mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-12-23 12:51:24 +01:00
EX-IOExpander updates
This commit is contained in:
parent
5dd2770442
commit
e55dc51bdb
@ -34,11 +34,16 @@
|
||||
* device in use. There is no way for the device driver to sanity check pins are used for the
|
||||
* correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
|
||||
* incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
|
||||
*
|
||||
* The total number of pins cannot exceed 256 because of the communications packet format.
|
||||
* The number of analogue inputs cannot exceed 16 because of a limit on the maximum
|
||||
* I2C packet size of 32 bytes (in the Wire library).
|
||||
*/
|
||||
|
||||
#ifndef IO_EX_IOEXPANDER_H
|
||||
#define IO_EX_IOEXPANDER_H
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
@ -64,134 +69,203 @@ public:
|
||||
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
// Constructor
|
||||
EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
|
||||
_firstVpin = firstVpin;
|
||||
// Number of pins cannot exceed 256 (1 byte) because of I2C message structure.
|
||||
if (nPins > 256) nPins = 256;
|
||||
_nPins = nPins;
|
||||
_i2cAddress = i2cAddress;
|
||||
_I2CAddress = i2cAddress;
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
void _begin() {
|
||||
uint8_t status;
|
||||
// Initialise EX-IOExander device
|
||||
I2CManager.begin();
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
_command4Buffer[0] = EXIOINIT;
|
||||
_command4Buffer[1] = _nPins;
|
||||
_command4Buffer[2] = _firstVpin & 0xFF;
|
||||
_command4Buffer[3] = _firstVpin >> 8;
|
||||
if (I2CManager.exists(_I2CAddress)) {
|
||||
// Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
|
||||
I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4, &_i2crb);
|
||||
if (_receive3Buffer[0] == EXIOPINS) {
|
||||
_numDigitalPins = _receive3Buffer[1];
|
||||
_numAnaloguePins = _receive3Buffer[2];
|
||||
_digitalPinBytes = (_numDigitalPins + 7)/8;
|
||||
_digitalInputStates=(byte*) calloc(_digitalPinBytes,1);
|
||||
_analoguePinBytes = _numAnaloguePins * 2;
|
||||
_analogueInputStates = (byte*) calloc(_analoguePinBytes, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
} else {
|
||||
DIAG(F("ERROR configuring EX-IOExpander device, I2C:%s"), _i2cAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
return;
|
||||
}
|
||||
// NB The I2C calls here are done as blocking calls, as they're not time-critical
|
||||
// during initialisation and the reads require waiting for a response anyway.
|
||||
// Hence we can allocate I/O buffers from the stack.
|
||||
uint8_t receiveBuffer[3];
|
||||
uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
|
||||
status = I2CManager.read(_I2CAddress, receiveBuffer, sizeof(receiveBuffer), commandBuffer, sizeof(commandBuffer));
|
||||
if (status == I2C_STATUS_OK) {
|
||||
if (receiveBuffer[0] == EXIOPINS) {
|
||||
_numDigitalPins = receiveBuffer[1];
|
||||
_numAnaloguePins = receiveBuffer[2];
|
||||
|
||||
// See if we already have suitable buffers assigned
|
||||
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
||||
if (_digitalPinBytes < digitalBytesNeeded) {
|
||||
// Not enough space, free any existing buffer and allocate a new one
|
||||
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
||||
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
|
||||
_digitalPinBytes = digitalBytesNeeded;
|
||||
}
|
||||
size_t analogueBytesNeeded = _numAnaloguePins * sizeof(_analogueInputValues[0]);
|
||||
if (_analoguePinBytes < analogueBytesNeeded) {
|
||||
// Free any existing buffers and allocate new ones.
