1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-26 17:46:14 +01:00

STM32 Native I2C first working version

Working for reads and writes, needs more testing and perhaps a polish.
This commit is contained in:
Neil McKechnie 2023-03-27 00:20:59 +01:00
parent 83325ebf78
commit cc2846d932
3 changed files with 213 additions and 233 deletions

View File

@ -539,7 +539,8 @@ private:
uint8_t deviceAddress; uint8_t deviceAddress;
const uint8_t *sendBuffer; const uint8_t *sendBuffer;
uint8_t *receiveBuffer; uint8_t *receiveBuffer;
uint8_t transactionState = 0;
volatile uint32_t pendingClockSpeed = 0; volatile uint32_t pendingClockSpeed = 0;
void startTransaction(); void startTransaction();

View File

@ -49,7 +49,11 @@ extern "C" void I2C1_ER_IRQHandler(void) {
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely Nucleo-64 variants // Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely Nucleo-64 variants
I2C_TypeDef *s = I2C1; I2C_TypeDef *s = I2C1;
#define I2C_IRQn I2C1_EV_IRQn #define I2C_IRQn I2C1_EV_IRQn
#define I2C_BUSFREQ 16
// Peripheral Input Clock speed in MHz.
// For STM32F446RE, the speed is 45MHz. Ideally, this should be determined
// at run-time from the APB1 clock, as it can vary from STM32 family to family.
#define I2C_PERIPH_CLK 45
// I2C SR1 Status Register #1 bit definitions for convenience // I2C SR1 Status Register #1 bit definitions for convenience
// #define I2C_SR1_SMBALERT (1<<15) // SMBus alert // #define I2C_SR1_SMBALERT (1<<15) // SMBus alert
@ -83,15 +87,20 @@ I2C_TypeDef *s = I2C1;
// #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C // #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C
// #define I2C_CR1_PE (1<<0) // I2C Peripheral enable // #define I2C_CR1_PE (1<<0) // I2C Peripheral enable
// States of the STM32 I2C driver state machine
enum {TS_IDLE,TS_START,TS_W_ADDR,TS_W_DATA,TS_W_STOP,TS_R_ADDR,TS_R_DATA,TS_R_STOP};
/*************************************************************************** /***************************************************************************
* Set I2C clock speed register. This should only be called outside of * Set I2C clock speed register. This should only be called outside of
* a transmission. The I2CManagerClass::_setClock() function ensures * a transmission. The I2CManagerClass::_setClock() function ensures
* that it is only called at the beginning of an I2C transaction. * that it is only called at the beginning of an I2C transaction.
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) { void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
return;
// Calculate a rise time appropriate to the requested bus speed // Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 62.5ns clock period // Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise; uint16_t t_rise;
uint32_t ccr_freq; uint32_t ccr_freq;
@ -110,44 +119,31 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
if (i2cClockSpeed > 400000L) if (i2cClockSpeed > 400000L)
i2cClockSpeed = 400000L; i2cClockSpeed = 400000L;
t_rise = 0x06; // (300ns /62.5ns) + 1; t_rise = 300; // nanoseconds
} }
else else
{ {
i2cClockSpeed = 100000L; i2cClockSpeed = 100000L;
t_rise = 0x11; // (1000ns /62.5ns) + 1; t_rise = 1000; // nanoseconds
} }
// Configure the rise time register // Configure the rise time register
s->TRISE = t_rise; s->TRISE = t_rise * I2C_PERIPH_CLK / 1000UL + 1;
// DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed);
// Calculate baudrate
ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2;
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle // Bit 14: Duty, fast mode duty cycle (use 2:1)
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) // Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns
if (i2cClockSpeed > 100000L) if (i2cClockSpeed > 100000L) {
// In fast mode, I2C period is 3 * CCR * TPCLK1.
ccr_freq = I2C_PERIPH_CLK * 1000000 / 3 / i2cClockSpeed;
s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set
else } else {
// In standard mode, I2C period is 2 * CCR * TPCLK1.
ccr_freq = I2C_PERIPH_CLK * 1000000 / 2 / i2cClockSpeed;
s->CCR = (uint16_t)ccr_freq; s->CCR = (uint16_t)ccr_freq;
}
// Enable the I2C master mode // Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C s->CR1 |= I2C_CR1_PE; // Enable I2C
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
digitalWrite(D13, HIGH);
DIAG(F("I2C: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -176,18 +172,19 @@ void I2CManagerClass::I2C_init()
