1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00

EX-IOExpander updates

This commit is contained in:
Neil McKechnie 2023-03-18 15:05:21 +00:00
parent 5dd2770442
commit e55dc51bdb
2 changed files with 217 additions and 119 deletions

View File

@ -34,11 +34,16 @@
* device in use. There is no way for the device driver to sanity check pins are used for the
* correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
* incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
*
* The total number of pins cannot exceed 256 because of the communications packet format.
* The number of analogue inputs cannot exceed 16 because of a limit on the maximum
* I2C packet size of 32 bytes (in the Wire library).
*/
#ifndef IO_EX_IOEXPANDER_H
#define IO_EX_IOEXPANDER_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
@ -64,134 +69,203 @@ public:
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
}
private:
private:
// Constructor
EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
// Number of pins cannot exceed 256 (1 byte) because of I2C message structure.
if (nPins > 256) nPins = 256;
_nPins = nPins;
_i2cAddress = i2cAddress;
_I2CAddress = i2cAddress;
addDevice(this);
}
void _begin() {
uint8_t status;
// Initialise EX-IOExander device
I2CManager.begin();
if (I2CManager.exists(_i2cAddress)) {
_command4Buffer[0] = EXIOINIT;
_command4Buffer[1] = _nPins;
_command4Buffer[2] = _firstVpin & 0xFF;
_command4Buffer[3] = _firstVpin >> 8;
if (I2CManager.exists(_I2CAddress)) {
// Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4, &_i2crb);
if (_receive3Buffer[0] == EXIOPINS) {
_numDigitalPins = _receive3Buffer[1];
_numAnaloguePins = _receive3Buffer[2];
_digitalPinBytes = (_numDigitalPins + 7)/8;
_digitalInputStates=(byte*) calloc(_digitalPinBytes,1);
_analoguePinBytes = _numAnaloguePins * 2;
_analogueInputStates = (byte*) calloc(_analoguePinBytes, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
} else {
DIAG(F("ERROR configuring EX-IOExpander device, I2C:%s"), _i2cAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
// NB The I2C calls here are done as blocking calls, as they're not time-critical
// during initialisation and the reads require waiting for a response anyway.
// Hence we can allocate I/O buffers from the stack.
uint8_t receiveBuffer[3];
uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
status = I2CManager.read(_I2CAddress, receiveBuffer, sizeof(receiveBuffer), commandBuffer, sizeof(commandBuffer));
if (status == I2C_STATUS_OK) {
if (receiveBuffer[0] == EXIOPINS) {
_numDigitalPins = receiveBuffer[1];
_numAnaloguePins = receiveBuffer[2];
// See if we already have suitable buffers assigned
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
_digitalPinBytes = digitalBytesNeeded;
}
size_t analogueBytesNeeded = _numAnaloguePins * sizeof(_analogueInputValues[0]);
if (_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputValues);
free(_analoguePinMap);
}
_analogueInputValues = (int16_t*) calloc(_analoguePinBytes, 1);
_analogueInputBuffer = (uint8_t*) calloc(_analoguePinBytes, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
}
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
}
// We now need to retrieve the analogue pin map
_command1Buffer[0] = EXIOINITA;
I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1, &_i2crb);
// Attempt to get version, if we don't get it, we don't care, don't go offline
_command1Buffer[0] = EXIOVER;
I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1, &_i2crb);
_majorVer = _versionBuffer[0];
_minorVer = _versionBuffer[1];
_patchVer = _versionBuffer[2];
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
_i2cAddress.toString(), _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]);
if (status == I2C_STATUS_OK) {
commandBuffer[0] = EXIOINITA;
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
}
if (status == I2C_STATUS_OK) {
// Attempt to get version, if we don't get it, we don't care, don't go offline
uint8_t versionBuffer[3];
commandBuffer[0] = EXIOVER;
if (I2CManager.read(_I2CAddress, versionBuffer, sizeof(versionBuffer), commandBuffer, 1) == I2C_STATUS_OK) {
_majorVer = versionBuffer[0];
_minorVer = versionBuffer[1];
_patchVer = versionBuffer[2];
}
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer);
#ifdef DIAG_IO
_display();
_display();
#endif
}
if (status != I2C_STATUS_OK)
reportError(status);
} else {
DIAG(F("EX-IOExpander device not found, I2C:%s"), _i2cAddress.toString());
DIAG(F("EX-IOExpander I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
}
}
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
