mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-22 23:56:13 +01:00
STM32 Native I2C first working version
Working for reads and writes, needs more testing and perhaps a polish.
This commit is contained in:
parent
83325ebf78
commit
cc2846d932
|
@ -539,7 +539,8 @@ private:
|
|||
uint8_t deviceAddress;
|
||||
const uint8_t *sendBuffer;
|
||||
uint8_t *receiveBuffer;
|
||||
|
||||
uint8_t transactionState = 0;
|
||||
|
||||
volatile uint32_t pendingClockSpeed = 0;
|
||||
|
||||
void startTransaction();
|
||||
|
|
|
@ -49,7 +49,11 @@ extern "C" void I2C1_ER_IRQHandler(void) {
|
|||
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely Nucleo-64 variants
|
||||
I2C_TypeDef *s = I2C1;
|
||||
#define I2C_IRQn I2C1_EV_IRQn
|
||||
#define I2C_BUSFREQ 16
|
||||
|
||||
// Peripheral Input Clock speed in MHz.
|
||||
// For STM32F446RE, the speed is 45MHz. Ideally, this should be determined
|
||||
// at run-time from the APB1 clock, as it can vary from STM32 family to family.
|
||||
#define I2C_PERIPH_CLK 45
|
||||
|
||||
// I2C SR1 Status Register #1 bit definitions for convenience
|
||||
// #define I2C_SR1_SMBALERT (1<<15) // SMBus alert
|
||||
|
@ -83,15 +87,20 @@ I2C_TypeDef *s = I2C1;
|
|||
// #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C
|
||||
// #define I2C_CR1_PE (1<<0) // I2C Peripheral enable
|
||||
|
||||
// States of the STM32 I2C driver state machine
|
||||
enum {TS_IDLE,TS_START,TS_W_ADDR,TS_W_DATA,TS_W_STOP,TS_R_ADDR,TS_R_DATA,TS_R_STOP};
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* Set I2C clock speed register. This should only be called outside of
|
||||
* a transmission. The I2CManagerClass::_setClock() function ensures
|
||||
* that it is only called at the beginning of an I2C transaction.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
||||
return;
|
||||
|
||||
// Calculate a rise time appropriate to the requested bus speed
|
||||
// Use 10x the rise time spec to enable integer divide of 62.5ns clock period
|
||||
// Use 10x the rise time spec to enable integer divide of 50ns clock period
|
||||
uint16_t t_rise;
|
||||
uint32_t ccr_freq;
|
||||
|
||||
|
@ -110,44 +119,31 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
|||
if (i2cClockSpeed > 400000L)
|
||||
i2cClockSpeed = 400000L;
|
||||
|
||||
t_rise = 0x06; // (300ns /62.5ns) + 1;
|
||||
t_rise = 300; // nanoseconds
|
||||
}
|
||||
else
|
||||
{
|
||||
i2cClockSpeed = 100000L;
|
||||
t_rise = 0x11; // (1000ns /62.5ns) + 1;
|
||||
t_rise = 1000; // nanoseconds
|
||||
}
|
||||
// Configure the rise time register
|
||||
s->TRISE = t_rise;
|
||||
|
||||
// DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed);
|
||||
// Calculate baudrate
|
||||
ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2;
|
||||
s->TRISE = t_rise * I2C_PERIPH_CLK / 1000UL + 1;
|
||||
|
||||
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
||||
// Bit 14: Duty, fast mode duty cycle
|
||||
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
||||
if (i2cClockSpeed > 100000L)
|
||||
// Bit 14: Duty, fast mode duty cycle (use 2:1)
|
||||
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns
|
||||
if (i2cClockSpeed > 100000L) {
|
||||
// In fast mode, I2C period is 3 * CCR * TPCLK1.
|
||||
ccr_freq = I2C_PERIPH_CLK * 1000000 / 3 / i2cClockSpeed;
|
||||
s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set
|
||||
else
|
||||
} else {
|
||||
// In standard mode, I2C period is 2 * CCR * TPCLK1.
|
||||
ccr_freq = I2C_PERIPH_CLK * 1000000 / 2 / i2cClockSpeed;
|
||||
s->CCR = (uint16_t)ccr_freq;
|
||||
}
|
||||
|
||||
// Enable the I2C master mode
|
||||
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
digitalWrite(D13, HIGH);
|
||||
DIAG(F("I2C: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -176,18 +172,19 @@ void I2CManagerClass::I2C_init()
|
|||
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
|
||||
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
|
||||
|
||||
// // Software reset the I2C peripheral
|
||||
// Software reset the I2C peripheral
|
||||
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
||||
asm("nop"); // wait a bit... suggestion from online!
