mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-22 23:56:13 +01:00
Merge branch 'master' into ESP32
This commit is contained in:
commit
e7e26551ce
7
.gitignore
vendored
7
.gitignore
vendored
|
@ -9,3 +9,10 @@ Release/*
|
|||
config.h
|
||||
.vscode/extensions.json
|
||||
mySetup.h
|
||||
mySetup.cpp
|
||||
myHal.cpp
|
||||
myAutomation.h
|
||||
myFilter.cpp
|
||||
myAutomation.h
|
||||
myFilter.cpp
|
||||
myLayout.h
|
||||
|
|
|
@ -44,7 +44,6 @@
|
|||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "DCCEX.h"
|
||||
|
||||
// Create a serial command parser for the USB connection,
|
||||
|
@ -91,11 +90,13 @@ void setup()
|
|||
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
|
||||
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
|
||||
DCC::begin(MOTOR_SHIELD_TYPE);
|
||||
|
||||
// Start RMFT (ignored if no automnation)
|
||||
RMFT::begin();
|
||||
|
||||
|
||||
#if defined(RMFT_ACTIVE)
|
||||
RMFT::begin();
|
||||
#endif
|
||||
|
||||
// Invoke any DCC++EX commands in the form "SETUP("xxxx");"" found in optional file mySetup.h.
|
||||
// This can be used to create turnouts, outputs, sensors etc. through the normal text commands.
|
||||
#if __has_include ( "mySetup.h")
|
||||
#define SETUP(cmd) serialParser.parse(F(cmd))
|
||||
#include "mySetup.h"
|
||||
|
@ -107,7 +108,7 @@ void setup()
|
|||
LCN::init(LCN_SERIAL);
|
||||
#endif
|
||||
|
||||
LCD(1,F("Ready"));
|
||||
LCD(3,F("Ready"));
|
||||
}
|
||||
|
||||
void loop()
|
||||
|
@ -133,15 +134,16 @@ void loop()
|
|||
EthernetInterface::loop();
|
||||
#endif
|
||||
|
||||
#if defined(RMFT_ACTIVE)
|
||||
RMFT::loop();
|
||||
#endif
|
||||
RMFT::loop(); // ignored if no automation
|
||||
|
||||
#if defined(LCN_SERIAL)
|
||||
LCN::loop();
|
||||
#endif
|
||||
|
||||
LCDDisplay::loop(); // ignored if LCD not in use
|
||||
|
||||
// Handle/update IO devices.
|
||||
IODevice::loop();
|
||||
|
||||
// Report any decrease in memory (will automatically trigger on first call)
|
||||
static int ramLowWatermark = __INT_MAX__; // replaced on first loop
|
||||
|
@ -152,6 +154,6 @@ void loop()
|
|||
if (freeNow < ramLowWatermark)
|
||||
{
|
||||
ramLowWatermark = freeNow;
|
||||
LCD(2,F("Free RAM=%5db"), ramLowWatermark);
|
||||
LCD(3,F("Free RAM=%5db"), ramLowWatermark);
|
||||
}
|
||||
}
|
||||
|
|
50
DCC.cpp
50
DCC.cpp
|
@ -24,6 +24,7 @@
|
|||
#include "GITHUB_SHA.h"
|
||||
#include "version.h"
|
||||
#include "FSH.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
// This module is responsible for converting API calls into
|
||||
// messages to be sent to the waveform generator.
|
||||
|
@ -52,6 +53,9 @@ void DCC::begin(const FSH * motorShieldName, MotorDriver * mainDriver, MotorDriv
|
|||
shieldName=(FSH *)motorShieldName;
|
||||
StringFormatter::send(Serial,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
|
||||
|
||||
// Initialise HAL layer before reading EEprom.
|
||||
IODevice::begin();
|
||||
|
||||
// Load stuff from EEprom
|
||||
(void)EEPROM; // tell compiler not to warn this is unused
|
||||
EEStore::init();
|
||||
|
@ -235,6 +239,9 @@ void DCC::updateGroupflags(byte & flags, int16_t functionNumber) {
|
|||
}
|
||||
|
||||
void DCC::setAccessory(int address, byte number, bool activate) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DCC::setAccessory(%d,%d,%d)"), address, number, activate);
|
||||
#endif
|
||||
// use masks to detect wrong values and do nothing
|
||||
if(address != (address & 511))
|
||||
return;
|
||||
|
@ -350,8 +357,9 @@ const ackOp FLASH WRITE_BYTE_PROG[] = {
|
|||
|
||||
const ackOp FLASH VERIFY_BYTE_PROG[] = {
|
||||
BASELINE,
|
||||
BIV, // ackManagerByte initial value
|
||||
VB,WACK, // validate byte
|
||||
ITCB, // if ok callback value
|
||||
ITCB, // if ok callback value
|
||||
STARTMERGE, //clear bit and byte values ready for merge pass
|
||||
// each bit is validated against 0 and the result inverted in MERGE
|
||||
// this is because there tend to be more zeros in cv values than ones.
|
||||
|
@ -369,7 +377,7 @@ const ackOp FLASH VERIFY_BYTE_PROG[] = {
|
|||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
VB, WACK, ITCB, // verify merged byte and return it if acked ok
|
||||
VB, WACK, ITCBV, // verify merged byte and return it if acked ok - with retry report
|
||||
CALLFAIL };
|
||||
|
||||
|
||||
|
@ -679,9 +687,15 @@ int DCC::nextLoco = 0;
|
|||
|
||||
//ACK MANAGER
|
||||
ackOp const * DCC::ackManagerProg;
|
||||
ackOp const * DCC::ackManagerProgStart;
|
||||
byte DCC::ackManagerByte;
|
||||
byte DCC::ackManagerByteVerify;
|
||||
byte DCC::ackManagerStash;
|
||||
int DCC::ackManagerWord;
|
||||
byte DCC::ackManagerRetry;
|
||||
byte DCC::ackRetry = 2;
|
||||
int16_t DCC::ackRetrySum;
|
||||
int16_t DCC::ackRetryPSum;
|
||||
int DCC::ackManagerCv;
|
||||
byte DCC::ackManagerBitNum;
|
||||
bool DCC::ackReceived;
|
||||
|
@ -714,7 +728,10 @@ void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[]
|
|||
|
||||
ackManagerCv = cv;
|
||||
ackManagerProg = program;
|
||||
ackManagerProgStart = program;
|
||||
ackManagerRetry = ackRetry;
|
||||
ackManagerByte = byteValueOrBitnum;
|
||||
ackManagerByteVerify = byteValueOrBitnum;
|
||||
ackManagerBitNum=byteValueOrBitnum;
|
||||
ackManagerCallback = callback;
|
||||
}
|
||||
|
@ -740,6 +757,7 @@ void DCC::ackManagerLoop() {
|
|||
// (typically waiting for a reset counter or ACK waiting, or when all finished.)
|
||||
switch (opcode) {
|
||||
case BASELINE:
|
||||
if (DCCWaveform::progTrack.getPowerMode()==POWERMODE::OVERLOAD) return;
|
||||
if (checkResets(DCCWaveform::progTrack.autoPowerOff || ackManagerRejoin ? 20 : 3)) return;
|
||||
DCCWaveform::progTrack.setAckBaseline();
|
||||
callbackState=READY;
|
||||
|
@ -813,7 +831,18 @@ void DCC::ackManagerLoop() {
|
|||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case ITCBV: // If True callback(byte) - Verify
|
||||
if (ackReceived) {
|
||||
if (ackManagerByte == ackManagerByteVerify) {
|
||||
ackRetrySum ++;
|
||||
LCD(1, F("v %d %d Sum=%d"), ackManagerCv, ackManagerByte, ackRetrySum);
|
||||
}
|
||||
callback(ackManagerByte);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case ITCB7: // If True callback(byte & 0x7F)
|
||||
if (ackReceived) {
|
||||
callback(ackManagerByte & 0x7F);
|
||||
|
@ -831,7 +860,11 @@ void DCC::ackManagerLoop() {
|
|||
case CALLFAIL: // callback(-1)
|
||||
callback(-1);
|
||||
return;
|
||||
|
||||
|
||||
case BIV: // ackManagerByte initial value
|
||||
ackManagerByte = ackManagerByteVerify;
|
||||
break;
|
||||
|
||||
case STARTMERGE:
|
||||
ackManagerBitNum=7;
|
||||
ackManagerByte=0;
|
||||
|
@ -897,6 +930,15 @@ void DCC::ackManagerLoop() {
|
|||
}
|
||||
|
||||
void DCC::callback(int value) {
|
||||
// check for automatic retry
|
||||
if (value == -1 && ackManagerRetry > 0) {
|
||||
ackRetrySum ++;
|
||||
LCD(0, F("Retry %d %d Sum=%d"), ackManagerCv, ackManagerRetry, ackRetrySum);
|
||||
ackManagerRetry --;
|
||||
ackManagerProg = ackManagerProgStart;
|
||||
return;
|
||||
}
|
||||
|
||||
static unsigned long callbackStart;
|
||||
// We are about to leave programming mode
|
||||
// Rule 1: If we have written to a decoder we must maintain power for 100mS
|
||||
|
|
18
DCC.h
18
DCC.h
|
@ -38,9 +38,11 @@ enum ackOp : byte
|
|||
ITC1, // If True Callback(1) (if prevous WACK got an ACK)
|
||||
ITC0, // If True callback(0);
|
||||
ITCB, // If True callback(byte)
|
||||
ITCBV, // If True callback(byte) - end of Verify Byte
|
||||
ITCB7, // If True callback(byte &0x7F)
|
||||
NAKFAIL, // if false callback(-1)
|
||||
CALLFAIL, // callback(-1)
|
||||
BIV, // Set ackManagerByte to initial value for Verify retry
|
||||
STARTMERGE, // Clear bit and byte settings ready for merge pass
|
||||
MERGE, // Merge previous wack response with byte value and decrement bit number (use for readimng CV bytes)
|
||||
SETBIT, // sets bit number to next prog byte
|
||||
|
@ -64,8 +66,10 @@ enum CALLBACK_STATE : byte {
|
|||
|
||||
// Allocations with memory implications..!