|
||||
if (_analoguePinBytes > 0) {
|
||||
free(_analogueInputBuffer);
|
||||
free(_analogueInputValues);
|
||||
free(_analoguePinMap);
|
||||
}
|
||||
_analogueInputValues = (int16_t*) calloc(_analoguePinBytes, 1);
|
||||
_analogueInputBuffer = (uint8_t*) calloc(_analoguePinBytes, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
}
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
return;
|
||||
}
|
||||
}
|
||||
// We now need to retrieve the analogue pin map
|
||||
_command1Buffer[0] = EXIOINITA;
|
||||
I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1, &_i2crb);
|
||||
// Attempt to get version, if we don't get it, we don't care, don't go offline
|
||||
_command1Buffer[0] = EXIOVER;
|
||||
I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1, &_i2crb);
|
||||
_majorVer = _versionBuffer[0];
|
||||
_minorVer = _versionBuffer[1];
|
||||
_patchVer = _versionBuffer[2];
|
||||
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
|
||||
_i2cAddress.toString(), _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]);
|
||||
if (status == I2C_STATUS_OK) {
|
||||
commandBuffer[0] = EXIOINITA;
|
||||
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
|
||||
}
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// Attempt to get version, if we don't get it, we don't care, don't go offline
|
||||
uint8_t versionBuffer[3];
|
||||
commandBuffer[0] = EXIOVER;
|
||||
if (I2CManager.read(_I2CAddress, versionBuffer, sizeof(versionBuffer), commandBuffer, 1) == I2C_STATUS_OK) {
|
||||
_majorVer = versionBuffer[0];
|
||||
_minorVer = versionBuffer[1];
|
||||
_patchVer = versionBuffer[2];
|
||||
}
|
||||
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
|
||||
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer);
|
||||
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
if (status != I2C_STATUS_OK)
|
||||
reportError(status);
|
||||
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander device not found, I2C:%s"), _i2cAddress.toString());
|
||||
DIAG(F("EX-IOExpander I2C:%s device not found"), _I2CAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use
|
||||
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
|
||||
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
|
||||
// be allocated from the stack to reduce RAM allocation.
|
||||
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
|
||||
if (paramCount != 1) return false;
|
||||
int pin = vpin - _firstVpin;
|
||||
if (configType == CONFIGURE_INPUT) {
|
||||
bool pullup = params[0];
|
||||
_digitalOutBuffer[0] = EXIODPUP;
|
||||
_digitalOutBuffer[1] = pin;
|
||||
_digitalOutBuffer[2] = pullup;
|
||||
I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3, &_i2crb);
|
||||
if (_command1Buffer[0] == EXIORDY) {
|
||||
return true;
|
||||
} else {
|
||||
DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
uint8_t pullup = params[0];
|
||||
uint8_t outBuffer[] = {EXIODPUP, (uint8_t)pin, pullup};
|
||||
uint8_t responseBuffer[1];
|
||||
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
|
||||
outBuffer, sizeof(outBuffer));
|
||||
if (status == I2C_STATUS_OK) {
|
||||
if (responseBuffer[0] == EXIORDY) {
|
||||
return true;
|
||||
} else {
|
||||
DIAG(F("EXIOVpin %u cannot be used as a digital input pin"), (int)vpin);
|
||||
}
|
||||
} else
|
||||
reportError(status);
|
||||
} else if (configType == CONFIGURE_ANALOGINPUT) {
|
||||
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
|
||||
// from IODevice class definition. Not urgent, but each virtual function defined
|
||||
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
|
||||
// to the driver or not.
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Analogue input pin configuration, used to enable on EX-IOExpander device
|
||||
// Analogue input pin configuration, used to enable an EX-IOExpander device.
|
||||
// Use I2C blocking calls and allocate buffers from stack to save RAM.
|
||||
int _configureAnalogIn(VPIN vpin) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
_command2Buffer[0] = EXIOENAN;
|
||||
_command2Buffer[1] = pin;
|
||||
I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2, &_i2crb);
|
||||
if (_command1Buffer[0] == EXIORDY) {
|
||||
return true;
|
||||
} else {
|
||||
DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
uint8_t commandBuffer[] = {EXIOENAN, (uint8_t)pin};
|
||||
uint8_t responseBuffer[1];
|
||||
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
|
||||
commandBuffer, sizeof(commandBuffer));
|
||||
if (status == I2C_STATUS_OK) {
|
||||
if (responseBuffer[0] == EXIORDY) {
|
||||
return true;
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander: Vpin %u cannot be used as an analogue input pin"), (int)vpin);
|
||||
}
|
||||
} else
|
||||
reportError(status);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
|
||||
|
||||
// Request block is used for analogue and digital reads from the IOExpander, which are performed
|
||||
// on a cyclic basis. Writes are performed synchronously as and when requested.
