1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00

STM32 native I2C driver updates

This commit is contained in:
pmantoine 2023-02-08 13:06:11 +08:00
parent 3fbcd6f300
commit d7f92d7b88

View File

@ -44,6 +44,7 @@ void I2C1_IRQHandler() {
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely Nucleo-64 variants
I2C_TypeDef *s = I2C1;
#define I2C_IRQn I2C1_EV_IRQn
/***************************************************************************
* Set I2C clock speed register. This should only be called outside of
@ -109,22 +110,13 @@ void I2CManagerClass::I2C_init()
s->CR1 |= (1<<15); // reset the I2C
s->CR1 &= ~(1<<15); // Normal operation
// Program the peripheral input clock in I2C_CR2 Register in order to generate correct timings
// Program the peripheral input clock in CR2 Register in order to generate correct timings
s->CR2 |= (16<<0); // PCLK1 FREQUENCY in MHz
// Configure the Clock Control Register for 100KHz SCL frequency
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
s->CCR = 0x0050;
// Configure the rise time register - max allowed in 1000ns
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
#if defined(I2C_USE_INTERRUPTS)
// Setting NVIC
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_SetPriority(I2C_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C_IRQn);
// CR2 Interrupt Settings
// Bit 15-13: reserved
@ -135,14 +127,21 @@ void I2CManagerClass::I2C_init()
// Bit 8: ITERREN - Error interrupt enable
// Bit 7-6: reserved
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
// Enable all interrupts
s->CR2 |= 0x0700;
s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
#endif
// Calculate baudrate and set default rate for now
// Configure the Clock Control Register for 100KHz SCL frequency
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
s->CCR = 0x0050;
// Enable the I2C master mode and wait for sync
// Configure the rise time register - max allowed in 1000ns
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
// Enable the I2C master mode
s->CR1 |= (1<<0); // Enable I2C
// Setting bus idle mode and wait for sync
}
@ -154,6 +153,7 @@ void I2CManagerClass::I2C_sendStart() {
// Set counters here in case this is a retry.
bytesToSend = currentRequest->writeLen;
bytesToReceive = currentRequest->readLen;
uint8_t temp;
// On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a
@ -164,12 +164,30 @@ void I2CManagerClass::I2C_sendStart() {
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
{
// Send start and address with read flag (1) or'd in
// s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1;
// Send start for read operation
s->CR1 |= (1<<10); // Enable the ACK
s->CR1 |= (1<<8); // Generate START
// Send address with read flag (1) or'd in
s->DR = (currentRequest->i2cAddress << 1) | 1; // send the address
while (!(s->SR1 & (1<<1))); // wait for ADDR bit to set
// Special case for 1 byte reads!
if (bytesToReceive == 1)
{
s->CR1 &= ~(1<<10); // clear the ACK bit
temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
s->CR1 |= (1<<9); // Stop I2C
}
else
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else {
// Send start and address with write flag (0) or'd in
// s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1ul) | 0;
// Send start for write operation
s->CR1 |= (1<<10); // Enable the ACK
s->CR1 |= (1<<8); // Generate START
// Send address with write flag (0) or'd in
s->DR = (currentRequest->i2cAddress << 1) | 0; // send the address
while (!(s->SR1 & (1<<1))); // wait for ADDR bit to set
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
}
@ -177,7 +195,7 @@ void I2CManagerClass::I2C_sendStart() {
* Initiate a stop bit for transmission (does not interrupt)
***************************************************************************/
void I2CManagerClass::I2C_sendStop() {
// s->I2CM.CTRLB.bit.CMD = 3; // Stop condition
s->CR1 |= (1<<9); // Stop I2C
}
/***************************************************************************
@ -186,12 +204,12 @@ void I2CManagerClass::I2C_sendStop() {
void I2CManagerClass::I2C_close() {
I2C_sendStop();
// Disable the I2C master mode and wait for sync
// s->I2CM.CTRLA.bit.ENABLE = 0 ;
// Wait for up to 500us only.
s->CR1 &= ~(1<<0); // Disable I2C peripheral
// Should never happen, but wait for up to 500us only.
unsigned long startTime = micros();
// while (s->I2CM.SYNCBUSY.bit.ENABLE != 0) {
// if (micros() - startTime >= 500UL) break;
// }
while ((s->CR1 && 1) != 0) {
if (micros() - startTime >= 500UL) break;
}
}
/***************************************************************************
@ -201,41 +219,44 @@ void I2CManagerClass::I2C_close() {
***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() {
if (s->I2CM.STATUS.bit.ARBLOST) {
if (s->SR1 && (1<<9)) {
// Arbitration lost, restart
I2C_sendStart(); // Reinitiate request
} else if (s->I2CM.STATUS.bit.BUSERR) {
} else if (s->SR1 && (1<<8)) {
// Bus error
state = I2C_STATUS_BUS_ERROR;
} else if (s->I2CM.INTFLAG.bit.MB) {
} else if (s->SR1 && (1<<7)) {
// Master write completed
if (s->I2CM.STATUS.bit.RXNACK) {
if (s->SR1 && (1<<10)) {
// Nacked, send stop.
I2C_sendStop();
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
} else if (bytesToSend) {
// Acked, so send next byte
s->I2CM.DATA.bit.DATA = currentRequest->writeBuffer[txCount++];
s->DR = currentRequest->writeBuffer[txCount++];
bytesToSend--;
} else if (bytesToReceive) {
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1;
// s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1;
} else {
// Check both TxE/BTF == 1 before generating stop
while (!(s->SR1 && (1<<7))); // Check TxE
while (!(s->SR1 && (1<<2))); // Check BTF
// No more data to send/receive. Initiate a STOP condition.
I2C_sendStop();
state = I2C_STATUS_OK; // Done
}
} else if (s->I2CM.INTFLAG.bit.SB) {
} else if (s->SR1 && (1<<6)) {
// Master read completed without errors
if (bytesToReceive == 1) {
s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte
// s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte
I2C_sendStop(); // send stop
currentRequest->readBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte
currentRequest->readBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive = 0;
state = I2C_STATUS_OK; // done
} else if (bytesToReceive) {
s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte
currentRequest->readBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte
// s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte
currentRequest->readBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
}
}