|
||||
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
||||
|
||||
// Clear all bits in I2C CR2 register except reserved bits
|
||||
s->CR2 &= 0xE000;
|
||||
// Program the peripheral input clock in CR2 Register in order to generate correct timings
|
||||
s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz
|
||||
|
||||
// set own address to 00 - not really used in master mode
|
||||
I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet
|
||||
// Set I2C peripheral clock frequency
|
||||
s->CR2 |= I2C_PERIPH_CLK;
|
||||
|
||||
// set own address to 00 - not used in master mode
|
||||
I2C1->OAR1 = (1 << 14); // bit 14 should be kept at 1 according to the datasheet
|
||||
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
// Setting NVIC
|
||||
|
@ -205,35 +202,21 @@ void I2CManagerClass::I2C_init()
|
|||
// Bit 8: ITERREN - Error interrupt enable
|
||||
// Bit 7-6: reserved
|
||||
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
|
||||
s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
|
||||
// s->CR2 |= 0x0300; // Enable Event and Error interrupts
|
||||
s->CR2 |= (I2C_CR2_ITBUFEN | I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable Buffer, Event and Error interrupts
|
||||
#endif
|
||||
|
||||
// Calculate baudrate and set default rate for now
|
||||
// Configure the Clock Control Register for 100KHz SCL frequency
|
||||
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
||||
// Bit 14: Duty, fast mode duty cycle
|
||||
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
||||
s->CCR = 0x50;
|
||||
// Bit 11-0: so CCR divisor would be clk / 2 / 100000 (where clk is in Hz)
|
||||
s->CCR = I2C_PERIPH_CLK * 5;
|
||||
|
||||
// Configure the rise time register - max allowed in 1000ns
|
||||
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
|
||||
// Configure the rise time register - max allowed is 1000ns, so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
|
||||
s->TRISE = I2C_PERIPH_CLK + 1; // 1000 ns / 50 ns = 20 + 1 = 21
|
||||
|
||||
// Enable the I2C master mode
|
||||
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
DIAG(F("I2C: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -243,56 +226,27 @@ void I2CManagerClass::I2C_sendStart() {
|
|||
|
||||
// Set counters here in case this is a retry.
|
||||
rxCount = txCount = 0;
|
||||
|
||||
// On a single-master I2C bus, the start bit won't be sent until the bus
|
||||
// state goes to IDLE so we can request it without waiting. On a
|
||||
// multi-master bus, the bus may be BUSY under control of another master,
|
||||
// in which case we can avoid some arbitration failures by waiting until
|
||||
// the bus state is IDLE. We don't do that here.
|
||||
|
||||
// Send start for read operation
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
DIAG(F("I2C_sendStart: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
|
||||
s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception
|
||||
s->CR1 |= I2C_CR1_START; // Generate START
|
||||
// Check there's no STOP still in progress. If we OR the START bit into CR1
|
||||
// and the STOP bit is already set, we could output multiple STOP conditions.
|
||||
while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset
|
||||
|
||||
s->CR1 &= ~I2C_CR1_POS; // Clear the POS bit
|
||||
s->CR1 |= (I2C_CR1_ACK | I2C_CR1_START); // Enable the ACK and generate START
|
||||
transactionState = TS_START;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a stop bit for transmission (does not interrupt)
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStop() {
|
||||
uint32_t temp;
|
||||
|
||||
s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
temp = s->SR1 | s->SR2; // Read the status registers to clear them
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
DIAG(F("I2C_sendStop: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -317,157 +271,182 @@ void I2CManagerClass::I2C_close() {
|
|||
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_handleInterrupt() {
|
||||
volatile uint16_t temp_sr1, temp_sr2, temp;
|
||||
static bool led_lit = false;
|
||||
volatile uint16_t temp_sr1, temp_sr2;
|
||||
|
||||
temp_sr1 = s->SR1;
|
||||
// if (temp_sr1 & I2C_SR1_ADDR)
|
||||
// temp_sr2 = s->SR2;
|
||||
|
||||
// Check to see if start bit sent - SB interrupt!
|
||||
if (temp_sr1 & I2C_SR1_SB)
|
||||
{
|
||||
// If anything to send, initiate write. Otherwise initiate read.