|
||||
|
||||
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
|
||||
|
||||
uint8_t status = _i2crb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // If device busy, return
|
||||
if (status == I2C_STATUS_OK) { // If device ok, read input data
|
||||
if (_commandFlag) {
|
||||
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
||||
_lastDigitalRead = currentMicros;
|
||||
_command1Buffer[0] = EXIORDD;
|
||||
I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1, &_i2crb);
|
||||
}
|
||||
} else {
|
||||
if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
||||
_lastAnalogueRead = currentMicros;
|
||||
_command1Buffer[0] = EXIORDAN;
|
||||
byte _tempAnalogue[_analoguePinBytes]; // Setup temp buffer so reads come from known state
|
||||
I2CManager.read(_i2cAddress, _tempAnalogue, _analoguePinBytes, _command1Buffer, 1, &_i2crb);
|
||||
memcpy(_analogueInputStates, _tempAnalogue, _analoguePinBytes); // Copy temp buffer to states
|
||||
}
|
||||
if (status == I2C_STATUS_OK) { // If device request ok, read input data
|
||||
|
||||
// First check if we need to process received data
|
||||
if (_readState == RDS_ANALOGUE) {
|
||||
// Read of analogue values was in progress, so process received values
|
||||
// Here we need to copy the values from input buffer to the analogue value array. We need to
|
||||
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
|
||||
// while the value is being read).
|
||||
memcpy(_analogueInputValues, _analogueInputBuffer, _analoguePinBytes); // Copy I2C input buffer to states
|
||||
_readState = RDS_IDLE;
|
||||
|
||||
} else if (_readState == RDS_DIGITAL) {
|
||||
// Read of digital states was in progress, so process received values
|
||||
// The received digital states are placed directly into the digital buffer on receipt,
|
||||
// so don't need any further processing at this point (unless we want to check for
|
||||
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
|
||||
_readState = RDS_IDLE;
|
||||
}
|
||||
} else
|
||||
reportError(status, false); // report eror but don't go offline.
|
||||
|
||||
// If we're not doing anything now, check to see if a new input transfer is due.
|
||||
if (_readState == RDS_IDLE) {
|
||||
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
||||
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
|
||||
// be allocated from heap (object state).
|
||||
_readCommandBuffer[0] = EXIORDD;
|
||||
I2CManager.read(_I2CAddress, _digitalInputStates, (_numDigitalPins+7)/8, _readCommandBuffer, 1, &_i2crb);
|
||||
// non-blocking read
|
||||
_lastDigitalRead = currentMicros;
|
||||
_readState = RDS_DIGITAL;
|
||||
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
||||
// Issue new read for analogue input states
|
||||
_readCommandBuffer[0] = EXIORDAN;
|
||||
I2CManager.read(_I2CAddress, _analogueInputBuffer,
|
||||
_numAnaloguePins * sizeof(_analogueInputBuffer[0]), _readCommandBuffer, 1, &_i2crb);
|
||||
_lastAnalogueRead = currentMicros;
|
||||
_readState = RDS_ANALOGUE;
|
||||
}
|
||||
_commandFlag = !_commandFlag;
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
// Obtain the correct analogue input value
|
||||
// Obtain the correct analogue input value, with reference to the analogue
|
||||
// pin map.
|
||||
// (QUESTION: Why isn't this mapping done in the remote node before transmission?)
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
int pin = vpin - _firstVpin;
|
||||
uint8_t _pinLSBByte;
|
||||
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
|
||||
if (_analoguePinMap[aPin] == pin) {
|
||||
_pinLSBByte = aPin * 2;
|
||||
}
|
||||
if (_analoguePinMap[aPin] == pin)
|
||||
return _analogueInputValues[aPin];
|
||||
}
|
||||
uint8_t _pinMSBByte = _pinLSBByte + 1;
|
||||
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
|
||||
return 0; // Pin not found
|
||||
}
|
||||
|
||||
// Obtain the correct digital input value
|
||||
@ -203,75 +277,98 @@ private:
|
||||
return value;
|
||||
}
|
||||
|
||||
// Write digital value. We could have an output buffer of states, that is periodically
|
||||
// written to the device if there are any changes; this would reduce the I2C overhead
|
||||
// if lots of output requests are being made. We could also cache the last value
|
||||
// sent so that we don't write the same value over and over to the output.
|
||||
// However, for the time being, we just write the current value (blocking I2C) to the
|
||||
// IOExpander node. As it is a blocking request, we can use buffers allocated from
|
||||
// the stack to save RAM allocation.
|
||||
void _write(VPIN vpin, int value) override {
|
||||
uint8_t digitalOutBuffer[3];
|
||||
uint8_t responseBuffer[1];
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
int pin = vpin - _firstVpin;
|
||||
_digitalOutBuffer[0] = EXIOWRD;
|
||||
_digitalOutBuffer[1] = pin;
|
||||
_digitalOutBuffer[2] = value;
|
||||
uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3);
|
||||
digitalOutBuffer[0] = EXIOWRD;
|
||||
digitalOutBuffer[1] = pin;
|
||||
digitalOutBuffer[2] = value;
|
||||
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3);
|
||||
if (status != I2C_STATUS_OK) {
|
||||
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
reportError(status);
|
||||
} else {
|
||||
if (_command1Buffer[0] != EXIORDY) {
|
||||
DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin);
|
||||
if (responseBuffer[0] != EXIORDY) {
|
||||
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write analogue (integer) value. Write the parameters (blocking I2C) to the
|
||||
// IOExpander node. As it is a blocking request, we can use buffers allocated from
|
||||
// the stack to reduce RAM allocation.