|
||||
// Base system takes approx 900 bytes + 8 per loco. Turnouts, Sensors etc are dynamically created
|
||||
#ifdef ARDUINO_AVR_UNO
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
const byte MAX_LOCOS = 20;
|
||||
#elif defined(ARDUINO_AVR_NANO)
|
||||
const byte MAX_LOCOS = 30;
|
||||
#else
|
||||
const byte MAX_LOCOS = 50;
|
||||
#endif
|
||||
|
@ -113,6 +117,12 @@ public:
|
|||
static inline void setGlobalSpeedsteps(byte s) {
|
||||
globalSpeedsteps = s;
|
||||
};
|
||||
static inline int16_t setAckRetry(byte retry) {
|
||||
ackRetry = retry;
|
||||
ackRetryPSum = ackRetrySum;
|
||||
ackRetrySum = 0; // reset running total
|
||||
return ackRetryPSum;
|
||||
};
|
||||
|
||||
private:
|
||||
struct LOCO
|
||||
|
@ -141,9 +151,15 @@ private:
|
|||
|
||||
// ACK MANAGER
|
||||
static ackOp const *ackManagerProg;
|
||||
static ackOp const *ackManagerProgStart;
|
||||
static byte ackManagerByte;
|
||||
static byte ackManagerByteVerify;
|
||||
static byte ackManagerBitNum;
|
||||
static int ackManagerCv;
|
||||
static byte ackManagerRetry;
|
||||
static byte ackRetry;
|
||||
static int16_t ackRetrySum;
|
||||
static int16_t ackRetryPSum;
|
||||
static int ackManagerWord;
|
||||
static byte ackManagerStash;
|
||||
static bool ackReceived;
|
||||
|
|
5
DCCEX.h
5
DCCEX.h
|
@ -43,6 +43,11 @@
|
|||
#include "LCD_Implementation.h"
|
||||
#include "LCN.h"
|
||||
#include "freeMemory.h"
|
||||
#include "IODevice.h"
|
||||
#include "Turnouts.h"
|
||||
#include "Sensors.h"
|
||||
#include "Outputs.h"
|
||||
#include "RMFT.h"
|
||||
|
||||
// not yet in this branch
|
||||
//#if __has_include ( "myAutomation.h")
|
||||
|
|
174
DCCEXParser.cpp
174
DCCEXParser.cpp
|
@ -28,6 +28,7 @@
|
|||
#include "freeMemory.h"
|
||||
#include "GITHUB_SHA.h"
|
||||
#include "version.h"
|
||||
#include "defines.h"
|
||||
|
||||
#include "EEStore.h"
|
||||
#include "DIAG.h"
|
||||
|
@ -35,6 +36,16 @@
|
|||
#include <avr/wdt.h>
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Figure out if we have enough memory for advanced features
|
||||
//
|
||||
#if defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO)
|
||||
// nope
|
||||
#else
|
||||
#define HAS_ENOUGH_MEMORY
|
||||
#endif
|
||||
|
||||
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
|
||||
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
|
||||
const int16_t HASH_KEYWORD_PROG = -29718;
|
||||
|
@ -43,8 +54,6 @@ const int16_t HASH_KEYWORD_JOIN = -30750;
|
|||
const int16_t HASH_KEYWORD_CABS = -11981;
|
||||
const int16_t HASH_KEYWORD_RAM = 25982;
|
||||
const int16_t HASH_KEYWORD_CMD = 9962;
|
||||
const int16_t HASH_KEYWORD_WIT = 31594;
|
||||
const int16_t HASH_KEYWORD_WIFI = -5583;
|
||||
const int16_t HASH_KEYWORD_ACK = 3113;
|
||||
const int16_t HASH_KEYWORD_ON = 2657;
|
||||
const int16_t HASH_KEYWORD_DCC = 6436;
|
||||
|
@ -52,13 +61,26 @@ const int16_t HASH_KEYWORD_SLOW = -17209;
|
|||
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
|
||||
const int16_t HASH_KEYWORD_EEPROM = -7168;
|
||||
const int16_t HASH_KEYWORD_LIMIT = 27413;
|
||||
const int16_t HASH_KEYWORD_ETHERNET = -30767;
|
||||
const int16_t HASH_KEYWORD_MAX = 16244;
|
||||
const int16_t HASH_KEYWORD_MIN = 15978;
|
||||
const int16_t HASH_KEYWORD_LCN = 15137;
|
||||
const int16_t HASH_KEYWORD_RESET = 26133;
|
||||
const int16_t HASH_KEYWORD_RETRY = 25704;
|
||||
const int16_t HASH_KEYWORD_SPEED28 = -17064;
|
||||
const int16_t HASH_KEYWORD_SPEED128 = 25816;
|
||||
const int16_t HASH_KEYWORD_SERVO=27709;
|
||||
const int16_t HASH_KEYWORD_VPIN=-415;
|
||||
const int16_t HASH_KEYWORD_C=67;
|
||||
const int16_t HASH_KEYWORD_T=84;
|
||||
const int16_t HASH_KEYWORD_LCN = 15137;
|
||||
const int16_t HASH_KEYWORD_HAL = 10853;
|
||||
const int16_t HASH_KEYWORD_SHOW = -21309;
|
||||
const int16_t HASH_KEYWORD_ANIN = -10424;
|
||||
const int16_t HASH_KEYWORD_ANOUT = -26399;
|
||||
#ifdef HAS_ENOUGH_MEMORY
|
||||
const int16_t HASH_KEYWORD_WIFI = -5583;
|
||||
const int16_t HASH_KEYWORD_ETHERNET = -30767;
|
||||
const int16_t HASH_KEYWORD_WIT = 31594;
|
||||
#endif
|
||||
|
||||
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
|
||||
bool DCCEXParser::stashBusy;
|
||||
|
@ -256,6 +278,7 @@ void DCCEXParser::parse(const FSH * cmd) {
|
|||
}
|
||||
|
||||
// See documentation on DCC class for info on this section
|
||||
|
||||
void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
||||
{
|
||||
(void)EEPROM; // tell compiler not to warn this is unused
|
||||
|
@ -347,8 +370,12 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
|||
|| ((subaddress & 0x03) != subaddress) // invalid subaddress (limit 2 bits )
|
||||
|| ((p[activep] & 0x01) != p[activep]) // invalid activate 0|1
|
||||
) break;
|
||||
|
||||
// Honour the configuration option (config.h) which allows the <a> command to be reversed
|
||||
#ifdef DCC_ACCESSORY_RCN_213
|
||||
DCC::setAccessory(address, subaddress,p[activep]==0);
|
||||
#else
|
||||
DCC::setAccessory(address, subaddress,p[activep]==1);
|
||||
#endif
|
||||
}
|
||||
return;
|
||||
|
||||
|
@ -454,6 +481,7 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
|||
if (mode == POWERMODE::OFF)
|
||||
DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off
|
||||
StringFormatter::send(stream, F("<p%c>\n"), opcode);
|
||||
LCD(2, F("p%c"), opcode);
|
||||
return;
|
||||
}
|
||||
switch (p[0])
|
||||
|
@ -461,6 +489,7 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
|||
case HASH_KEYWORD_MAIN:
|
||||
DCCWaveform::mainTrack.setPowerMode(mode);
|
||||
StringFormatter::send(stream, F("<p%c MAIN>\n"), opcode);
|
||||
LCD(2, F("p%c MAIN"), opcode);
|
||||
return;
|
||||
|
||||
case HASH_KEYWORD_PROG:
|
||||
|
@ -468,6 +497,7 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
|||
if (mode == POWERMODE::OFF)
|
||||
DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off
|
||||
StringFormatter::send(stream, F("<p%c PROG>\n"), opcode);
|
||||
LCD(2, F("p%c PROG"), opcode);
|
||||
return;
|
||||
case HASH_KEYWORD_JOIN:
|
||||
DCCWaveform::mainTrack.setPowerMode(mode);
|
||||
|
@ -476,9 +506,13 @@ void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
|
|||
{
|
||||
DCC::setProgTrackSyncMain(true);
|
||||
StringFormatter::send(stream, F("<p1 JOIN>\n"), opcode);
|
||||
LCD(2, F("p1 JOIN"));
|
||||
}
|
||||
else
|
||||
{
|
||||
StringFormatter::send(stream, F("<p0>\n"));
|
||||
LCD(2, F("p0"));
|
||||
}
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
@ -582,10 +616,8 @@ bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[])
|
|||
return true;
|
||||
|
||||
case 3: // <Z ID PIN IFLAG>
|
||||
if (p[0] < 0 ||
|
||||
p[1] > 255 || p[1] <= 1 || // Pins 0 and 1 are Serial to USB
|
||||
p[2] < 0 || p[2] > 7 )
|
||||
return false;
|
||||
if (p[0] < 0 || p[2] < 0 || p[2] > 7 )
|
||||
return false;
|
||||
if (!Output::create(p[0], p[1], p[2], 1))
|
||||
return false;
|
||||
StringFormatter::send(stream, F("<O>\n"));
|
||||
|
@ -603,7 +635,7 @@ bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[])
|
|||
for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput)
|
||||
{
|
||||
gotone = true;
|
||||
StringFormatter::send(stream, F("<Y %d %d %d %d>\n"), tt->data.id, tt->data.pin, tt->data.iFlag, tt->data.oStatus);
|
||||
StringFormatter::send(stream, F("<Y %d %d %d %d>\n"), tt->data.id, tt->data.pin, tt->data.flags, tt->data.active);
|
||||
}
|
||||
return gotone;
|
||||
}
|
||||
|
@ -662,11 +694,10 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
|
|||
case 0: // <T> list turnout definitions
|
||||
{
|
||||
bool gotOne = false;
|
||||
for (Turnout *tt = Turnout::firstTurnout; tt != NULL; tt = tt->nextTurnout)
|
||||
for (Turnout *tt = Turnout::first(); tt != NULL; tt = tt->next())
|
||||
{
|
||||
gotOne = true;
|
||||
StringFormatter::send(stream, F("<H %d %d %d %d>\n"), tt->data.id, tt->data.address,
|
||||
tt->data.subAddress, (tt->data.tStatus & STATUS_ACTIVE)!=0);
|
||||
tt->print(stream);
|
||||
}
|
||||
return gotOne; // will <X> if none found
|
||||
}
|
||||
|
@ -677,24 +708,62 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
|
|||
StringFormatter::send(stream, F("<O>\n"));
|
||||
return true;
|
||||
|
||||
case 2: // <T id 0|1> activate turnout
|
||||
{
|
||||
Turnout *tt = Turnout::get(p[0]);
|
||||
if (!tt)
|
||||
return false;
|
||||
tt->activate(p[1]);
|
||||
StringFormatter::send(stream, F("<H %d %d>\n"), tt->data.id, (tt->data.tStatus & STATUS_ACTIVE)!=0);
|
||||
}
|
||||
return true;
|
||||
case 2: // <T id 0|1|T|C>
|
||||
{
|
||||
bool state = false;
|
||||
switch (p[1]) {
|
||||
// Turnout messages use 1=throw, 0=close.
|
||||
case 0:
|
||||
case HASH_KEYWORD_C:
|
||||
state = true;
|
||||
break;
|
||||
case 1:
|
||||
case HASH_KEYWORD_T:
|
||||
state= false;
|
||||
break;
|
||||
default:
|
||||
return false; // Invalid parameter
|
||||
}
|
||||
if (!Turnout::setClosed(p[0], state)) return false;
|
||||
|
||||
case 3: // <T id addr subaddr> define turnout
|
||||
if (!Turnout::create(p[0], p[1], p[2]))
|
||||
return false;
|
||||
StringFormatter::send(stream, F("<O>\n"));
|
||||
return true;
|
||||
// Send acknowledgement to caller if the command was not received over Serial
|
||||
// (acknowledgement messages on Serial are sent by the Turnout class).
|
||||
if (stream != &Serial) Turnout::printState(p[0], stream);
|
||||
return true;
|
||||
}
|
||||
|
||||
default:
|
||||
return false; // will <x>
|
||||
default: // Anything else is some kind of turnout create function.
|
||||
if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // <T id SERVO n n n n>
|
||||
if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5]))
|
||||
return false;
|
||||
} else
|
||||
if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // <T id VPIN n>
|
||||
if (!VpinTurnout::create(p[0], p[2])) return false;
|
||||
} else
|
||||
if (params >= 3 && p[1] == HASH_KEYWORD_DCC) {
|
||||
// <T id DCC addr subadd> 0<=addr<=511, 0<=subadd<=3 (like <a> command).<T>
|
||||
if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // <T id DCC n m>
|
||||
if (!DCCTurnout::create(p[0], p[2], p[3])) return false;
|
||||
} else if (params==3 && p[2]>0 && p[2]<=512*4) { // <T id DCC nn>, 1<=nn<=2048
|
||||
// Linearaddress 1 maps onto decoder address 1/0 (not 0/0!).
|
||||
if (!DCCTurnout::create(p[0], (p[2]-1)/4+1, (p[2]-1)%4)) return false;
|
||||
} else
|
||||
return false;
|
||||
} else
|
||||
if (params==3) { // legacy <T id addr subadd> for DCC accessory
|
||||
if (p[1]>=0 && p[1]<512 && p[2]>=0 && p[2]<4) {
|
||||
if (!DCCTurnout::create(p[0], p[1], p[2])) return false;
|
||||
} else
|
||||
return false;
|
||||
}
|
||||
else
|
||||
if (params==4) { // legacy <T id n n n> for Servo
|
||||
if (!ServoTurnout::create(p[0], (VPIN)p[1], (uint16_t)p[2], (uint16_t)p[3], 1)) return false;
|
||||
} else
|
||||
return false;
|
||||
|
||||
StringFormatter::send(stream, F("<O>\n"));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -716,13 +785,13 @@ bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[])
|
|||
return true;
|
||||
|
||||
case 0: // <S> list sensor definitions
|
||||
if (Sensor::firstSensor == NULL)
|
||||
return false;
|
||||
for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor)
|
||||
{
|
||||
StringFormatter::send(stream, F("<Q %d %d %d>\n"), tt->data.snum, tt->data.pin, tt->data.pullUp);
|
||||
}
|
||||
return true;
|
||||
if (Sensor::firstSensor == NULL)
|
||||
return false;
|
||||
for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor)
|
||||
{
|
||||
StringFormatter::send(stream, F("<Q %d %d %d>\n"), tt->data.snum, tt->data.pin, tt->data.pullUp);
|
||||
}
|
||||
return true;
|
||||
|
||||
default: // invalid number of arguments
|
||||
break;
|
||||
|
@ -745,17 +814,20 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
|
|||
StringFormatter::send(stream, F("Free memory=%d\n"), minimumFreeMemory());
|
||||
break;
|
||||
|
||||
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX] Value>
|
||||
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
|
||||
if (params >= 3) {
|
||||
if (p[1] == HASH_KEYWORD_LIMIT) {
|
||||
DCCWaveform::progTrack.setAckLimit(p[2]);
|
||||
StringFormatter::send(stream, F("Ack limit=%dmA\n"), p[2]);
|
||||
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
|
||||
} else if (p[1] == HASH_KEYWORD_MIN) {
|
||||
DCCWaveform::progTrack.setMinAckPulseDuration(p[2]);
|
||||
StringFormatter::send(stream, F("Ack min=%dus\n"), p[2]);
|
||||
LCD(0, F("Ack Min=%dus"), p[2]); // <D ACK MIN 1500>
|
||||
} else if (p[1] == HASH_KEYWORD_MAX) {
|
||||
DCCWaveform::progTrack.setMaxAckPulseDuration(p[2]);
|
||||
StringFormatter::send(stream, F("Ack max=%dus\n"), p[2]);
|
||||
LCD(0, F("Ack Max=%dus"), p[2]); // <D ACK MAX 9000>
|
||||
} else if (p[1] == HASH_KEYWORD_RETRY) {
|
||||
if (p[2] >255) p[2]=3;
|
||||
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCC::setAckRetry(p[2])); // <D ACK RETRY 2>
|
||||
}
|
||||
} else {
|
||||
StringFormatter::send(stream, F("Ack diag %S\n"), onOff ? F("on") : F("off"));
|
||||
|
@ -767,21 +839,23 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
|
|||
Diag::CMD = onOff;
|
||||
return true;
|
||||
|
||||
#ifdef HAS_ENOUGH_MEMORY
|
||||
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
|
||||
Diag::WIFI = onOff;
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
|
||||
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
|
||||
Diag::ETHERNET = onOff;
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
|
||||
Diag::WITHROTTLE = onOff;
|
||||
return true;
|
||||
|
||||
|
||||
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
|
||||
Diag::LCN = onOff;
|
||||
return true;
|
||||
#endif
|
||||
|
||||
case HASH_KEYWORD_PROGBOOST:
|
||||
DCC::setProgTrackBoost(true);
|
||||
|
@ -813,6 +887,22 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
|
|||
StringFormatter::send(stream, F("128 Speedsteps"));
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_SERVO: // <D SERVO vpin position [profile]>
|
||||
case HASH_KEYWORD_ANOUT: // <D ANOUT vpin position [profile]>
|
||||
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
|
||||
break;
|
||||
|
||||
case HASH_KEYWORD_ANIN: // <D ANIN vpin> Display analogue input value
|
||||
DIAG(F("VPIN=%d value=%d"), p[1], IODevice::readAnalogue(p[1]));
|
||||
break;
|
||||
|
||||
#if !defined(IO_MINIMAL_HAL)
|
||||
case HASH_KEYWORD_HAL:
|
||||
if (p[1] == HASH_KEYWORD_SHOW)
|
||||
IODevice::DumpAll();
|
||||
break;
|
||||
#endif
|
||||
|
||||
default: // invalid/unknown
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#pragma GCC optimize ("-O3")
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
#include "defines.h"
|
||||
|
@ -50,10 +50,8 @@ void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
|
|||
&& (mainDriver->getFaultPin() != UNUSED_PIN));
|
||||
// Only use PWM if both pins are PWM capable. Otherwise JOIN does not work
|
||||
MotorDriver::usePWM= mainDriver->isPWMCapable() && progDriver->isPWMCapable();
|
||||
if (MotorDriver::usePWM)
|
||||
DIAG(F("Signal pin config: high accuracy waveform"));
|
||||
else
|
||||
DIAG(F("Signal pin config: normal accuracy waveform"));
|
||||
DIAG(F("Signal pin config: %S accuracy waveform"),
|
||||
MotorDriver::usePWM ? F("high") : F("normal") );
|
||||
DCCTimer::begin(DCCWaveform::interruptHandler);
|
||||
}
|
||||
|
||||
|
@ -86,6 +84,8 @@ void IRAM_ATTR DCCWaveform::loop(bool ackManagerActive) {
|
|||
mainTrack.checkPowerOverload(false);
|
||||
}
|
||||
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("-O3")
|
||||
void IRAM_ATTR DCCWaveform::interruptHandler() {
|
||||
// call the timer edge sensitive actions for progtrack and maintrack
|
||||
// member functions would be cleaner but have more overhead
|
||||
|
@ -113,7 +113,7 @@ void IRAM_ATTR DCCWaveform::interruptHandler() {
|
|||
progTrack.checkAck();
|
||||
#endif
|
||||
}
|
||||
|
||||
#pragma GCC push_options
|
||||
|
||||
// An instance of this class handles the DCC transmissions for one track. (main or prog)
|
||||
// Interrupts are marshalled via the statics.