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
// // Software reset the I2C peripheral // Software reset the I2C peripheral
s->CR1 |= I2C_CR1_SWRST; // reset the I2C s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online! asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
// Clear all bits in I2C CR2 register except reserved bits // Clear all bits in I2C CR2 register except reserved bits
s->CR2 &= 0xE000; s->CR2 &= 0xE000;
// Program the peripheral input clock in CR2 Register in order to generate correct timings
s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz
// set own address to 00 - not really used in master mode // Set I2C peripheral clock frequency
I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet s->CR2 |= I2C_PERIPH_CLK;
// set own address to 00 - not used in master mode
I2C1->OAR1 = (1 << 14); // bit 14 should be kept at 1 according to the datasheet
#if defined(I2C_USE_INTERRUPTS) #if defined(I2C_USE_INTERRUPTS)
// Setting NVIC // Setting NVIC
@ -205,35 +202,21 @@ void I2CManagerClass::I2C_init()
// Bit 8: ITERREN - Error interrupt enable // Bit 8: ITERREN - Error interrupt enable
// Bit 7-6: reserved // Bit 7-6: reserved
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz) // Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts s->CR2 |= (I2C_CR2_ITBUFEN | I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable Buffer, Event and Error interrupts
// s->CR2 |= 0x0300; // Enable Event and Error interrupts
#endif #endif
// Calculate baudrate and set default rate for now // Calculate baudrate and set default rate for now
// Configure the Clock Control Register for 100KHz SCL frequency // Configure the Clock Control Register for 100KHz SCL frequency
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle // Bit 14: Duty, fast mode duty cycle
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) // Bit 11-0: so CCR divisor would be clk / 2 / 100000 (where clk is in Hz)
s->CCR = 0x50; s->CCR = I2C_PERIPH_CLK * 5;
// Configure the rise time register - max allowed in 1000ns // Configure the rise time register - max allowed is 1000ns, so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1 s->TRISE = I2C_PERIPH_CLK + 1; // 1000 ns / 50 ns = 20 + 1 = 21
// Enable the I2C master mode // Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C s->CR1 |= I2C_CR1_PE; // Enable I2C
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -243,56 +226,27 @@ void I2CManagerClass::I2C_sendStart() {
// Set counters here in case this is a retry. // Set counters here in case this is a retry.
rxCount = txCount = 0; rxCount = txCount = 0;
// On a single-master I2C bus, the start bit won't be sent until the bus // On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a // state goes to IDLE so we can request it without waiting. On a
// multi-master bus, the bus may be BUSY under control of another master, // multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until // in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here. // the bus state is IDLE. We don't do that here.
// Send start for read operation // Check there's no STOP still in progress. If we OR the START bit into CR1
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further // and the STOP bit is already set, we could output multiple STOP conditions.
// writes to CR1 while STOP is being executed! while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset
// Wait for bus to be clear?
unsigned long startTime = micros(); s->CR1 &= ~I2C_CR1_POS; // Clear the POS bit
bool timeout = false; s->CR1 |= (I2C_CR1_ACK | I2C_CR1_START); // Enable the ACK and generate START
while (s->SR2 & I2C_SR2_BUSY) { transactionState = TS_START;
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C_sendStart: SR2->BUSY timeout"));
// delay(1000);
}
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception
s->CR1 |= I2C_CR1_START; // Generate START
} }
/*************************************************************************** /***************************************************************************
* Initiate a stop bit for transmission (does not interrupt) * Initiate a stop bit for transmission (does not interrupt)
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::I2C_sendStop() { void I2CManagerClass::I2C_sendStop() {
uint32_t temp;
s->CR1 |= I2C_CR1_STOP; // Stop I2C s->CR1 |= I2C_CR1_STOP; // Stop I2C
