decoders that are not either.
static const int TRIP_CURRENT_PROG=250;
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
unsigned int power_good_counter = 0;
#if defined(ARDUINO_TEENSY40) || defined(ARDUINO_TEENSY41)
static bool disableInterrupts() {
uint32_t primask;

View File

@ -19,6 +19,7 @@
*/
#include "TrackManager.h"
#include "FSH.h"
#include "DCCWaveform.h"
#include "MotorDriver.h"
#include "DIAG.h"
// Virtualised Motor shield multi-track hardware Interface
@ -35,6 +36,8 @@ const int16_t HASH_KEYWORD_DC = 9192; // TODO
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackMode[MAX_TRACKS];
POWERMODE TrackManager::mainPowerGuess=POWERMODE::OFF;
void TrackManager::Setup(const FSH * shieldname,
MotorDriver * track0, MotorDriver * track1, MotorDriver * track2,
@ -50,15 +53,19 @@ void TrackManager::Setup(const FSH * shieldname,
track[6]=track6;
track[7]=track7;
trackMode[0]=TRACK_MODE_MAIN;
trackMode[1]=TRACK_MODE_PROG;
trackMode[2]=TRACK_MODE_OFF;
trackMode[3]=TRACK_MODE_OFF;
trackMode[4]=TRACK_MODE_OFF;
trackMode[5]=TRACK_MODE_OFF;
trackMode[6]=TRACK_MODE_OFF;
trackMode[7]=TRACK_MODE_OFF;
setTrackMode(0,TRACK_MODE_MAIN);
setTrackMode(1,TRACK_MODE_PROG);
setTrackMode(2,TRACK_MODE_OFF);
setTrackMode(3,TRACK_MODE_OFF);
setTrackMode(4,TRACK_MODE_OFF);
setTrackMode(5,TRACK_MODE_OFF);
setTrackMode(6,TRACK_MODE_OFF);
setTrackMode(7,TRACK_MODE_OFF);
// TODO Fault pin config for odd motor boards (example pololu)
// MotorDriver::commonFaultPin = ((mainDriver->getFaultPin() == progDriver->getFaultPin())
// && (mainDriver->getFaultPin() != UNUSED_PIN));
DIAG(F("Signal pin config: %S accuracy waveform"),
MotorDriver::usePWM ? F("high") : F("normal") );
}
void TrackManager::setDCCSignal( bool on) {
@ -80,11 +87,16 @@ void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
bool TrackManager::setTrackMode(byte trackToSet, int16_t modeOrAddr) {
if (trackToSet>=8 || track[trackToSet]==NULL) return false;
if (modeOrAddr==TRACK_MODE_PROG) {
// only allow 1 track to be prog
for (byte t=0;t<8;t++)
if (trackMode[t]==TRACK_MODE_PROG) trackMode[t]=TRACK_MODE_OFF;
}
trackMode[trackToSet]=modeOrAddr;
// re-evaluate HighAccuracy mode
bool canDo=true;
for (byte t=0;t<8;t++)
if (trackMode[t]==TRACK_MODE_MAIN ||trackMode[t]==TRACK_MODE_PROG )
if (trackMode[t]==TRACK_MODE_MAIN ||trackMode[t]==TRACK_MODE_PROG)
canDo &= track[t]->isPWMCapable();
MotorDriver::usePWM=canDo;
return true;
@ -92,7 +104,6 @@ bool TrackManager::setTrackMode(byte trackToSet, int16_t modeOrAddr) {
bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
{
int16_t mode;
if (params==0) { // <J> List track assignments
for (byte t=0;t<8;t++) {
@ -134,4 +145,39 @@ bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
return false;
}
byte TrackManager::nextCycleTrack=MAX_TRACKS;
void TrackManager::loop(bool dontLimitProg) {
nextCycleTrack++;
if (nextCycleTrack>=MAX_TRACKS) nextCycleTrack=0;
if (track[nextCycleTrack]==NULL) return;
MotorDriver * motorDriver=track[nextCycleTrack];
bool useProgLimit=dontLimitProg? false: trackMode[nextCycleTrack]==TRACK_MODE_PROG;
motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack);
}
MotorDriver * TrackManager::getProgDriver() {
for (byte t=0;t<8;t++)
if (trackMode[t]==TRACK_MODE_PROG) return track[t];
return NULL;
}
void TrackManager::setPower2(bool setProg,POWERMODE mode) {
if (setProg) {
LOOPMODE(TRACK_MODE_PROG,setPower(mode))
}
else {
mainPowerGuess=mode;
for (byte t=0;t<8;t++)
if (track[t]
&& trackMode[t]!=TRACK_MODE_OFF
&& trackMode[t]!=TRACK_MODE_PROG
) track[t]->setPower(mode);
}
}
POWERMODE TrackManager::getProgPower() {
for (byte t=0;t<8;t++)
if (trackMode[t]==TRACK_MODE_PROG)
return track[t]->getPower();
return POWERMODE::OFF;
}