|
||||
|
@ -149,6 +149,7 @@ void DCCWaveform::setPowerMode(POWERMODE mode) {
|
|||
powerMode = mode;
|
||||
bool ison = (mode == POWERMODE::ON);
|
||||
motorDriver->setPower( ison);
|
||||
sentResetsSincePacket=0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -159,6 +160,8 @@ void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
|
|||
if (!isMainTrack && !ackManagerActive && !progTrackSyncMain && !progTrackBoosted)
|
||||
tripValue=progTripValue;
|
||||
|
||||
// Trackname for diag messages later
|
||||
const FSH*trackname = isMainTrack ? F("MAIN") : F("PROG");
|
||||
switch (powerMode) {
|
||||
case POWERMODE::OFF:
|
||||
sampleDelay = POWER_SAMPLE_OFF_WAIT;
|
||||
|
@ -176,9 +179,9 @@ void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
|
|||
}
|
||||
// Write this after the fact as we want to turn on as fast as possible
|
||||
// because we don't know which output actually triggered the fault pin
|
||||
DIAG(F("*** COMMON FAULT PIN ACTIVE - TOGGLED POWER on %S ***"), isMainTrack ? F("MAIN") : F("PROG"));
|
||||
DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %S"), trackname);
|
||||
} else {
|
||||
DIAG(F("*** %S FAULT PIN ACTIVE - OVERLOAD ***"), isMainTrack ? F("MAIN") : F("PROG"));
|
||||
DIAG(F("%S FAULT PIN ACTIVE - OVERLOAD"), trackname);
|
||||
if (lastCurrent < tripValue) {
|
||||
lastCurrent = tripValue; // exaggerate
|
||||
}
|
||||
|
@ -196,7 +199,7 @@ void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
|
|||
unsigned int maxmA=motorDriver->raw2mA(tripValue);
|
||||
power_good_counter=0;
|
||||
sampleDelay = power_sample_overload_wait;
|
||||
DIAG(F("*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%d ***"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, sampleDelay);
|
||||
DIAG(F("%S TRACK POWER OVERLOAD current=%d max=%d offtime=%d"), trackname, mA, maxmA, sampleDelay);
|
||||
if (power_sample_overload_wait >= 10000)
|
||||
power_sample_overload_wait = 10000;
|
||||
else
|
||||
|
@ -208,7 +211,7 @@ void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
|
|||
setPowerMode(POWERMODE::ON);
|
||||
sampleDelay = POWER_SAMPLE_ON_WAIT;
|
||||
// Debug code....
|
||||
DIAG(F("*** %S TRACK POWER RESET delay=%d ***"), isMainTrack ? F("MAIN") : F("PROG"), sampleDelay);
|
||||
DIAG(F("%S TRACK POWER RESET delay=%d"), trackname, sampleDelay);
|
||||
break;
|
||||
default:
|
||||
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
|
||||
|
@ -232,6 +235,8 @@ const bool DCCWaveform::signalTransform[]={
|
|||
/* WAVE_LOW_0 -> */ LOW,
|
||||
/* WAVE_PENDING (should not happen) -> */ LOW};
|
||||
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("-O3")
|
||||
void IRAM_ATTR DCCWaveform::interrupt2() {
|
||||
// calculate the next bit to be sent:
|
||||
// set state WAVE_MID_1 for a 1=bit
|
||||
|
@ -291,7 +296,7 @@ void IRAM_ATTR DCCWaveform::interrupt2() {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma GCC pop_options
|
||||
|
||||
|
||||
// Wait until there is no packet pending, then make this pending
|
||||
|
@ -347,8 +352,10 @@ byte DCCWaveform::getAck() {
|
|||
return(0); // pending set off but not detected means no ACK.
|
||||
}
|
||||
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("-O3")
|
||||
void IRAM_ATTR DCCWaveform::checkAck() {
|
||||
// This function operates in interrupt() time (not on ESP) so must be fast and can't DIAG
|
||||
// This function operates in interrupt() time so must be fast and can't DIAG
|
||||
if (sentResetsSincePacket > 6) { //ACK timeout
|
||||
ackCheckDuration=millis()-ackCheckStart;
|
||||
ackPending = false;
|
||||
|
@ -396,3 +403,4 @@ void IRAM_ATTR DCCWaveform::checkAck() {
|
|||
}
|
||||
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
|
||||
}
|
||||
#pragma GCC pop_options
|
||||
|
|
99
EEStore.cpp
99
EEStore.cpp
|
@ -19,88 +19,87 @@
|
|||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "EEStore.h"
|
||||
#include "Turnouts.h"
|
||||
#include "Sensors.h"
|
||||
#include "Outputs.h"
|
||||
|
||||
#include "DIAG.h"
|
||||
#include "Outputs.h"
|
||||
#include "Sensors.h"
|
||||
#include "Turnouts.h"
|
||||
|
||||
#if defined(ARDUINO_ARCH_SAMD)
|
||||
ExternalEEPROM EEPROM;
|
||||
#endif
|
||||
|
||||
void EEStore::init(){
|
||||
void EEStore::init() {
|
||||
#if defined(ARDUINO_ARCH_SAMD)
|
||||
EEPROM.begin(0x50); // Address for Microchip 24-series EEPROM with all three A pins grounded (0b1010000 = 0x50)
|
||||
EEPROM.begin(0x50); // Address for Microchip 24-series EEPROM with all three
|
||||
// A pins grounded (0b1010000 = 0x50)
|
||||
#endif
|
||||
|
||||
eeStore=(EEStore *)calloc(1,sizeof(EEStore));
|
||||
|
||||
EEPROM.get(0,eeStore->data); // get eeStore data
|
||||
eeStore = (EEStore *)calloc(1, sizeof(EEStore));
|
||||
|
||||
if(strncmp(eeStore->data.id,EESTORE_ID,sizeof(EESTORE_ID))!=0){ // check to see that eeStore contains valid DCC++ ID
|
||||
sprintf(eeStore->data.id,EESTORE_ID); // if not, create blank eeStore structure (no turnouts, no sensors) and save it back to EEPROM
|
||||
eeStore->data.nTurnouts=0;
|
||||
eeStore->data.nSensors=0;
|
||||
eeStore->data.nOutputs=0;
|
||||
EEPROM.put(0,eeStore->data);
|
||||
}
|
||||
EEPROM.get(0, eeStore->data); // get eeStore data
|
||||
|
||||
reset(); // set memory pointer to first free EEPROM space
|
||||
Turnout::load(); // load turnout definitions
|
||||
Sensor::load(); // load sensor definitions
|
||||
Output::load(); // load output definitions
|
||||
// check to see that eeStore contains valid DCC++ ID
|
||||
if (strncmp(eeStore->data.id, EESTORE_ID, sizeof(EESTORE_ID)) != 0) {
|
||||
// if not, create blank eeStore structure (no
|
||||
// turnouts, no sensors) and save it back to EEPROM
|
||||
strncpy(eeStore->data.id, EESTORE_ID, sizeof(EESTORE_ID));
|
||||
eeStore->data.nTurnouts = 0;
|
||||
eeStore->data.nSensors = 0;
|
||||
eeStore->data.nOutputs = 0;
|
||||
EEPROM.put(0, eeStore->data);
|
||||
}
|
||||
|
||||
reset(); // set memory pointer to first free EEPROM space
|
||||
Turnout::load(); // load turnout definitions
|
||||
Sensor::load(); // load sensor definitions
|
||||
Output::load(); // load output definitions
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void EEStore::clear(){
|
||||
|
||||
sprintf(eeStore->data.id,EESTORE_ID); // create blank eeStore structure (no turnouts, no sensors) and save it back to EEPROM
|
||||
eeStore->data.nTurnouts=0;
|
||||
eeStore->data.nSensors=0;
|
||||
eeStore->data.nOutputs=0;
|
||||
EEPROM.put(0,eeStore->data);
|
||||
|
||||
void EEStore::clear() {
|
||||
sprintf(eeStore->data.id,
|
||||
EESTORE_ID); // create blank eeStore structure (no turnouts, no
|
||||
// sensors) and save it back to EEPROM
|
||||
eeStore->data.nTurnouts = 0;
|
||||
eeStore->data.nSensors = 0;
|
||||
eeStore->data.nOutputs = 0;
|
||||
EEPROM.put(0, eeStore->data);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void EEStore::store(){
|
||||
reset();
|
||||
Turnout::store();
|
||||
Sensor::store();
|
||||
Output::store();
|
||||
EEPROM.put(0,eeStore->data);
|
||||
void EEStore::store() {
|
||||
reset();
|
||||
Turnout::store();
|
||||
Sensor::store();
|
||||
Output::store();
|
||||
EEPROM.put(0, eeStore->data);
|
||||
DIAG(F("EEPROM used: %d/%d bytes"), EEStore::pointer(), EEPROM.length());
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void EEStore::advance(int n){
|
||||
eeAddress+=n;
|
||||
}
|
||||
void EEStore::advance(int n) { eeAddress += n; }
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void EEStore::reset(){
|
||||
eeAddress=sizeof(EEStore);
|
||||
}
|
||||
void EEStore::reset() { eeAddress = sizeof(EEStore); }
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int EEStore::pointer(){
|
||||
return(eeAddress);
|
||||
}
|
||||
int EEStore::pointer() { return (eeAddress); }
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void EEStore::dump(int num) {
|
||||
byte b;
|
||||
DIAG(F("Addr 0x char"));
|
||||
for (int n=0 ; n<num; n++) {
|
||||
EEPROM.get(n, b);
|
||||
DIAG(F("%d %x %c"),n,b,isprint(b) ? b : ' ');
|
||||
}
|
||||
byte b;
|
||||
DIAG(F("Addr 0x char"));
|
||||
for (int n = 0; n < num; n++) {
|
||||
EEPROM.get(n, b);
|
||||
DIAG(F("%d %x %c"), n, b, isprint(b) ? b : ' ');
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
EEStore *EEStore::eeStore=NULL;
|
||||
int EEStore::eeAddress=0;
|
||||
EEStore *EEStore::eeStore = NULL;
|
||||
int EEStore::eeAddress = 0;
|
||||
|
|
|
@ -29,7 +29,7 @@ extern ExternalEEPROM EEPROM;
|
|||
#include <EEPROM.h>
|
||||
#endif
|
||||
|
||||
#define EESTORE_ID "DCC++"
|
||||
#define EESTORE_ID "DCC++1"
|
||||
|
||||
struct EEStoreData{
|
||||
char id[sizeof(EESTORE_ID)];
|
||||
|
|
|
@ -17,12 +17,6 @@
|
|||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#if __has_include ( "config.h")
|
||||
#include "config.h"
|
||||
#else
|
||||
#warning config.h not found. Using defaults from config.example.h
|
||||
#include "config.example.h"
|
||||
#endif
|
||||
#include "defines.h"
|
||||
#if ETHERNET_ON == true
|
||||
#include "EthernetInterface.h"
|
||||
|
|
|
@ -22,12 +22,8 @@
|
|||
|
||||
#ifndef EthernetInterface_h
|
||||
#define EthernetInterface_h
|
||||
#if __has_include ( "config.h")
|
||||
#include "config.h"
|
||||
#else
|
||||
#warning config.h not found. Using defaults from config.example.h
|
||||
#include "config.example.h"
|
||||
#endif
|
||||
|
||||
#include "defines.h"
|
||||
#include "DCCEXParser.h"
|
||||
#include <Arduino.h>
|
||||
#include <avr/pgmspace.h>
|
||||
|
|
|
@ -1 +1 @@
|
|||
#define GITHUB_SHA "ESP32-2021119-00:26"
|
||||
#define GITHUB_SHA "ESP32-2021120-11:30"
|
||||
|
|
222
I2CManager.cpp
222
I2CManager.cpp
|
@ -18,14 +18,40 @@
|
|||
*/
|
||||
|
||||
#include <stdarg.h>
|
||||
#include <Wire.h>
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
// If not already initialised, initialise I2C (wire).