|
||||
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
|
||||
// Check for errors first
|
||||
if (temp_sr1 & (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)) {
|
||||
// Check which error flag is set
|
||||
if (temp_sr1 & I2C_SR1_AF)
|
||||
{
|
||||
// Send address with read flag (1) or'd in
|
||||
s->DR = (deviceAddress << 1) | 1; // send the address
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// // // Special case for 1 byte reads!
|
||||
// if (bytesToReceive == 1)
|
||||
// {
|
||||
// s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
|
||||
// temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
|
||||
// s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
// }
|
||||
// else
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else
|
||||
{
|
||||
// Send address with write flag (0) or'd in
|
||||
s->DR = (deviceAddress << 1) | 0; // send the address
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_ADDR) {
|
||||
// Receive 1 byte (AN2824 figure 2)
|
||||
if (bytesToReceive == 1) {
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte
|
||||
// EV6_1 must be atomic operation (AN2824)
|
||||
// noInterrupts();
|
||||
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
I2C_sendStop(); // send stop
|
||||
// interrupts();
|
||||
}
|
||||
// Receive 2 bytes (AN2824 figure 2)
|
||||
else if (bytesToReceive == 2) {
|
||||
s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next)
|
||||
// EV6_1 must be atomic operation (AN2824)
|
||||
// noInterrupts();
|
||||
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte
|
||||
// interrupts();
|
||||
}
|
||||
else
|
||||
temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_AF)
|
||||
{
|
||||
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
while (s->SR1 & I2C_SR1_AF); // Check AF cleared
|
||||
I2C_sendStop(); // Clear the bus
|
||||
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_ARLO)
|
||||
{
|
||||
// Arbitration lost, restart
|
||||
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop();
|
||||
I2C_sendStart(); // Reinitiate request
|
||||
// state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_BERR)
|
||||
{
|
||||
// Bus error
|
||||
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop(); // Clear the bus
|
||||
completionStatus = I2C_STATUS_BUS_ERROR;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_TXE)
|
||||
{
|
||||
// temp_sr2 = s->SR2;
|
||||
// Master write completed
|
||||
if (temp_sr1 & I2C_SR1_AF) {
|
||||
// Nacked
|
||||
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
// send stop.
|
||||
I2C_sendStop();
|
||||
I2C_sendStop(); // Clear the bus
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else if (bytesToSend) {
|
||||
// Acked, so send next byte
|
||||
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding
|
||||
s->DR = sendBuffer[txCount++];
|
||||
bytesToSend--;
|
||||
// } else if (bytesToReceive) {
|
||||
// // Last sent byte acked and no more to send. Send repeated start, address and read bit.
|
||||
// s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
// I2C_sendStart();
|
||||
// s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
|
||||
} else {
|
||||
// No bytes left to send or receive
|
||||
// Check both TxE/BTF == 1 before generating stop
|
||||
// while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE
|
||||
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF
|
||||
// No more data to send/receive. Initiate a STOP condition and finish
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop();
|
||||
// completionStatus = I2C_STATUS_OK;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_ARLO)
|
||||
{
|
||||
// Arbitration lost, restart
|
||||
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
|
||||
I2C_sendStart(); // Reinitiate request
|
||||
transactionState = TS_START;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_BERR)
|
||||
{
|
||||
// Bus error
|
||||
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
|
||||
I2C_sendStop(); // Clear the bus
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_BUS_ERROR;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_RXNE)
|
||||
{
|
||||
// Master read completed without errors
|
||||
if (bytesToReceive == 1) {
|
||||
s->CR1 &= ~I2C_CR1_ACK; // NAK final byte
|
||||
I2C_sendStop(); // send stop
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive = 0;
|
||||
// completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else {
|
||||
// No error flags, so process event according to current state.
|
||||
switch (transactionState) {
|
||||
case TS_START:
|
||||
if (temp_sr1 & I2C_SR1_SB) {
|
||||
// Event EV5
|
||||
// Start bit has been sent successfully and we have the bus.
|
||||
// If anything to send, initiate write. Otherwise initiate read.
|
||||
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) {
|
||||
// Send address with read flag (1) or'd in
|
||||
s->DR = (deviceAddress << 1) | 1; // send the address
|
||||
transactionState = TS_R_ADDR;
|
||||
} else {
|
||||
// Send address with write flag (0) or'd in
|
||||
s->DR = (deviceAddress << 1) | 0; // send the address
|
||||
transactionState = TS_W_ADDR;
|
||||
}
|
||||
}
|
||||
// SB bit is cleared by writing to DR (already done).