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
|
||||
uint8_t servoBuffer[7];
|
||||
uint8_t responseBuffer[1];
|
||||
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
int pin = vpin - _firstVpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"),
|
||||
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
|
||||
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
|
||||
#endif
|
||||
_servoBuffer[0] = EXIOWRAN;
|
||||
_servoBuffer[1] = pin;
|
||||
_servoBuffer[2] = value & 0xFF;
|
||||
_servoBuffer[3] = value >> 8;
|
||||
_servoBuffer[4] = profile;
|
||||
_servoBuffer[5] = duration & 0xFF;
|
||||
_servoBuffer[6] = duration >> 8;
|
||||
uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _servoBuffer, 7);
|
||||
servoBuffer[0] = EXIOWRAN;
|
||||
servoBuffer[1] = pin;
|
||||
servoBuffer[2] = value & 0xFF;
|
||||
servoBuffer[3] = value >> 8;
|
||||
servoBuffer[4] = profile;
|
||||
servoBuffer[5] = duration & 0xFF;
|
||||
servoBuffer[6] = duration >> 8;
|
||||
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, servoBuffer, 7);
|
||||
if (status != I2C_STATUS_OK) {
|
||||
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
} else {
|
||||
if (_command1Buffer[0] != EXIORDY) {
|
||||
DIAG(F("Vpin %d cannot be used as a servo/PWM pin"), (int)vpin);
|
||||
if (responseBuffer[0] != EXIORDY) {
|
||||
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int)vpin);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Display device information and status.
|
||||
void _display() override {
|
||||
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %d-%d %S"),
|
||||
_i2cAddress.toString(), _majorVer, _minorVer, _patchVer,
|
||||
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %u-%u %S"),
|
||||
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
|
||||
(int)_firstVpin, (int)_firstVpin+_nPins-1,
|
||||
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
I2CAddress _i2cAddress;
|
||||
// Helper function for error handling
|
||||
void reportError(uint8_t status, bool fail=true) {
|
||||
DIAG(F("EX-IOExpander I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
||||
status, I2CManager.getErrorMessage(status));
|
||||
if (fail)
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
|
||||
uint8_t _numDigitalPins = 0;
|
||||
uint8_t _numAnaloguePins = 0;
|
||||
byte _digitalOutBuffer[3];
|
||||
uint8_t _versionBuffer[3];
|
||||
|
||||
uint8_t _majorVer = 0;
|
||||
uint8_t _minorVer = 0;
|
||||
uint8_t _patchVer = 0;
|
||||
byte* _digitalInputStates;
|
||||
byte* _analogueInputStates;
|
||||
uint8_t _digitalPinBytes = 0;
|
||||
uint8_t _analoguePinBytes = 0;
|
||||
byte _command1Buffer[1];
|
||||
byte _command2Buffer[2];
|
||||
byte _command4Buffer[4];
|
||||
byte _receive3Buffer[3];
|
||||
byte _servoBuffer[7];
|
||||
|
||||
uint8_t* _digitalInputStates;
|
||||
int16_t* _analogueInputValues;
|
||||
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
|
||||
uint8_t _readCommandBuffer[1];
|
||||
|
||||
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
|
||||
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
|
||||
uint8_t* _analoguePinMap;
|
||||
I2CRB _i2crb;
|
||||
bool _commandFlag = 1;
|
||||
|
||||
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
|
||||
uint8_t _readState = RDS_IDLE;
|
||||
|
||||
unsigned long _lastDigitalRead = 0;
|
||||
unsigned long _lastAnalogueRead = 0;
|
||||
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
|
||||
|
@ -4,7 +4,8 @@
|
||||
#include "StringFormatter.h"
|
||||
|
||||
|
||||
#define VERSION "4.2.29"
|
||||
#define VERSION "4.2.30"
|
||||
// 4.2.30 - Fixes/enhancements to EX-IOExpander device driver.
|
||||
// 4.2.29 - Bugfix Scroll LCD without empty lines and consistent
|
||||
// 4.2.28 - Reinstate use of timer11 in STM32 - remove HA mode.
|
||||
// - Update IO_DFPlayer to work with MP3-TF-16P rev3.
|
||||
|
Loading…
Reference in New Issue
Block a user