|
||||
// Include target-specific portions of I2CManager class
|
||||
#if defined(I2C_USE_WIRE)
|
||||
#include "I2CManager_Wire.h"
|
||||
#elif defined(ARDUINO_ARCH_AVR)
|
||||
#include "I2CManager_NonBlocking.h"
|
||||
#include "I2CManager_AVR.h" // Uno/Nano/Mega2560
|
||||
#elif defined(ARDUINO_ARCH_MEGAAVR)
|
||||
#include "I2CManager_NonBlocking.h"
|
||||
#include "I2CManager_Mega4809.h" // NanoEvery/UnoWifi
|
||||
#else
|
||||
#define I2C_USE_WIRE
|
||||
#include "I2CManager_Wire.h" // Other platforms
|
||||
#endif
|
||||
|
||||
|
||||
// If not already initialised, initialise I2C
|
||||
void I2CManagerClass::begin(void) {
|
||||
//setTimeout(25000); // 25 millisecond timeout
|
||||
if (!_beginCompleted) {
|
||||
Wire.begin();
|
||||
_beginCompleted = true;
|
||||
_initialise();
|
||||
|
||||
// Probe and list devices.
|
||||
bool found = false;
|
||||
for (byte addr=1; addr<127; addr++) {
|
||||
if (exists(addr)) {
|
||||
found = true;
|
||||
DIAG(F("I2C Device found at x%x"), addr);
|
||||
}
|
||||
}
|
||||
if (!found) DIAG(F("No I2C Devices found"));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -34,8 +60,8 @@ void I2CManagerClass::begin(void) {
|
|||
void I2CManagerClass::setClock(uint32_t speed) {
|
||||
if (speed < _clockSpeed && !_clockSpeedFixed) {
|
||||
_clockSpeed = speed;
|
||||
Wire.setClock(_clockSpeed);
|
||||
}
|
||||
_setClock(_clockSpeed);
|
||||
}
|
||||
|
||||
// Force clock speed to that specified. It can then only
|
||||
|
@ -44,39 +70,21 @@ void I2CManagerClass::forceClock(uint32_t speed) {
|
|||
if (!_clockSpeedFixed) {
|
||||
_clockSpeed = speed;
|
||||
_clockSpeedFixed = true;
|
||||
Wire.setClock(_clockSpeed);
|
||||
_setClock(_clockSpeed);
|
||||
}
|
||||
}
|
||||
|
||||
// Check if specified I2C address is responding.
|
||||
// Returns 0 if OK, or error code.
|
||||
// Check if specified I2C address is responding (blocking operation)
|
||||
// Returns I2C_STATUS_OK (0) if OK, or error code.
|
||||
uint8_t I2CManagerClass::checkAddress(uint8_t address) {
|
||||
begin();
|
||||
Wire.beginTransmission(address);
|
||||
return Wire.endTransmission();
|
||||
return write(address, NULL, 0);
|
||||
}
|
||||
|
||||
bool I2CManagerClass::exists(uint8_t address) {
|
||||
return checkAddress(address)==0;
|
||||
}
|
||||
|
||||
// Write a complete transmission to I2C using a supplied buffer of data
|
||||
uint8_t I2CManagerClass::write(uint8_t address, const uint8_t buffer[], uint8_t size) {
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(buffer, size);
|
||||
return Wire.endTransmission();
|
||||
}
|
||||
|
||||
// Write a complete transmission to I2C using a supplied buffer of data in Flash
|
||||
uint8_t I2CManagerClass::write_P(uint8_t address, const uint8_t buffer[], uint8_t size) {
|
||||
uint8_t ramBuffer[size];
|
||||
memcpy_P(ramBuffer, buffer, size);
|
||||
return write(address, ramBuffer, size);
|
||||
}
|
||||
|
||||
|
||||
// Write a complete transmission to I2C using a list of data
|
||||
uint8_t I2CManagerClass::write(uint8_t address, int nBytes, ...) {
|
||||
/***************************************************************************
|
||||
* Write a transmission to I2C using a list of data (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write(uint8_t address, uint8_t nBytes, ...) {
|
||||
uint8_t buffer[nBytes];
|
||||
va_list args;
|
||||
va_start(args, nBytes);
|
||||
|
@ -86,30 +94,38 @@ uint8_t I2CManagerClass::write(uint8_t address, int nBytes, ...) {
|
|||
return write(address, buffer, nBytes);
|
||||
}
|
||||
|
||||
// Write a command and read response, returns number of bytes received.
|
||||
// Different modules use different ways of accessing registers:
|
||||
// PCF8574 I/O expander justs needs the address (no data);
|
||||
// PCA9685 needs a two byte command to select the register(s) to be read;
|
||||
// MCP23016 needs a one-byte command to select the register.
|
||||
// Some devices use 8-bit registers exclusively and some have 16-bit registers.
|
||||
// Therefore the following function is general purpose, to apply to any
|
||||
// type of I2C device.
|
||||
//
|
||||
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
uint8_t writeBuffer[], uint8_t writeSize) {
|
||||
if (writeSize > 0) {
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(writeBuffer, writeSize);
|
||||
Wire.endTransmission(false); // Don't free bus yet
|
||||
}
|
||||
Wire.requestFrom(address, readSize);
|
||||
uint8_t nBytes = 0;
|
||||
while (Wire.available() && nBytes < readSize)
|
||||
readBuffer[nBytes++] = Wire.read();
|
||||
return nBytes;
|
||||
/***************************************************************************
|
||||
* Initiate a write to an I2C device (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write(uint8_t i2cAddress, const uint8_t writeBuffer[], uint8_t writeLen) {
|
||||
I2CRB req;
|
||||
uint8_t status = write(i2cAddress, writeBuffer, writeLen, &req);
|
||||
return finishRB(&req, status);
|
||||
}
|
||||
|
||||
// Overload of read() to allow command to be specified as a series of bytes.
|
||||
/***************************************************************************
|
||||
* Initiate a write from PROGMEM (flash) to an I2C device (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write_P(uint8_t i2cAddress, const uint8_t * data, uint8_t dataLen) {
|
||||
I2CRB req;
|
||||
uint8_t status = write_P(i2cAddress, data, dataLen, &req);
|
||||
return finishRB(&req, status);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write (optional) followed by a read from the I2C device (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::read(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
|
||||
const uint8_t *writeBuffer, uint8_t writeLen)
|
||||
{
|
||||
I2CRB req;
|
||||
uint8_t status = read(i2cAddress, readBuffer, readLen, writeBuffer, writeLen, &req);
|
||||
return finishRB(&req, status);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Overload of read() to allow command to be specified as a series of bytes (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
uint8_t writeSize, ...) {
|
||||
va_list args;
|
||||
|
@ -122,8 +138,104 @@ uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t rea
|
|||
return read(address, readBuffer, readSize, writeBuffer, writeSize);
|
||||
}
|
||||
|
||||
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize) {
|
||||
return read(address, readBuffer, readSize, NULL, 0);
|
||||
/***************************************************************************
|
||||
* Finish off request block by posting status, etc. (blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::finishRB(I2CRB *rb, uint8_t status) {
|
||||
if ((status == I2C_STATUS_OK) && rb)
|
||||
status = rb->wait();
|
||||
return status;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Get a message corresponding to the error status
|
||||
***************************************************************************/
|
||||
const FSH *I2CManagerClass::getErrorMessage(uint8_t status) {
|
||||
switch (status) {
|
||||
case I2C_STATUS_OK: return F("OK");
|
||||
case I2C_STATUS_TRUNCATED: return F("Transmission truncated");
|
||||
case I2C_STATUS_NEGATIVE_ACKNOWLEDGE: return F("No response from device (address NAK)");
|
||||
case I2C_STATUS_TRANSMIT_ERROR: return F("Transmit error (data NAK)");
|
||||
case I2C_STATUS_OTHER_TWI_ERROR: return F("Other Wire/TWI error");
|
||||
case I2C_STATUS_TIMEOUT: return F("Timeout");
|
||||
case I2C_STATUS_ARBITRATION_LOST: return F("Arbitration lost");
|
||||
case I2C_STATUS_BUS_ERROR: return F("I2C bus error");
|
||||
case I2C_STATUS_UNEXPECTED_ERROR: return F("Unexpected error");
|
||||
case I2C_STATUS_PENDING: return F("Request pending");
|
||||
default: return F("Error code not recognised");
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Declare singleton class instance.
|
||||
***************************************************************************/
|
||||
I2CManagerClass I2CManager = I2CManagerClass();
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Helper functions associated with I2C Request Block
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/***************************************************************************
|
||||
* Block waiting for request block to complete, and return completion status.
|
||||
* Since such a loop could potentially last for ever if the RB status doesn't
|
||||
* change, we set a high limit (1sec, 1000ms) on the wait time and, if it
|
||||
* hasn't changed by that time we assume it's not going to, and just return
|
||||
* a timeout status. This means that CS will not lock up.
|
||||
***************************************************************************/
|
||||
uint8_t I2CRB::wait() {
|
||||
unsigned long waitStart = millis();
|
||||
do {
|
||||
I2CManager.loop();
|
||||
// Rather than looping indefinitely, let's set a very high timeout (1s).
|
||||
if ((millis() - waitStart) > 1000UL) {
|
||||
DIAG(F("I2C TIMEOUT I2C:x%x I2CRB:x%x"), i2cAddress, this);
|
||||
status = I2C_STATUS_TIMEOUT;
|
||||
// Note that, although the timeout is posted, the request may yet complete.
|
||||
// TODO: Ideally we would like to cancel the request.
|
||||
return status;
|
||||
}
|
||||
} while (status==I2C_STATUS_PENDING);
|
||||
return status;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Check whether request is still in progress.
|
||||
***************************************************************************/
|
||||
bool I2CRB::isBusy() {
|
||||
I2CManager.loop();
|
||||
return (status==I2C_STATUS_PENDING);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Helper functions to fill the I2CRequest structure with parameters.
|
||||
***************************************************************************/
|
||||
void I2CRB::setReadParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen) {
|
||||
this->i2cAddress = i2cAddress;
|
||||
this->writeLen = 0;
|
||||
this->readBuffer = readBuffer;
|
||||
this->readLen = readLen;
|
||||
this->operation = OPERATION_READ;
|
||||
this->status = I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
void I2CRB::setRequestParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
|
||||
const uint8_t *writeBuffer, uint8_t writeLen) {
|
||||
this->i2cAddress = i2cAddress;
|
||||
this->writeBuffer = writeBuffer;
|
||||
this->writeLen = writeLen;
|
||||
this->readBuffer = readBuffer;
|
||||
this->readLen = readLen;
|
||||
this->operation = OPERATION_REQUEST;
|
||||
this->status = I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
void I2CRB::setWriteParams(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen) {
|
||||
this->i2cAddress = i2cAddress;
|
||||
this->writeBuffer = writeBuffer;
|
||||
this->writeLen = writeLen;
|
||||
this->readLen = 0;
|
||||
this->operation = OPERATION_SEND;
|
||||
this->status = I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
I2CManagerClass I2CManager = I2CManagerClass();
|
236
I2CManager.h
236
I2CManager.h
|
@ -17,13 +17,16 @@
|
|||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef I2CManager_h
|
||||
#define I2CManager_h
|
||||
#ifndef I2CMANAGER_H
|
||||
#define I2CMANAGER_H
|
||||
|
||||
#include <inttypes.h>
|
||||
#include "FSH.h"
|
||||
|
||||
/*
|
||||
* Helper class to manage access to the I2C 'Wire' subsystem.
|
||||
* Manager for I2C communications. For portability, it allows use
|
||||
* of the Wire class, but also has a native implementation for AVR
|
||||
* which supports non-blocking queued I/O requests.
|
||||
*
|
||||
* Helps to avoid calling Wire.begin() multiple times (which is not)
|
||||
* entirely benign as it reinitialises).
|
||||
|
@ -33,13 +36,157 @@
|
|||
*
|
||||
* Thirdly, it provides a convenient way to check whether there is a
|
||||
* device on a particular I2C address.
|
||||
*
|
||||
* Non-blocking requests are issued by creating an I2C Request Block
|
||||
* (I2CRB) which is then added to the I2C manager's queue. The
|
||||
* application refers to this block to check for completion of the
|
||||
* operation, and for reading completion status.
|
||||
*
|
||||
* Examples:
|
||||
* I2CRB rb;
|
||||
* uint8_t status = I2CManager.write(address, buffer, sizeof(buffer), &rb);
|
||||
* ...
|
||||
* if (!rb.isBusy()) {
|
||||
* status = rb.status;
|
||||
* // Repeat write
|
||||
* I2CManager.queueRequest(&rb);
|
||||
* ...
|
||||
* status = rb.wait(); // Wait for completion and read status
|
||||
* }
|
||||
* ...
|
||||
* I2CRB rb2;
|
||||
* outbuffer[0] = 12; // Register number in I2C device to be read
|
||||
* rb2.setRequestParams(address, inBuffer, 1, outBuffer, 1);
|
||||
* status = I2CManager.queueRequest(&rb2);
|
||||
* if (status == I2C_STATUS_OK) {
|
||||
* status = rb2.wait();
|
||||
* if (status == I2C_STATUS_OK) {
|
||||
* registerValue = inBuffer[0];
|
||||
* }
|
||||
* }
|
||||
* ...
|
||||
*
|
||||
* Synchronous (blocking) calls are also possible, e.g.
|
||||
* status = I2CManager.write(address, buffer, sizeof(buffer));
|
||||
*
|
||||
* When using non-blocking requests, neither the I2CRB nor the input or output
|
||||
* buffers should be modified until the I2CRB is complete (not busy).