|
||||
break;
|
||||
|
||||
case TS_W_ADDR:
|
||||
if (temp_sr1 & I2C_SR1_ADDR) {
|
||||
// Event EV6
|
||||
// Address sent successfully, device has ack'd in response.
|
||||
if (!bytesToSend) {
|
||||
I2C_sendStop();
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else {
|
||||
transactionState = TS_W_DATA;
|
||||
}
|
||||
}
|
||||
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
break;
|
||||
|
||||
case TS_W_DATA:
|
||||
if (temp_sr1 & I2C_SR1_TXE) {
|
||||
// Event EV8_1/EV8/EV8_2
|
||||
// Transmitter empty, write a byte to it.
|
||||
if (bytesToSend) {
|
||||
s->DR = sendBuffer[txCount++];
|
||||
bytesToSend--;
|
||||
}
|
||||
// See if we're finished sending
|
||||
if (!bytesToSend) {
|
||||
// Wait for last byte to be sent.
|
||||
transactionState = TS_W_STOP;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case TS_W_STOP:
|
||||
if ((temp_sr1 & I2C_SR1_BTF) && (temp_sr1 & I2C_SR1_TXE)) {
|
||||
// Event EV8_2
|
||||
// Write finished.
|
||||
if (bytesToReceive) {
|
||||
// Start a read operation by sending (re)start
|
||||
I2C_sendStart();
|
||||
} else {
|
||||
// Done.
|
||||
I2C_sendStop();
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case TS_R_ADDR:
|
||||
if (temp_sr1 & I2C_SR1_ADDR) {
|
||||
// Event EV6
|
||||
// Address sent for receive.
|
||||
// The next bit is different depending on whether there are
|
||||
// 1 byte, 2 bytes or >2 bytes to be received, in accordance with the
|
||||
// Programmers Reference RM0390.
|
||||
if (bytesToReceive == 1) {
|
||||
// Receive 1 byte
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ack
|
||||
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
transactionState = TS_R_STOP;
|
||||
// Next step will occur after a BTF interrupt
|
||||
} else if (bytesToReceive == 2) {
|
||||
// Receive 2 bytes
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte
|
||||
s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag
|
||||
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
transactionState = TS_R_STOP;
|
||||
} else {
|
||||
// >2 bytes, just wait for bytes to come in and ack them for the time being
|
||||
// (ack flag has already been set).
|
||||
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
transactionState = TS_R_DATA;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case TS_R_DATA:
|
||||
// Event EV7/EV7_1
|
||||
if (temp_sr1 & I2C_SR1_BTF) {
|
||||
// Byte received in receiver - read next byte
|
||||
if (bytesToReceive == 3) {
|
||||
// Getting close to the last byte, so a specific sequence is recommended.
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Reset ack for next byte received.
|
||||
transactionState = TS_R_STOP;
|
||||
}
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive--;
|
||||
}
|
||||
break;
|
||||
|
||||
case TS_R_STOP:
|
||||
if (temp_sr1 & I2C_SR1_BTF) {
|
||||
// Event EV7 (last one)
|
||||
// When we've got here, the receiver has got the last two bytes
|
||||
// (or one byte, if only one byte is being received),
|
||||
// and NAK has already been sent, so we need to read from the receiver.
|
||||
if (bytesToReceive) {
|
||||
if (bytesToReceive > 1)
|
||||
I2C_sendStop();
|
||||
while(bytesToReceive) {
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte(s)
|
||||
bytesToReceive--;
|
||||
}
|
||||
// Finish.
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
} else if (temp_sr1 & I2C_SR1_RXNE) {
|
||||
if (bytesToReceive == 1) {
|
||||
// One byte on a single-byte transfer. Ack has already been set.
|
||||
I2C_sendStop();
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive--;
|
||||
// Finish.
|
||||
transactionState = TS_IDLE;
|
||||
completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else
|
||||
s->SR1 &= I2C_SR1_RXNE; // Acknowledge interrupt
|
||||
}
|
||||
break;
|
||||
}
|
||||
else if (bytesToReceive == 2)
|
||||
{
|
||||
// Also needs to be atomic!
|
||||
// noInterrupts();
|
||||
I2C_sendStop();
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
// interrupts();
|
||||
}
|
||||
else if (bytesToReceive)
|
||||
{
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// DIAG(F("Unhandled I2C interrupt!"));
|
||||
led_lit = ~led_lit;
|
||||
digitalWrite(D13, led_lit);
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user