View File

@ -41,16 +41,27 @@ class TrackManager {
static void setCutout( bool on);
static void setPROGSignal( bool on);
static void setDCSignal(int16_t cab, byte speedbyte);
static MotorDriver * getProgDriver();
static void setPower2(bool progTrack,POWERMODE mode);
static void setPower(POWERMODE mode) {setMainPower(mode); setProgPower(mode);}
static void setMainPower(POWERMODE mode) {setPower2(false,mode);}
static void setProgPower(POWERMODE mode) {setPower2(true,mode);}
static const int16_t TRACK_MODE_MAIN=32760;
static const int16_t TRACK_MODE_PROG=32761;
static const int16_t TRACK_MODE_OFF=0;
static const int16_t MAX_TRACKS=8;
static bool setTrackMode(byte track, int16_t DCaddrOrMode);
static bool parseJ(Print * stream, int16_t params, int16_t p[]);
static void loop(bool dontLimitProg);
static POWERMODE getMainPower() {return mainPowerGuess;}
static POWERMODE getProgPower();
private:
static byte nextCycleTrack;
static POWERMODE mainPowerGuess;
static MotorDriver* track[MAX_TRACKS];
static int16_t trackMode[MAX_TRACKS]; // dc address or TRACK_MODE_DCC, TRACK_MODE_PROG, TRACK_MODE_OFF
};

View File

@ -55,6 +55,7 @@
#include "version.h"
#include "EXRAIL2.h"
#include "CommandDistributor.h"
#include "TrackManager.h"
#define LOOPLOCOS(THROTTLECHAR, CAB) for (int loco=0;loco<MAX_MY_LOCO;loco++) \
if ((myLocos[loco].throttle==THROTTLECHAR || '*'==THROTTLECHAR) && (CAB<0 || myLocos[loco].cab==CAB))
@ -151,9 +152,12 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
break;
case 'P':
if (cmd[1]=='P' && cmd[2]=='A' ) { //PPA power mode
DCCWaveform::mainTrack.setPowerMode(cmd[3]=='1'?POWERMODE::ON:POWERMODE::OFF);
TrackManager::setMainPower(cmd[3]=='1'?POWERMODE::ON:POWERMODE::OFF);
/* TODO
if (MotorDriver::commonFaultPin) // commonFaultPin prevents individual track handling
DCCWaveform::progTrack.setPowerMode(cmd[3]=='1'?POWERMODE::ON:POWERMODE::OFF);
*/
CommandDistributor::broadcastPower();
}
#if defined(EXRAIL_ACTIVE)
@ -204,7 +208,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
StringFormatter::send(stream,F("VN2.0\nHTDCC-EX\nRL0\n"));
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
StringFormatter::send(stream,F("PPA%x\n"),DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON);
StringFormatter::send(stream,F("PPA%x\n"),TrackManager::getMainPower()==POWERMODE::ON);
#ifdef EXRAIL_ACTIVE
RMFT2::emitWithrottleRoster(stream);
#endif
@ -530,8 +534,8 @@ void WiThrottle::getLocoCallback(int16_t locoid) {
char addcmd[20]={'M',stashThrottleChar,'+', addrchar};
itoa(locoid,addcmd+4,10);
stashInstance->multithrottle(stashStream, (byte *)addcmd);
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
DCC::setProgTrackSyncMain(true); // <1 JOIN> so we can drive loco away
TrackManager::setMainPower(POWERMODE::ON);
DCCWaveform::setJoin(true); // <1 JOIN> so we can drive loco away
}
}
stashStream->commit();