|
||||
*
|
||||
* Timeout monitoring is possible, but requires that the following call is made
|
||||
* reasonably frequently in the program's loop() function:
|
||||
* I2CManager.loop();
|
||||
*
|
||||
*/
|
||||
|
||||
class I2CManagerClass {
|
||||
/*
|
||||
* Future enhancement possibility:
|
||||
*
|
||||
* I2C Multiplexer (e.g. TCA9547, TCA9548)
|
||||
*
|
||||
* A multiplexer offers a way of extending the address range of I2C devices. For example, GPIO extenders use address range 0x20-0x27
|
||||
* to are limited to 8 on a bus. By adding a multiplexer, the limit becomes 8 for each of the multiplexer's 8 sub-buses, i.e. 64.
|
||||
* And a single I2C bus can have up to 8 multiplexers, giving up to 64 sub-buses and, in theory, up to 512 I/O extenders; that's
|
||||
* as many as 8192 input/output pins!
|
||||
* Secondly, the capacitance of the bus is an electrical limiting factor of the length of the bus, speed and number of devices.
|
||||
* The multiplexer isolates each sub-bus from the others, and so reduces the capacitance of the bus. For example, with one
|
||||
* multiplexer and 64 GPIO extenders, only 9 devices are connected to the bus at any time (multiplexer plus 8 extenders).
|
||||
* Thirdly, the multiplexer offers the ability to use mixed-speed devices more effectively, by allowing high-speed devices to be
|
||||
* put on a different bus to low-speed devices, enabling the software to switch the I2C speed on-the-fly between I2C transactions.
|
||||
*
|
||||
* Changes required: Increase the size of the I2CAddress field in the IODevice class from uint8_t to uint16_t.
|
||||
* The most significant byte would contain a '1' bit flag, the multiplexer number (0-7) and bus number (0-7). Then, when performing
|
||||
* an I2C operation, the I2CManager would check this byte and, if zero, do what it currently does. If the byte is non-zero, then
|
||||
* that means the device is connected via a multiplexer so the I2C transaction should be preceded by a select command issued to the
|
||||
* relevant multiplexer.
|
||||
*
|
||||
* Non-interrupting I2C:
|
||||
*
|
||||
* I2C may be operated without interrupts (undefine I2C_USE_INTERRUPTS). Instead, the I2C state
|
||||
* machine handler, currently invoked from the interrupt service routine, is invoked from the loop() function.
|
||||
* The speed at which I2C operations can be performed then becomes highly dependent on the frequency that
|
||||
* the loop() function is called, and may be adequate under some circumstances.
|
||||
* The advantage of NOT using interrupts is that the impact of I2C upon the DCC waveform (when accurate timing mode isn't in use)
|
||||
* becomes almost zero.
|
||||
*
|
||||
*/
|
||||
|
||||
// Uncomment following line to enable Wire library instead of native I2C drivers
|
||||
//#define I2C_USE_WIRE
|
||||
|
||||
// Uncomment following line to disable the use of interrupts by the native I2C drivers.
|
||||
//#define I2C_NO_INTERRUPTS
|
||||
|
||||
// Default to use interrupts within the native I2C drivers.
|
||||
#ifndef I2C_NO_INTERRUPTS
|
||||
#define I2C_USE_INTERRUPTS
|
||||
#endif
|
||||
|
||||
// Status codes for I2CRB structures.
|
||||
enum : uint8_t {
|
||||
// Codes used by Wire and by native drivers
|
||||
I2C_STATUS_OK=0,
|
||||
I2C_STATUS_TRUNCATED=1,
|
||||
I2C_STATUS_NEGATIVE_ACKNOWLEDGE=2,
|
||||
I2C_STATUS_TRANSMIT_ERROR=3,
|
||||
I2C_STATUS_TIMEOUT=5,
|
||||
// Code used by Wire only
|
||||
I2C_STATUS_OTHER_TWI_ERROR=4, // catch-all error
|
||||
// Codes used by native drivers only
|
||||
I2C_STATUS_ARBITRATION_LOST=6,
|
||||
I2C_STATUS_BUS_ERROR=7,
|
||||
I2C_STATUS_UNEXPECTED_ERROR=8,
|
||||
I2C_STATUS_PENDING=253,
|
||||
};
|
||||
|
||||
// Status codes for the state machine (not returned to caller).
|
||||
enum : uint8_t {
|
||||
I2C_STATE_ACTIVE=253,
|
||||
I2C_STATE_FREE=254,
|
||||
I2C_STATE_CLOSING=255,
|
||||
};
|
||||
|
||||
typedef enum : uint8_t
|
||||
{
|
||||
OPERATION_READ = 1,
|
||||
OPERATION_REQUEST = 2,
|
||||
OPERATION_SEND = 3,
|
||||
OPERATION_SEND_P = 4,
|
||||
} OperationEnum;
|
||||
|
||||
|
||||
// Default I2C frequency
|
||||
#ifndef I2C_FREQ
|
||||
#define I2C_FREQ 400000L
|
||||
#endif
|
||||
|
||||
// Class defining a request context for an I2C operation.
|
||||
class I2CRB {
|
||||
public:
|
||||
volatile uint8_t status; // Completion status, or pending flag (updated from IRC)
|
||||
volatile uint8_t nBytes; // Number of bytes read (updated from IRC)
|
||||
|
||||
I2CManagerClass() {}
|
||||
inline I2CRB() { status = I2C_STATUS_OK; };
|
||||
uint8_t wait();
|
||||
bool isBusy();
|
||||
|
||||
void setReadParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen);
|
||||
void setRequestParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen, const uint8_t *writeBuffer, uint8_t writeLen);
|
||||
void setWriteParams(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen);
|
||||
|
||||
uint8_t writeLen;
|
||||
uint8_t readLen;
|
||||
uint8_t operation;
|
||||
uint8_t i2cAddress;
|
||||
uint8_t *readBuffer;
|
||||
const uint8_t *writeBuffer;
|
||||
#if !defined(I2C_USE_WIRE)
|
||||
I2CRB *nextRequest;
|
||||
#endif
|
||||
};
|
||||
|
||||
// I2C Manager
|
||||
class I2CManagerClass {
|
||||
public:
|
||||
|
||||
// If not already initialised, initialise I2C (wire).
|
||||
void begin(void);
|
||||
|
@ -49,28 +196,93 @@ public:
|
|||
void forceClock(uint32_t speed);
|
||||
// Check if specified I2C address is responding.
|
||||
uint8_t checkAddress(uint8_t address);
|
||||
bool exists(uint8_t address);
|
||||
inline bool exists(uint8_t address) {
|
||||
return checkAddress(address)==I2C_STATUS_OK;
|
||||
}
|
||||
// Write a complete transmission to I2C from an array in RAM
|
||||
uint8_t write(uint8_t address, const uint8_t buffer[], uint8_t size);
|
||||
uint8_t write(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
|
||||
// Write a complete transmission to I2C from an array in Flash
|
||||
uint8_t write_P(uint8_t address, const uint8_t buffer[], uint8_t size);
|
||||
uint8_t write_P(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
|
||||
// Write a transmission to I2C from a list of bytes.
|
||||
uint8_t write(uint8_t address, int nBytes, ...);
|
||||
uint8_t write(uint8_t address, uint8_t nBytes, ...);
|
||||
// Write a command from an array in RAM and read response
|
||||
uint8_t read(uint8_t address, uint8_t writeBuffer[], uint8_t writeSize,
|
||||
uint8_t readBuffer[], uint8_t readSize);
|
||||
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
const uint8_t writeBuffer[]=NULL, uint8_t writeSize=0);
|
||||
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
const uint8_t writeBuffer[], uint8_t writeSize, I2CRB *rb);
|
||||
// Write a command from an arbitrary list of bytes and read response
|
||||
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
uint8_t writeSize, ...);
|
||||
// Write a null command and read the response.
|
||||
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize);
|
||||
void queueRequest(I2CRB *req);
|
||||
|
||||
// Function to abort long-running operations.
|
||||
void checkForTimeout();
|
||||
|
||||
// Loop method
|
||||
void loop();
|
||||
|
||||
// Expand error codes into text. Note that they are in flash so
|
||||
// need to be printed using FSH.
|
||||
static const FSH *getErrorMessage(uint8_t status);
|
||||
|
||||
private:
|
||||
bool _beginCompleted = false;
|
||||
bool _clockSpeedFixed = false;
|
||||
uint32_t _clockSpeed = 400000L; // 400kHz max on Arduino.
|
||||
|
||||
// Finish off request block by waiting for completion and posting status.
|
||||
uint8_t finishRB(I2CRB *rb, uint8_t status);
|
||||
|
||||
void _initialise();
|
||||
void _setClock(unsigned long);
|
||||
|
||||
#if !defined(I2C_USE_WIRE)
|
||||
// I2CRB structs are queued on the following two links.
|
||||
// If there are no requests, both are NULL.
|
||||
// If there is only one request, then queueHead and queueTail both point to it.
|
||||
// Otherwise, queueHead is the pointer to the first request in the queue and
|
||||
// queueTail is the pointer to the last request in the queue.
|
||||
// Within the queue, each request's nextRequest field points to the
|
||||
// next request, or NULL.
|
||||
// Mark volatile as they are updated by IRC and read/written elsewhere.
|
||||
static I2CRB * volatile queueHead;
|
||||
static I2CRB * volatile queueTail;
|
||||
static volatile uint8_t state;
|
||||
|
||||
static I2CRB * volatile currentRequest;
|
||||
static volatile uint8_t txCount;
|
||||
static volatile uint8_t rxCount;
|
||||
static volatile uint8_t bytesToSend;
|
||||
static volatile uint8_t bytesToReceive;
|
||||
static volatile uint8_t operation;
|
||||
static volatile unsigned long startTime;
|
||||
|
||||
static unsigned long timeout; // Transaction timeout in microseconds. 0=disabled.
|
||||
|
||||
void startTransaction();
|
||||
|
||||
// Low-level hardware manipulation functions.
|
||||
static void I2C_init();
|
||||
static void I2C_setClock(unsigned long i2cClockSpeed);
|
||||
static void I2C_handleInterrupt();
|
||||
static void I2C_sendStart();
|
||||
static void I2C_sendStop();
|
||||
static void I2C_close();
|
||||
|
||||
public:
|
||||
// setTimeout sets the timout value for I2C transactions.
|
||||
// TODO: Get I2C timeout working before uncommenting the code below.
|
||||
void setTimeout(unsigned long value) { (void)value; /* timeout = value; */ };
|
||||
|
||||
// handleInterrupt needs to be public to be called from the ISR function!
|
||||
static void handleInterrupt();
|
||||
#endif
|
||||
|
||||
|
||||
};
|
||||
|
||||
extern I2CManagerClass I2CManager;
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
209
I2CManager_AVR.h
Normal file
209
I2CManager_AVR.h
Normal file
|
@ -0,0 +1,209 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef I2CMANAGER_AVR_H
|
||||
#define I2CMANAGER_AVR_H
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "I2CManager.h"
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
/****************************************************************************
|
||||
TWI State codes
|
||||
****************************************************************************/
|
||||
// General TWI Master staus codes
|
||||
#define TWI_START 0x08 // START has been transmitted
|
||||
#define TWI_REP_START 0x10 // Repeated START has been transmitted
|
||||
#define TWI_ARB_LOST 0x38 // Arbitration lost
|
||||
|
||||
// TWI Master Transmitter staus codes
|
||||
#define TWI_MTX_ADR_ACK 0x18 // SLA+W has been tramsmitted and ACK received
|
||||
#define TWI_MTX_ADR_NACK 0x20 // SLA+W has been tramsmitted and NACK received
|
||||
#define TWI_MTX_DATA_ACK 0x28 // Data byte has been tramsmitted and ACK received
|
||||
#define TWI_MTX_DATA_NACK 0x30 // Data byte has been tramsmitted and NACK received
|
||||
|
||||
// TWI Master Receiver staus codes
|
||||
#define TWI_MRX_ADR_ACK 0x40 // SLA+R has been tramsmitted and ACK received
|
||||
#define TWI_MRX_ADR_NACK 0x48 // SLA+R has been tramsmitted and NACK received
|
||||
#define TWI_MRX_DATA_ACK 0x50 // Data byte has been received and ACK tramsmitted
|
||||
#define TWI_MRX_DATA_NACK 0x58 // Data byte has been received and NACK tramsmitted
|
||||
|
||||
// TWI Miscellaneous status codes
|
||||
#define TWI_NO_STATE 0xF8 // No relevant state information available
|
||||
#define TWI_BUS_ERROR 0x00 // Bus error due to an illegal START or STOP condition
|
||||
|
||||
#define TWI_TWBR ((F_CPU / I2C_FREQ) - 16) / 2 // TWI Bit rate Register setting.
|
||||
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
#define ENABLE_TWI_INTERRUPT (1<<TWIE)
|
||||
#else
|
||||
#define ENABLE_TWI_INTERRUPT 0
|
||||
#endif
|
||||
|
||||
/***************************************************************************
|
||||
* Set I2C clock speed register.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_setClock(unsigned long i2cClockSpeed) {
|
||||
unsigned long temp = ((F_CPU / i2cClockSpeed) - 16) / 2;
|
||||
for (uint8_t preScaler = 0; preScaler<=3; preScaler++) {
|
||||
if (temp <= 255) {
|
||||
TWBR = temp;
|
||||
TWSR = (TWSR & 0xfc) | preScaler;
|
||||
return;
|
||||
} else
|
||||
temp /= 4;
|
||||
}
|
||||
// Set slowest speed ~= 500 bits/sec
|
||||
TWBR = 255;
|
||||
TWSR |= 0x03;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initialise I2C registers.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_init()
|
||||
{
|
||||
TWSR = 0;
|
||||
TWBR = TWI_TWBR; // Set bit rate register (Baudrate). Defined in header file.
|
||||
TWDR = 0xFF; // Default content = SDA released.
|
||||
TWCR = (1<<TWINT); // Clear interrupt flag
|
||||
|
||||
pinMode(SDA, INPUT_PULLUP);
|
||||
pinMode(SCL, INPUT_PULLUP);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a start bit for transmission.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStart() {
|
||||
bytesToSend = currentRequest->writeLen;
|
||||
bytesToReceive = currentRequest->readLen;
|
||||
// We may have initiated a stop bit before this without waiting for it.
|
||||
// Wait for stop bit to be sent before sending start.
|
||||
while (TWCR & (1<<TWSTO)) {}
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA)|(1<<TWSTA); // Send Start
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a stop bit for transmission (does not interrupt)
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStop() {
|
||||
TWDR = 0xff; // Default condition = SDA released
|
||||
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Close I2C down
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_close() {
|
||||
// disable TWI
|
||||
I2C_sendStop();
|
||||
while (TWCR & (1<<TWSTO)) {}
|
||||
TWCR = (1<<TWINT); // clear any interrupt and stop twi.