// be allocated from the stack to reduce RAM allocation.
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
if (configType == CONFIGURE_INPUT) {
bool pullup = params[0];
_digitalOutBuffer[0] = EXIODPUP;
_digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = pullup;
I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3, &_i2crb);
if (_command1Buffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin);
return false;
}
} else {
uint8_t pullup = params[0];
uint8_t outBuffer[] = {EXIODPUP, (uint8_t)pin, pullup};
uint8_t responseBuffer[1];
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
outBuffer, sizeof(outBuffer));
if (status == I2C_STATUS_OK) {
if (responseBuffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("EXIOVpin %u cannot be used as a digital input pin"), (int)vpin);
}
} else
reportError(status);
} else if (configType == CONFIGURE_ANALOGINPUT) {
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
// from IODevice class definition. Not urgent, but each virtual function defined
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
// to the driver or not.
return false;
}
return false;
}
// Analogue input pin configuration, used to enable on EX-IOExpander device
// Analogue input pin configuration, used to enable an EX-IOExpander device.
// Use I2C blocking calls and allocate buffers from stack to save RAM.
int _configureAnalogIn(VPIN vpin) override {
int pin = vpin - _firstVpin;
_command2Buffer[0] = EXIOENAN;
_command2Buffer[1] = pin;
I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2, &_i2crb);
if (_command1Buffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin);
return false;
}
return true;
uint8_t commandBuffer[] = {EXIOENAN, (uint8_t)pin};
uint8_t responseBuffer[1];
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
commandBuffer, sizeof(commandBuffer));
if (status == I2C_STATUS_OK) {
if (responseBuffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("EX-IOExpander: Vpin %u cannot be used as an analogue input pin"), (int)vpin);
}
} else
reportError(status);
return false;
}
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
// Request block is used for analogue and digital reads from the IOExpander, which are performed
// on a cyclic basis. Writes are performed synchronously as and when requested.
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_PENDING) return; // If device busy, return
if (status == I2C_STATUS_OK) { // If device ok, read input data
if (_commandFlag) {
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
_lastDigitalRead = currentMicros;
_command1Buffer[0] = EXIORDD;
I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1, &_i2crb);
}
} else {
if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
_lastAnalogueRead = currentMicros;
_command1Buffer[0] = EXIORDAN;
byte _tempAnalogue[_analoguePinBytes]; // Setup temp buffer so reads come from known state
I2CManager.read(_i2cAddress, _tempAnalogue, _analoguePinBytes, _command1Buffer, 1, &_i2crb);
memcpy(_analogueInputStates, _tempAnalogue, _analoguePinBytes); // Copy temp buffer to states
}
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we need to process received data
if (_readState == RDS_ANALOGUE) {
// Read of analogue values was in progress, so process received values
// Here we need to copy the values from input buffer to the analogue value array. We need to
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
// while the value is being read).
memcpy(_analogueInputValues, _analogueInputBuffer, _analoguePinBytes); // Copy I2C input buffer to states
_readState = RDS_IDLE;
} else if (_readState == RDS_DIGITAL) {
// Read of digital states was in progress, so process received values
// The received digital states are placed directly into the digital buffer on receipt,
// so don't need any further processing at this point (unless we want to check for
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
_readState = RDS_IDLE;
}
} else
reportError(status, false); // report eror but don't go offline.
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
I2CManager.read(_I2CAddress, _digitalInputStates, (_numDigitalPins+7)/8, _readCommandBuffer, 1, &_i2crb);
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
_numAnaloguePins * sizeof(_analogueInputBuffer[0]), _readCommandBuffer, 1, &_i2crb);
_lastAnalogueRead = currentMicros;
_readState = RDS_ANALOGUE;
}
_commandFlag = !_commandFlag;
} else {
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
}
}
// Obtain the correct analogue input value
// Obtain the correct analogue input value, with reference to the analogue
// pin map.