temp = s->SR1 | s->SR2; // Read the status registers to clear them
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C_sendStop: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -317,157 +271,182 @@ void I2CManagerClass::I2C_close() {
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()). * (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() { void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2, temp; volatile uint16_t temp_sr1, temp_sr2;
static bool led_lit = false;
temp_sr1 = s->SR1; temp_sr1 = s->SR1;
// if (temp_sr1 & I2C_SR1_ADDR)
// temp_sr2 = s->SR2;
// Check to see if start bit sent - SB interrupt! // Check for errors first
if (temp_sr1 & I2C_SR1_SB) if (temp_sr1 & (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)) {
{ // Check which error flag is set
// If anything to send, initiate write. Otherwise initiate read. if (temp_sr1 & I2C_SR1_AF)
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
{ {
// Send address with read flag (1) or'd in
s->DR = (deviceAddress << 1) | 1; // send the address
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// // // Special case for 1 byte reads!
// if (bytesToReceive == 1)
// {
// s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
// temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
// s->CR1 |= I2C_CR1_STOP; // Stop I2C
// }
// else
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else
{
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else if (temp_sr1 & I2C_SR1_ADDR) {
// Receive 1 byte (AN2824 figure 2)
if (bytesToReceive == 1) {
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte
// EV6_1 must be atomic operation (AN2824)
// noInterrupts();
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
I2C_sendStop(); // send stop
// interrupts();
}
// Receive 2 bytes (AN2824 figure 2)
else if (bytesToReceive == 2) {
s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next)
// EV6_1 must be atomic operation (AN2824)
// noInterrupts();
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte
// interrupts();
}
else
temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else if (temp_sr1 & I2C_SR1_AF)
{
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
while (s->SR1 & I2C_SR1_AF); // Check AF cleared
I2C_sendStop(); // Clear the bus
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_ARLO)
{
// Arbitration lost, restart
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop();
I2C_sendStart(); // Reinitiate request
// state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_BERR)
{
// Bus error
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop(); // Clear the bus
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_TXE)
{
// temp_sr2 = s->SR2;
// Master write completed
if (temp_sr1 & I2C_SR1_AF) {
// Nacked
s->SR1 &= ~(I2C_SR1_AF); // Clear AF s->SR1 &= ~(I2C_SR1_AF); // Clear AF
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK I2C_sendStop(); // Clear the bus
// send stop. transactionState = TS_IDLE;
I2C_sendStop();
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} else if (bytesToSend) { }
// Acked, so send next byte else if (temp_sr1 & I2C_SR1_ARLO)
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding {
s->DR = sendBuffer[txCount++]; // Arbitration lost, restart
bytesToSend--; s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
// } else if (bytesToReceive) { I2C_sendStart(); // Reinitiate request
// // Last sent byte acked and no more to send. Send repeated start, address and read bit. transactionState = TS_START;
// s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK }
// I2C_sendStart(); else if (temp_sr1 & I2C_SR1_BERR)
// s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1; {
} else { // Bus error
// No bytes left to send or receive s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
// Check both TxE/BTF == 1 before generating stop I2C_sendStop(); // Clear the bus
// while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE transactionState = TS_IDLE;
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF completionStatus = I2C_STATUS_BUS_ERROR;
// No more data to send/receive. Initiate a STOP condition and finish
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop();
// completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} }
} } else {
else if (temp_sr1 & I2C_SR1_RXNE) // No error flags, so process event according to current state.