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Main state machine for I2C, called from interrupt handler or,
|
||||
* if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function
|
||||
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_handleInterrupt() {
|
||||
if (!(TWCR & (1<<TWINT))) return; // Nothing to do.
|
||||
|
||||
uint8_t twsr = TWSR & 0xF8;
|
||||
|
||||
// Cases are ordered so that the most frequently used ones are tested first.
|
||||
switch (twsr) {
|
||||
case TWI_MTX_DATA_ACK: // Data byte has been transmitted and ACK received
|
||||
case TWI_MTX_ADR_ACK: // SLA+W has been transmitted and ACK received
|
||||
if (bytesToSend) { // Send first.
|
||||
if (operation == OPERATION_SEND_P)
|
||||
TWDR = GETFLASH(currentRequest->writeBuffer + (txCount++));
|
||||
else
|
||||
TWDR = currentRequest->writeBuffer[txCount++];
|
||||
bytesToSend--;
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
|
||||
} else if (bytesToReceive) { // All sent, anything to receive?
|
||||
while (TWCR & (1<<TWSTO)) {} // Wait for stop to be sent
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA)|(1<<TWSTA); // Send Start
|
||||
} else { // Nothing left to send or receive
|
||||
TWDR = 0xff; // Default condition = SDA released
|
||||
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
|
||||
state = I2C_STATUS_OK;
|
||||
}
|
||||
break;
|
||||
case TWI_MRX_DATA_ACK: // Data byte has been received and ACK transmitted
|
||||
if (bytesToReceive > 0) {
|
||||
currentRequest->readBuffer[rxCount++] = TWDR;
|
||||
bytesToReceive--;
|
||||
}
|
||||
/* fallthrough */
|
||||
case TWI_MRX_ADR_ACK: // SLA+R has been sent and ACK received
|
||||
if (bytesToReceive <= 1) {
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT); // Send NACK after next reception
|
||||
} else {
|
||||
// send ack
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
|
||||
}
|
||||
break;
|
||||
case TWI_MRX_DATA_NACK: // Data byte has been received and NACK transmitted
|
||||
if (bytesToReceive > 0) {
|
||||
currentRequest->readBuffer[rxCount++] = TWDR;
|
||||
bytesToReceive--;
|
||||
}
|
||||
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
|
||||
state = I2C_STATUS_OK;
|
||||
break;
|
||||
case TWI_START: // START has been transmitted
|
||||
case TWI_REP_START: // Repeated START has been transmitted
|
||||
// Set up address and R/W
|
||||
if (operation == OPERATION_READ || (operation==OPERATION_REQUEST && !bytesToSend))
|
||||
TWDR = (currentRequest->i2cAddress << 1) | 1; // SLA+R
|
||||
else
|
||||
TWDR = (currentRequest->i2cAddress << 1) | 0; // SLA+W
|
||||
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
|
||||
break;
|
||||
case TWI_MTX_ADR_NACK: // SLA+W has been transmitted and NACK received
|
||||
case TWI_MRX_ADR_NACK: // SLA+R has been transmitted and NACK received
|
||||
case TWI_MTX_DATA_NACK: // Data byte has been transmitted and NACK received
|
||||
TWDR = 0xff; // Default condition = SDA released
|
||||
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
|
||||
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
break;
|
||||
case TWI_ARB_LOST: // Arbitration lost
|
||||
// Restart transaction from start.
|
||||
I2C_sendStart();
|
||||
break;
|
||||
case TWI_BUS_ERROR: // Bus error due to an illegal START or STOP condition
|
||||
default:
|
||||
TWDR = 0xff; // Default condition = SDA released
|
||||
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
|
||||
state = I2C_STATUS_TRANSMIT_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
ISR(TWI_vect) {
|
||||
I2CManagerClass::handleInterrupt();
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* I2CMANAGER_AVR_H */
|
160
I2CManager_Mega4809.h
Normal file
160
I2CManager_Mega4809.h
Normal file
|
@ -0,0 +1,160 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef I2CMANAGER_MEGA4809_H
|
||||
#define I2CMANAGER_MEGA4809_H
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "I2CManager.h"
|
||||
|
||||
/***************************************************************************
|
||||
* Set I2C clock speed register.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_setClock(unsigned long i2cClockSpeed) {
|
||||
uint16_t t_rise;
|
||||
if (i2cClockSpeed < 200000) {
|
||||
i2cClockSpeed = 100000;
|
||||
t_rise = 1000;
|
||||
} else if (i2cClockSpeed < 800000) {
|
||||
i2cClockSpeed = 400000;
|
||||
t_rise = 300;
|
||||
} else if (i2cClockSpeed < 1200000) {
|
||||
i2cClockSpeed = 1000000;
|
||||
t_rise = 120;
|
||||
} else {
|
||||
i2cClockSpeed = 100000;
|
||||
t_rise = 1000;
|
||||
}
|
||||
uint32_t baud = (F_CPU_CORRECTED / i2cClockSpeed - F_CPU_CORRECTED / 1000 / 1000
|
||||
* t_rise / 1000 - 10) / 2;
|
||||
TWI0.MBAUD = (uint8_t)baud;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initialise I2C registers.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_init()
|
||||
{
|
||||
pinMode(PIN_WIRE_SDA, INPUT_PULLUP);
|
||||
pinMode(PIN_WIRE_SCL, INPUT_PULLUP);
|
||||
PORTMUX.TWISPIROUTEA |= TWI_MUX;
|
||||
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
TWI0.MCTRLA = TWI_RIEN_bm | TWI_WIEN_bm | TWI_ENABLE_bm;
|
||||
#else
|
||||
TWI0.MCTRLA = TWI_ENABLE_bm;
|
||||
#endif
|
||||
I2C_setClock(I2C_FREQ);
|
||||
TWI0.MSTATUS = TWI_BUSSTATE_IDLE_gc;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a start bit for transmission, followed by address and R/W
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStart() {
|
||||
bytesToSend = currentRequest->writeLen;
|
||||
bytesToReceive = currentRequest->readLen;
|
||||
|
||||
// If anything to send, initiate write. Otherwise initiate read.
|
||||
if (operation == OPERATION_READ || (operation == OPERATION_REQUEST & !bytesToSend))
|
||||
TWI0.MADDR = (currentRequest->i2cAddress << 1) | 1;
|
||||
else
|
||||
TWI0.MADDR = (currentRequest->i2cAddress << 1) | 0;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a stop bit for transmission.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStop() {
|
||||
TWI0.MCTRLB = TWI_MCMD_STOP_gc;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Close I2C down
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_close() {
|
||||
I2C_sendStop();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Main state machine for I2C, called from interrupt handler.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_handleInterrupt() {
|
||||
|
||||
uint8_t currentStatus = TWI0.MSTATUS;
|
||||
|
||||
if (currentStatus & TWI_ARBLOST_bm) {
|
||||
// Arbitration lost, restart
|
||||
TWI0.MSTATUS = currentStatus; // clear all flags
|
||||
I2C_sendStart(); // Reinitiate request
|
||||
} else if (currentStatus & TWI_BUSERR_bm) {
|
||||
// Bus error
|
||||
state = I2C_STATUS_BUS_ERROR;
|
||||
TWI0.MSTATUS = currentStatus; // clear all flags
|
||||
} else if (currentStatus & TWI_WIF_bm) {
|
||||
// Master write completed
|
||||
if (currentStatus & TWI_RXACK_bm) {
|
||||
// Nacked, send stop.
|
||||
TWI0.MCTRLB = TWI_MCMD_STOP_gc;
|
||||
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
} else if (bytesToSend) {
|
||||
// Acked, so send next byte
|
||||
if (currentRequest->operation == OPERATION_SEND_P)
|
||||
TWI0.MDATA = GETFLASH(currentRequest->writeBuffer + (txCount++));
|
||||
else
|
||||
TWI0.MDATA = currentRequest->writeBuffer[txCount++];
|
||||
bytesToSend--;
|
||||
} else if (bytesToReceive) {
|
||||
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
|
||||
TWI0.MADDR = (currentRequest->i2cAddress << 1) | 1;
|
||||
} else {
|
||||
// No more data to send/receive. Initiate a STOP condition.
|
||||
TWI0.MCTRLB = TWI_MCMD_STOP_gc;
|
||||
state = I2C_STATUS_OK; // Done
|
||||
}
|
||||
} else if (currentStatus & TWI_RIF_bm) {
|
||||
// Master read completed without errors
|
||||
if (bytesToReceive) {
|
||||
currentRequest->readBuffer[rxCount++] = TWI0.MDATA; // Store received byte
|
||||
bytesToReceive--;
|
||||
} else {
|
||||
// Buffer full, issue nack/stop
|
||||
TWI0.MCTRLB = TWI_ACKACT_bm | TWI_MCMD_STOP_gc;
|
||||
state = I2C_STATUS_OK;
|
||||
}
|
||||
if (bytesToReceive) {
|
||||
// More bytes to receive, issue ack and start another read
|
||||
TWI0.MCTRLB = TWI_MCMD_RECVTRANS_gc;
|
||||
} else {
|
||||
// Transaction finished, issue NACK and STOP.
|
||||
TWI0.MCTRLB = TWI_ACKACT_bm | TWI_MCMD_STOP_gc;
|
||||
state = I2C_STATUS_OK;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* Interrupt handler.
|
||||
***************************************************************************/
|
||||
ISR(TWI0_TWIM_vect) {
|
||||
I2CManagerClass::handleInterrupt();
|
||||
}
|
||||
|
||||
#endif
|
224
I2CManager_NonBlocking.h
Normal file
224
I2CManager_NonBlocking.h
Normal file
|
@ -0,0 +1,224 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef I2CMANAGER_NONBLOCKING_H
|
||||
#define I2CMANAGER_NONBLOCKING_H
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "I2CManager.h"
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
#include <util/atomic.h>
|
||||
#else
|
||||
#define ATOMIC_BLOCK(x)
|
||||
#define ATOMIC_RESTORESTATE
|
||||
#endif
|
||||
|
||||
// This module is only compiled if I2C_USE_WIRE is not defined, so undefine it here
|
||||
// to get intellisense to work correctly.
|
||||
#if defined(I2C_USE_WIRE)
|
||||
#undef I2C_USE_WIRE
|
||||
#endif
|
||||
|
||||
/***************************************************************************
|
||||
* Initialise the I2CManagerAsync class.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::_initialise()
|
||||
{
|
||||
queueHead = queueTail = NULL;
|
||||
state = I2C_STATE_FREE;
|
||||
I2C_init();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Set I2C clock speed. Normally 100000 (Standard) or 400000 (Fast)
|
||||
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
|
||||
I2C_setClock(i2cClockSpeed);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Helper function to start operations, if the I2C interface is free and
|
||||
* there is a queued request to be processed.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::startTransaction() {
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
if ((state == I2C_STATE_FREE) && (queueHead != NULL)) {
|
||||
state = I2C_STATE_ACTIVE;
|
||||
currentRequest = queueHead;
|
||||
rxCount = txCount = 0;
|
||||
// Copy key fields to static data for speed.
|
||||
operation = currentRequest->operation;
|
||||
// Start the I2C process going.
|
||||
I2C_sendStart();
|
||||
startTime = micros();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Function to queue a request block and initiate operations.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::queueRequest(I2CRB *req) {
|
||||
req->status = I2C_STATUS_PENDING;
|
||||
req->nextRequest = NULL;
|
||||
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
if (!queueTail)
|
||||
queueHead = queueTail = req; // Only item on queue
|
||||
else
|
||||
queueTail = queueTail->nextRequest = req; // Add to end
|
||||
startTransaction();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write to an I2C device (non-blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req) {
|
||||
// Make sure previous request has completed.
|
||||
req->wait();
|
||||
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
|
||||
queueRequest(req);
|
||||
return I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write from PROGMEM (flash) to an I2C device (non-blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write_P(uint8_t i2cAddress, const uint8_t * writeBuffer, uint8_t writeLen, I2CRB *req) {
|
||||
// Make sure previous request has completed.
|
||||
req->wait();
|
||||
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
|
||||
req->operation = OPERATION_SEND_P;
|
||||
queueRequest(req);
|
||||
return I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a read from the I2C device, optionally preceded by a write
|
||||
* (non-blocking operation)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::read(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
|
||||
const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req)
|
||||
{
|
||||
// Make sure previous request has completed.
|
||||
req->wait();
|
||||
req->setRequestParams(i2cAddress, readBuffer, readLen, writeBuffer, writeLen);
|
||||
queueRequest(req);
|
||||
return I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* checkForTimeout() function, called from isBusy() and wait() to cancel
|
||||
* requests that are taking too long to complete.
|
||||
* This function doesn't fully work as intended so is not currently called.