// (QUESTION: Why isn't this mapping done in the remote node before transmission?)
int _readAnalogue(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
uint8_t _pinLSBByte;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
_pinLSBByte = aPin * 2;
}
if (_analoguePinMap[aPin] == pin)
return _analogueInputValues[aPin];
}
uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
return 0; // Pin not found
}
// Obtain the correct digital input value
@ -203,75 +277,98 @@ private:
return value;
}
// Write digital value. We could have an output buffer of states, that is periodically
// written to the device if there are any changes; this would reduce the I2C overhead
// if lots of output requests are being made. We could also cache the last value
// sent so that we don't write the same value over and over to the output.
// However, for the time being, we just write the current value (blocking I2C) to the
// IOExpander node. As it is a blocking request, we can use buffers allocated from
// the stack to save RAM allocation.
void _write(VPIN vpin, int value) override {
uint8_t digitalOutBuffer[3];
uint8_t responseBuffer[1];
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
_digitalOutBuffer[0] = EXIOWRD;
_digitalOutBuffer[1] = pin;
_digitalOutBuffer[2] = value;
uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
digitalOutBuffer[0] = EXIOWRD;
digitalOutBuffer[1] = pin;
digitalOutBuffer[2] = value;
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3);
if (status != I2C_STATUS_OK) {
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
reportError(status);
} else {
if (_command1Buffer[0] != EXIORDY) {
DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin);
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin);
}
}
}
// Write analogue (integer) value. Write the parameters (blocking I2C) to the
// IOExpander node. As it is a blocking request, we can use buffers allocated from
// the stack to reduce RAM allocation.
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
uint8_t servoBuffer[7];
uint8_t responseBuffer[1];
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"),
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
_servoBuffer[0] = EXIOWRAN;
_servoBuffer[1] = pin;
_servoBuffer[2] = value & 0xFF;
_servoBuffer[3] = value >> 8;
_servoBuffer[4] = profile;
_servoBuffer[5] = duration & 0xFF;
_servoBuffer[6] = duration >> 8;
uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _servoBuffer, 7);
servoBuffer[0] = EXIOWRAN;
servoBuffer[1] = pin;
servoBuffer[2] = value & 0xFF;
servoBuffer[3] = value >> 8;
servoBuffer[4] = profile;
servoBuffer[5] = duration & 0xFF;
servoBuffer[6] = duration >> 8;
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, servoBuffer, 7);
if (status != I2C_STATUS_OK) {
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
if (_command1Buffer[0] != EXIORDY) {
DIAG(F("Vpin %d cannot be used as a servo/PWM pin"), (int)vpin);
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int)vpin);
}
}
}
// Display device information and status.
void _display() override {
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %d-%d %S"),
_i2cAddress.toString(), _majorVer, _minorVer, _patchVer,
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %u-%u %S"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
I2CAddress _i2cAddress;
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("EX-IOExpander I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
uint8_t _numDigitalPins = 0;
uint8_t _numAnaloguePins = 0;
byte _digitalOutBuffer[3];
uint8_t _versionBuffer[3];
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
byte* _digitalInputStates;
byte* _analogueInputStates;
uint8_t _digitalPinBytes = 0;
uint8_t _analoguePinBytes = 0;
byte _command1Buffer[1];
byte _command2Buffer[2];
byte _command4Buffer[4];
byte _receive3Buffer[3];
byte _servoBuffer[7];
uint8_t* _digitalInputStates;
int16_t* _analogueInputValues;
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
uint8_t* _analoguePinMap;
I2CRB _i2crb;
bool _commandFlag = 1;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
uint8_t _readState = RDS_IDLE;
unsigned long _lastDigitalRead = 0;
unsigned long _lastAnalogueRead = 0;
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms

View File

@ -4,7 +4,8 @@
#include "StringFormatter.h"
#define VERSION "4.2.29"
#define VERSION "4.2.30"
// 4.2.30 - Fixes/enhancements to EX-IOExpander device driver.
// 4.2.29 - Bugfix Scroll LCD without empty lines and consistent
// 4.2.28 - Reinstate use of timer11 in STM32 - remove HA mode.
// - Update IO_DFPlayer to work with MP3-TF-16P rev3.