{ switch (transactionState) {
// Master read completed without errors case TS_START:
if (bytesToReceive == 1) { if (temp_sr1 & I2C_SR1_SB) {
s->CR1 &= ~I2C_CR1_ACK; // NAK final byte // Event EV5
I2C_sendStop(); // send stop // Start bit has been sent successfully and we have the bus.
receiveBuffer[rxCount++] = s->DR; // Store received byte // If anything to send, initiate write. Otherwise initiate read.
bytesToReceive = 0; if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) {
// completionStatus = I2C_STATUS_OK; // Send address with read flag (1) or'd in
state = I2C_STATE_COMPLETED; s->DR = (deviceAddress << 1) | 1; // send the address
transactionState = TS_R_ADDR;
} else {
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
transactionState = TS_W_ADDR;
}
}
// SB bit is cleared by writing to DR (already done).
break;
case TS_W_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
// Event EV6
// Address sent successfully, device has ack'd in response.
if (!bytesToSend) {
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else {
transactionState = TS_W_DATA;
}
}
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
break;
case TS_W_DATA:
if (temp_sr1 & I2C_SR1_TXE) {
// Event EV8_1/EV8/EV8_2
// Transmitter empty, write a byte to it.
if (bytesToSend) {
s->DR = sendBuffer[txCount++];
bytesToSend--;
}
// See if we're finished sending
if (!bytesToSend) {
// Wait for last byte to be sent.
transactionState = TS_W_STOP;
}
}
break;
case TS_W_STOP:
if ((temp_sr1 & I2C_SR1_BTF) && (temp_sr1 & I2C_SR1_TXE)) {
// Event EV8_2
// Write finished.
if (bytesToReceive) {
// Start a read operation by sending (re)start
I2C_sendStart();
} else {
// Done.
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
}
break;
case TS_R_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
// Event EV6
// Address sent for receive.
// The next bit is different depending on whether there are
// 1 byte, 2 bytes or >2 bytes to be received, in accordance with the
// Programmers Reference RM0390.
if (bytesToReceive == 1) {
// Receive 1 byte
s->CR1 &= ~I2C_CR1_ACK; // Disable ack
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_STOP;
// Next step will occur after a BTF interrupt
} else if (bytesToReceive == 2) {
// Receive 2 bytes
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte
s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_STOP;
} else {
// >2 bytes, just wait for bytes to come in and ack them for the time being
// (ack flag has already been set).
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_DATA;
}
}
break;
case TS_R_DATA:
// Event EV7/EV7_1
if (temp_sr1 & I2C_SR1_BTF) {
// Byte received in receiver - read next byte
if (bytesToReceive == 3) {
// Getting close to the last byte, so a specific sequence is recommended.
s->CR1 &= ~I2C_CR1_ACK; // Reset ack for next byte received.
transactionState = TS_R_STOP;
}
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
}
break;
case TS_R_STOP:
if (temp_sr1 & I2C_SR1_BTF) {
// Event EV7 (last one)
// When we've got here, the receiver has got the last two bytes
// (or one byte, if only one byte is being received),
// and NAK has already been sent, so we need to read from the receiver.
if (bytesToReceive) {
if (bytesToReceive > 1)
I2C_sendStop();
while(bytesToReceive) {
receiveBuffer[rxCount++] = s->DR; // Store received byte(s)
bytesToReceive--;
}
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
} else if (temp_sr1 & I2C_SR1_RXNE) {
if (bytesToReceive == 1) {
// One byte on a single-byte transfer. Ack has already been set.
I2C_sendStop();
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else
s->SR1 &= I2C_SR1_RXNE; // Acknowledge interrupt
}
break;
} }
else if (bytesToReceive == 2)
{
// Also needs to be atomic!
// noInterrupts();
I2C_sendStop();
receiveBuffer[rxCount++] = s->DR; // Store received byte
// interrupts();
}
else if (bytesToReceive)
{
s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
}
}
else
{
// DIAG(F("Unhandled I2C interrupt!"));
led_lit = ~led_lit;
digitalWrite(D13, led_lit);
// delay(1000);
} }
} }

View File

@ -144,9 +144,9 @@
#define DISABLE_EEPROM #define DISABLE_EEPROM
#endif #endif
// STM32 support for native I2C is awaiting development // STM32 support for native I2C is awaiting development
#ifndef I2C_USE_WIRE // #ifndef I2C_USE_WIRE
#define I2C_USE_WIRE // #define I2C_USE_WIRE
#endif // #endif
/* TODO when ready /* TODO when ready