|
||||
* Instead we check for an I2C hang-up and report an error from
|
||||
* I2CRB::wait(), but we aren't able to recover from the hang-up. Such faults
|
||||
* may be caused by an I2C wire short for example.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::checkForTimeout() {
|
||||
unsigned long currentMicros = micros();
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
I2CRB *t = queueHead;
|
||||
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && timeout > 0) {
|
||||
// Check for timeout
|
||||
if (currentMicros - startTime > timeout) {
|
||||
// Excessive time. Dequeue request
|
||||
queueHead = t->nextRequest;
|
||||
if (!queueHead) queueTail = NULL;
|
||||
currentRequest = NULL;
|
||||
// Post request as timed out.
|
||||
t->status = I2C_STATUS_TIMEOUT;
|
||||
// Reset TWI interface so it is able to continue
|
||||
// Try close and init, not entirely satisfactory but sort of works...
|
||||
I2C_close(); // Shutdown and restart twi interface
|
||||
I2C_init();
|
||||
state = I2C_STATE_FREE;
|
||||
|
||||
// Initiate next queued request if any.
|
||||
startTransaction();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Loop function, for general background work
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::loop() {
|
||||
#if !defined(I2C_USE_INTERRUPTS)
|
||||
handleInterrupt();
|
||||
#endif
|
||||
// Timeout is now reported in I2CRB::wait(), not here.
|
||||
// I've left the code, commented out, as a reminder to look at this again
|
||||
// in the future.
|
||||
//checkForTimeout();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Interupt handler. Call I2C state machine, and dequeue request
|
||||
* if completed.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::handleInterrupt() {
|
||||
|
||||
// Update hardware state machine
|
||||
I2C_handleInterrupt();
|
||||
|
||||
// Enable interrupts to minimise effect on other interrupt code
|
||||
interrupts();
|
||||
|
||||
// Check if current request has completed. If there's a current request
|
||||
// and state isn't active then state contains the completion status of the request.
|
||||
if (state != I2C_STATE_ACTIVE && currentRequest != NULL) {
|
||||
// Remove completed request from head of queue
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
I2CRB * t = queueHead;
|
||||
if (t == queueHead) {
|
||||
queueHead = t->nextRequest;
|
||||
if (!queueHead) queueTail = queueHead;
|
||||
t->nBytes = rxCount;
|
||||
t->status = state;
|
||||
|
||||
// I2C state machine is now free for next request
|
||||
currentRequest = NULL;
|
||||
state = I2C_STATE_FREE;
|
||||
|
||||
// Start next request (if any)
|
||||
I2CManager.startTransaction();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fields in I2CManager class specific to Non-blocking implementation.
|
||||
I2CRB * volatile I2CManagerClass::queueHead = NULL;
|
||||
I2CRB * volatile I2CManagerClass::queueTail = NULL;
|
||||
I2CRB * volatile I2CManagerClass::currentRequest = NULL;
|
||||
volatile uint8_t I2CManagerClass::state = I2C_STATE_FREE;
|
||||
volatile uint8_t I2CManagerClass::txCount;
|
||||
volatile uint8_t I2CManagerClass::rxCount;
|
||||
volatile uint8_t I2CManagerClass::operation;
|
||||
volatile uint8_t I2CManagerClass::bytesToSend;
|
||||
volatile uint8_t I2CManagerClass::bytesToReceive;
|
||||
volatile unsigned long I2CManagerClass::startTime;
|
||||
unsigned long I2CManagerClass::timeout = 0;
|
||||
|
||||
#endif
|
128
I2CManager_Wire.h
Normal file
128
I2CManager_Wire.h
Normal file
|
@ -0,0 +1,128 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef I2CMANAGER_WIRE_H
|
||||
#define I2CMANAGER_WIRE_H
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <Wire.h>
|
||||
#include "I2CManager.h"
|
||||
|
||||
// This module is only compiled if I2C_USE_WIRE is defined, so define it here
|
||||
// to get intellisense to work correctly.
|
||||
#if !defined(I2C_USE_WIRE)
|
||||
#define I2C_USE_WIRE
|
||||
#endif
|
||||
|
||||
/***************************************************************************
|
||||
* Initialise I2C interface software
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::_initialise() {
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Set I2C clock speed. Normally 100000 (Standard) or 400000 (Fast)
|
||||
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
|
||||
Wire.setClock(i2cClockSpeed);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write to an I2C device (blocking operation on Wire)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
|
||||
Wire.beginTransmission(address);
|
||||
if (size > 0) Wire.write(buffer, size);
|
||||
rb->status = Wire.endTransmission();
|
||||
return I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write from PROGMEM (flash) to an I2C device (blocking operation on Wire)
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::write_P(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
|
||||
uint8_t ramBuffer[size];
|
||||
const uint8_t *p1 = buffer;
|
||||
for (uint8_t i=0; i<size; i++)
|
||||
ramBuffer[i] = GETFLASH(p1++);
|
||||
return write(address, ramBuffer, size, rb);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a write (optional) followed by a read from the I2C device (blocking operation on Wire)
|
||||
* If fewer than the number of requested bytes are received, status is I2C_STATUS_TRUNCATED.
|
||||
***************************************************************************/
|
||||
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
|
||||
const uint8_t writeBuffer[], uint8_t writeSize, I2CRB *rb)
|
||||
{
|
||||
uint8_t status = I2C_STATUS_OK;
|
||||
uint8_t nBytes = 0;
|
||||
if (writeSize > 0) {
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(writeBuffer, writeSize);
|
||||
status = Wire.endTransmission(false); // Don't free bus yet
|
||||
}
|
||||
if (status == I2C_STATUS_OK) {
|
||||
Wire.requestFrom(address, (size_t)readSize);
|
||||
while (Wire.available() && nBytes < readSize)
|
||||
readBuffer[nBytes++] = Wire.read();
|
||||
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
|
||||
}
|
||||
rb->nBytes = nBytes;
|
||||
rb->status = status;
|
||||
return I2C_STATUS_OK;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Function to queue a request block and initiate operations.
|
||||
*
|
||||
* For the Wire version, this executes synchronously, but the status is
|
||||
* returned in the I2CRB as for the asynchronous version.
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::queueRequest(I2CRB *req) {
|
||||
uint8_t status;
|
||||
switch (req->operation) {
|
||||
case OPERATION_READ:
|
||||
status = read(req->i2cAddress, req->readBuffer, req->readLen, NULL, 0, req);
|
||||
break;
|
||||
case OPERATION_SEND:
|
||||
status = write(req->i2cAddress, req->writeBuffer, req->writeLen, req);
|
||||
break;
|
||||
case OPERATION_SEND_P:
|
||||
status = write_P(req->i2cAddress, req->writeBuffer, req->writeLen, req);
|
||||
break;
|
||||
case OPERATION_REQUEST:
|
||||
status = read(req->i2cAddress, req->readBuffer, req->readLen, req->writeBuffer, req->writeLen, req);
|
||||
break;
|
||||
}
|
||||
req->status = status;
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Loop function, for general background work
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::loop() {}
|
||||
|
||||
// Loop function
|
||||
void I2CManagerClass::checkForTimeout() {}
|
||||
|
||||
|
||||
#endif
|
504
IODevice.cpp
Normal file
504
IODevice.cpp
Normal file
|
@ -0,0 +1,504 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
#include "IO_MCP23017.h"
|
||||
|
||||
#if defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_MEGAAVR)
|
||||
#define USE_FAST_IO
|
||||
#endif
|
||||
|
||||
// Link to halSetup function. If not defined, the function reference will be NULL.
|
||||
extern __attribute__((weak)) void halSetup();
|
||||
extern __attribute__((weak)) void mySetup(); // Deprecated function name, output warning if it's declared
|
||||
|
||||
//==================================================================================================================
|
||||
// Static methods
|
||||
//------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Static functions
|
||||
|
||||
// Static method to initialise the IODevice subsystem.
|
||||
|
||||
#if !defined(IO_NO_HAL)
|
||||
|
||||
// Create any standard device instances that may be required, such as the Arduino pins
|
||||
// and PCA9685.
|
||||
void IODevice::begin() {
|
||||
// Initialise the IO subsystem
|
||||
ArduinoPins::create(2, NUM_DIGITAL_PINS-2); // Reserve pins for direct access
|
||||
// Predefine two PCA9685 modules 0x40-0x41
|
||||
// Allocates 32 pins 100-131
|
||||
PCA9685::create(100, 16, 0x40);
|
||||
PCA9685::create(116, 16, 0x41);
|
||||
// Predefine two MCP23017 module 0x20/0x21
|
||||
// Allocates 32 pins 164-195
|
||||
MCP23017::create(164, 16, 0x20);
|
||||
MCP23017::create(180, 16, 0x21);
|
||||
|
||||
// Call the begin() methods of each configured device in turn
|
||||
for (IODevice *dev=_firstDevice; dev!=NULL; dev = dev->_nextDevice) {
|
||||
dev->_begin();
|
||||
}
|
||||
_initPhase = false;
|
||||
|
||||
// Check for presence of deprecated mySetup() function, and output warning.
|
||||
if (mySetup)
|
||||
DIAG(F("WARNING: mySetup() function should be renamed to halSetup()"));
|
||||
|
||||
// Call user's halSetup() function (if defined in the build in myHal.cpp).
|
||||
// The contents will depend on the user's system hardware configuration.
|
||||
// The myHal.cpp file is a standard C++ module so has access to all of the DCC++EX APIs.
|
||||
if (halSetup)
|
||||
halSetup();
|
||||
}
|
||||
|
||||
// Overarching static loop() method for the IODevice subsystem. Works through the
|
||||
// list of installed devices and calls their individual _loop() method.
|
||||
// Devices may or may not implement this, but if they do it is useful for things like animations
|
||||
// or flashing LEDs.
|
||||
// The current value of micros() is passed as a parameter, so the called loop function
|
||||
// doesn't need to invoke it.
|
||||
void IODevice::loop() {
|
||||
unsigned long currentMicros = micros();
|
||||
|
||||
IODevice *lastLoopDevice = _nextLoopDevice; // So we know when to stop...
|
||||
// Loop through devices until we find one ready to be serviced.
|
||||
do {
|
||||
if (!_nextLoopDevice) _nextLoopDevice = _firstDevice;
|
||||
if (_nextLoopDevice) {
|
||||
if (_nextLoopDevice->_deviceState != DEVSTATE_FAILED
|
||||
&& ((long)(currentMicros - _nextLoopDevice->_nextEntryTime)) >= 0) {
|
||||
// Found one ready to run, so invoke its _loop method.
|
||||
_nextLoopDevice->_nextEntryTime = currentMicros;
|
||||
_nextLoopDevice->_loop(currentMicros);
|
||||
_nextLoopDevice = _nextLoopDevice->_nextDevice;
|
||||
break;
|
||||
}
|
||||
// Not this one, move to next one
|
||||
_nextLoopDevice = _nextLoopDevice->_nextDevice;
|
||||
}
|
||||
} while (_nextLoopDevice != lastLoopDevice); // Stop looking when we've done all.
|
||||
|
||||
// Report loop time if diags enabled
|
||||
#if defined(DIAG_LOOPTIMES)
|
||||
static unsigned long lastMicros = 0;
|
||||
// Measure time since loop() method started.
|
||||
unsigned long halElapsed = micros() - currentMicros;
|
||||
// Measure time between loop() method entries.
|
||||
unsigned long elapsed = currentMicros - lastMicros;
|
||||
static unsigned long maxElapsed = 0, maxHalElapsed = 0;
|
||||
static unsigned long lastOutputTime = 0;
|
||||
static unsigned long halTotal = 0, total = 0;
|
||||
static unsigned long count = 0;
|
||||
const unsigned long interval = (unsigned long)5 * 1000 * 1000; // 5 seconds in microsec
|
||||
|
||||
// Ignore long loop counts while message is still outputting
|
||||
if (currentMicros - lastOutputTime > 3000UL) {
|
||||
if (elapsed > maxElapsed) maxElapsed = elapsed;
|
||||
if (halElapsed > maxHalElapsed) maxHalElapsed = halElapsed;
|
||||
halTotal += halElapsed;
|
||||
total += elapsed;
|
||||
count++;
|
||||
}
|
||||
if (currentMicros - lastOutputTime > interval) {
|
||||
if (lastOutputTime > 0)
|
||||
DIAG(F("Loop Total:%lus (%lus max) HAL:%lus (%lus max)"),
|
||||
total/count, maxElapsed, halTotal/count, maxHalElapsed);
|
||||
maxElapsed = maxHalElapsed = total = halTotal = count = 0;
|
||||
lastOutputTime = currentMicros;
|
||||
}
|
||||
lastMicros = currentMicros;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Display a list of all the devices on the diagnostic stream.
|
||||
void IODevice::DumpAll() {
|
||||
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
|
||||
dev->_display();
|
||||
}
|
||||
}
|
||||
|
||||
// Determine if the specified vpin is allocated to a device.
|
||||
bool IODevice::exists(VPIN vpin) {
|
||||
return findDevice(vpin) != NULL;
|
||||
}
|
||||
|
||||
// check whether the pin supports notification. If so, then regular _read calls are not required.
|
||||
bool IODevice::hasCallback(VPIN vpin) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (!dev) return false;
|
||||
return dev->_hasCallback;
|
||||
}
|
||||
|
||||
// Display (to diagnostics) details of the device.
|
||||
void IODevice::_display() {
|
||||
DIAG(F("Unknown device Vpins:%d-%d %S"),
|
||||
(int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState==DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
// Find device associated with nominated Vpin and pass configuration values on to it.
|
||||
// Return false if not found.
|
||||
bool IODevice::configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (dev) return dev->_configure(vpin, configType, paramCount, params);
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IODevice::configure(): Vpin ID %d not found!"), (int)vpin);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
// Read value from virtual pin.
|
||||
int IODevice::read(VPIN vpin) {
|
||||
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
|
||||
if (dev->owns(vpin))
|
||||
return dev->_read(vpin);
|
||||
}
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IODevice::read(): Vpin %d not found!"), (int)vpin);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
// Read analogue value from virtual pin.
|
||||
int IODevice::readAnalogue(VPIN vpin) {
|
||||
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
|
||||
if (dev->owns(vpin))
|
||||
return dev->_readAnalogue(vpin);
|
||||
}
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IODevice::readAnalogue(): Vpin %d not found!"), (int)vpin);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write value to virtual pin(s). If multiple devices are allocated the same pin
|
||||
// then only the first one found will be used.
|
||||
void IODevice::write(VPIN vpin, int value) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (dev) {
|
||||
dev->_write(vpin, value);
|
||||
return;
|
||||
}
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IODevice::write(): Vpin ID %d not found!"), (int)vpin);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Write analogue value to virtual pin(s). If multiple devices are allocated
|
||||
// the same pin then only the first one found will be used.
|
||||
//
|
||||
// The significance of param1 and param2 may vary from device to device.
|
||||
// For servo controllers, param1 is the profile of the transition and param2
|
||||
// the duration, i.e. the time that the operation is to be animated over
|
||||
// in deciseconds (0-3276 sec)
|
||||
//
|
||||
void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (dev) {
|
||||
dev->_writeAnalogue(vpin, value, param1, param2);
|
||||
return;
|
||||
}
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IODevice::writeAnalogue(): Vpin ID %d not found!"), (int)vpin);
|
||||
#endif
|
||||
}
|
||||
|
||||
// isBusy, when called for a device pin is always a digital output or analogue output,
|
||||
// returns input feedback state of the pin, i.e. whether the pin is busy performing
|
||||
// an animation or fade over a period of time.
|
||||
bool IODevice::isBusy(VPIN vpin) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (dev)
|
||||
return dev->_read(vpin);
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
void IODevice::setGPIOInterruptPin(int16_t pinNumber) {
|
||||
if (pinNumber >= 0)
|
||||
pinMode(pinNumber, INPUT_PULLUP);
|
||||
_gpioInterruptPin = pinNumber;
|
||||
}
|
||||
|
||||
// Private helper function to add a device to the chain of devices.
|
||||
void IODevice::addDevice(IODevice *newDevice) {
|
||||
// Link new object to the end of the chain. Thereby, the first devices to be declared/created
|
||||
// will be located faster by findDevice than those which are created later.
|
||||
// Ideally declare/create the digital IO pins first, then servos, then more esoteric devices.
|
||||
IODevice *lastDevice;
|
||||
if (_firstDevice == 0)
|
||||
_firstDevice = newDevice;
|
||||
else {
|
||||
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice)
|
||||
lastDevice = dev;
|
||||
lastDevice->_nextDevice = newDevice;
|
||||
}
|
||||
newDevice->_nextDevice = 0;
|
||||
|
||||
// If the IODevice::begin() method has already been called, initialise device here. If not,
|
||||
// the device's _begin() method will be called by IODevice::begin().
|
||||
if (!_initPhase)
|
||||
newDevice->_begin();
|
||||
}
|
||||
|
||||
// Private helper function to locate a device by VPIN. Returns NULL if not found.
|
||||
// This is performance-critical, so minimises the calculation and function calls necessary.
|
||||
IODevice *IODevice::findDevice(VPIN vpin) {
|
||||
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
|
||||
VPIN firstVpin = dev->_firstVpin;
|
||||
if (vpin >= firstVpin && vpin < firstVpin+dev->_nPins)
|
||||
return dev;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//==================================================================================================================
|
||||
// Static data
|
||||
//------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Chain of callback blocks (identifying registered callback functions for state changes)
|
||||
IONotifyCallback *IONotifyCallback::first = 0;
|
||||
|
||||
// Start of chain of devices.
|
||||
IODevice *IODevice::_firstDevice = 0;
|
||||
|
||||
// Reference to next device to be called on _loop() method.
|
||||
IODevice *IODevice::_nextLoopDevice = 0;
|
||||
|
||||
// Flag which is reset when IODevice::begin has been called.
|
||||
bool IODevice::_initPhase = true;
|
||||
|
||||
|
||||
//==================================================================================================================
|
||||
// Instance members
|
||||
//------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Method to check whether the id corresponds to this device
|
||||
bool IODevice::owns(VPIN id) {
|
||||
return (id >= _firstVpin && id < _firstVpin + _nPins);
|
||||
}
|
||||
|
||||
|
||||
#else // !defined(IO_NO_HAL)
|
||||
|
||||
// Minimal implementations of public HAL interface, to support Arduino pin I/O and nothing more.
|
||||
|
||||
void IODevice::begin() { DIAG(F("NO HAL CONFIGURED!")); }
|
||||
bool IODevice::configure(VPIN pin, ConfigTypeEnum configType, int nParams, int p[]) {
|
||||
if (configType!=CONFIGURE_INPUT || nParams!=1 || pin >= NUM_DIGITAL_PINS) return false;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Arduino _configurePullup Pin:%d Val:%d"), pin, p[0]);
|
||||
#endif
|
||||
pinMode(pin, p[0] ? INPUT_PULLUP : INPUT);
|
||||
return true;
|
||||
}
|
||||
void IODevice::write(VPIN vpin, int value) {
|
||||
if (vpin >= NUM_DIGITAL_PINS) return;
|
||||
digitalWrite(vpin, value);
|
||||
pinMode(vpin, OUTPUT);
|
||||
}
|
||||
void IODevice::writeAnalogue(VPIN, int, uint8_t, uint16_t) {}
|
||||
bool IODevice::isBusy(VPIN) { return false; }
|
||||
bool IODevice::hasCallback(VPIN) { return false; }
|
||||
int IODevice::read(VPIN vpin) {
|
||||
if (vpin >= NUM_DIGITAL_PINS) return 0;
|
||||
return !digitalRead(vpin); // Return inverted state (5v=0, 0v=1)
|
||||
}
|
||||
int IODevice::readAnalogue(VPIN vpin) {
|
||||
pinMode(vpin, INPUT);
|
||||
noInterrupts();
|
||||
int value = analogRead(vpin);
|
||||
interrupts();
|
||||
return value;
|
||||
}
|
||||
void IODevice::loop() {}
|
||||
void IODevice::DumpAll() {
|
||||
DIAG(F("NO HAL CONFIGURED!"));
|
||||
}
|
||||
bool IODevice::exists(VPIN vpin) { return (vpin > 2 && vpin < NUM_DIGITAL_PINS); }
|
||||
void IODevice::setGPIOInterruptPin(int16_t) {}
|
||||
|
||||
// Chain of callback blocks (identifying registered callback functions for state changes)
|
||||
// Not used in IO_NO_HAL but must be declared.
|
||||
IONotifyCallback *IONotifyCallback::first = 0;
|
||||
|
||||
#endif // IO_NO_HAL
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Constructor
|
||||
ArduinoPins::ArduinoPins(VPIN firstVpin, int nPins) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
int arrayLen = (_nPins+7)/8;
|
||||
_pinPullups = (uint8_t *)calloc(3, arrayLen);
|
||||
_pinModes = (&_pinPullups[0]) + arrayLen;
|
||||
_pinInUse = (&_pinPullups[0]) + 2*arrayLen;
|
||||
for (int i=0; i<arrayLen; i++) {
|
||||
_pinPullups[i] = 0xff; // default to pullup on, for inputs
|
||||
_pinModes[i] = 0;
|
||||
_pinInUse[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Device-specific pin configuration. Configure should be called infrequently so simplify
|
||||
// code by using the standard pinMode function.
|
||||
bool ArduinoPins::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
|
||||
if (configType != CONFIGURE_INPUT) return false;
|
||||
if (paramCount != 1) return false;
|
||||
bool pullup = params[0];
|
||||
|
||||
int pin = vpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Arduino _configurePullup Pin:%d Val:%d"), pin, pullup);
|
||||
#endif
|
||||
uint8_t mask = 1 << ((pin-_firstVpin) % 8);
|
||||
uint8_t index = (pin-_firstVpin) / 8;
|
||||
_pinModes[index] &= ~mask; // set to input mode
|
||||
if (pullup) {
|
||||
_pinPullups[index] |= mask;
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
} else {
|
||||
_pinPullups[index] &= ~mask;
|
||||
pinMode(pin, INPUT);
|
||||
}
|
||||
_pinInUse[index] |= mask;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Device-specific write function.
|
||||
void ArduinoPins::_write(VPIN vpin, int value) {
|
||||
int pin = vpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Arduino Write Pin:%d Val:%d"), pin, value);
|
||||
#endif
|
||||
uint8_t mask = 1 << ((pin-_firstVpin) % 8);
|
||||
uint8_t index = (pin-_firstVpin) / 8;
|
||||
// First update the output state, then set into write mode if not already.
|
||||
fastWriteDigital(pin, value);
|
||||
if (!(_pinModes[index] & mask)) {
|
||||
// Currently in read mode, change to write mode
|
||||
_pinModes[index] |= mask;
|
||||
// Since mode changes should be infrequent, use standard pinMode function
|
||||
pinMode(pin, OUTPUT);
|
||||
_pinInUse[index] |= mask;
|
||||
}
|
||||
}
|
||||
|
||||
// Device-specific read function (digital input).
|
||||
int ArduinoPins::_read(VPIN vpin) {
|
||||
int pin = vpin;
|
||||
uint8_t mask = 1 << ((pin-_firstVpin) % 8);
|
||||
uint8_t index = (pin-_firstVpin) / 8;
|
||||
if ((_pinModes[index] | ~_pinInUse[index]) & mask) {
|
||||
// Currently in write mode or not initialised, change to read mode
|
||||
_pinModes[index] &= ~mask;
|
||||
// Since mode changes should be infrequent, use standard pinMode function
|
||||
if (_pinPullups[index] & mask)
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
else
|
||||
pinMode(pin, INPUT);
|
||||
_pinInUse[index] |= mask;
|
||||
}
|
||||
int value = !fastReadDigital(pin); // Invert (5v=0, 0v=1)
|
||||
|
||||
#ifdef DIAG_IO
|
||||
//DIAG(F("Arduino Read Pin:%d Value:%d"), pin, value);
|
||||
#endif
|
||||
return value;
|
||||
}
|
||||
|
||||
// Device-specific readAnalogue function (analogue input)
|
||||
int ArduinoPins::_readAnalogue(VPIN vpin) {
|
||||
int pin = vpin;
|
||||
uint8_t mask = 1 << ((pin-_firstVpin) % 8);
|
||||
uint8_t index = (pin-_firstVpin) / 8;
|
||||
if (_pinModes[index] & mask) {
|
||||
// Currently in write mode, change to read mode
|
||||
_pinModes[index] &= ~mask;
|
||||
// Since mode changes should be infrequent, use standard pinMode function
|
||||
if (_pinPullups[index] & mask)
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
else
|
||||
pinMode(pin, INPUT);
|
||||
}
|
||||
|
||||
// Since AnalogRead is also called from interrupt code, disable interrupts
|
||||
// while we're using it. There's only one ADC shared by all analogue inputs
|
||||
// on the Arduino, so we don't want interruptions.
|
||||
//******************************************************************************
|
||||
// NOTE: If the HAL is running on a computer without the DCC signal generator,
|
||||
// then interrupts needn't be disabled. Also, the DCC signal generator puts
|
||||
// the ADC into fast mode, so if it isn't present, analogueRead calls will be much
|
||||
// slower!!
|
||||
//******************************************************************************
|
||||
noInterrupts();
|
||||
int value = analogRead(pin);
|
||||
interrupts();
|
||||
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Arduino Read Pin:%d Value:%d"), pin, value);
|
||||
#endif
|
||||
return value;
|
||||
}
|
||||
|
||||
void ArduinoPins::_display() {
|
||||
DIAG(F("Arduino Vpins:%d-%d"), (int)_firstVpin, (int)_firstVpin+_nPins-1);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
void ArduinoPins::fastWriteDigital(uint8_t pin, uint8_t value) {
|
||||
#if defined(USE_FAST_IO)
|
||||
if (pin >= NUM_DIGITAL_PINS) return;
|
||||
uint8_t mask = digitalPinToBitMask(pin);
|
||||
uint8_t port = digitalPinToPort(pin);
|
||||
volatile uint8_t *outPortAdr = portOutputRegister(port);
|
||||
noInterrupts();
|
||||
if (value)
|
||||
*outPortAdr |= mask;
|
||||
else
|
||||
*outPortAdr &= ~mask;
|
||||
interrupts();
|
||||
#else
|
||||
digitalWrite(pin, value);
|
||||
#endif
|
||||
}
|
||||
|
||||
bool ArduinoPins::fastReadDigital(uint8_t pin) {
|
||||
#if defined(USE_FAST_IO)
|
||||
if (pin >= NUM_DIGITAL_PINS) return false;
|
||||
uint8_t mask = digitalPinToBitMask(pin);
|
||||
uint8_t port = digitalPinToPort(pin);
|
||||
volatile uint8_t *inPortAdr = portInputRegister(port);
|
||||
// read input
|
||||
bool result = (*inPortAdr & mask) != 0;
|
||||
#else
|
||||
bool result = digitalRead(pin);
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
371
IODevice.h
Normal file
371
IODevice.h
Normal file
|
@ -0,0 +1,371 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef iodevice_h
|
||||
#define iodevice_h
|
||||
|
||||
// Define symbol DIAG_IO to enable diagnostic output
|
||||
//#define DIAG_IO Y
|
||||
|
||||
// Define symbol DIAG_LOOPTIMES to enable CS loop execution time to be reported
|
||||
//#define DIAG_LOOPTIMES
|
||||
|
||||
// Define symbol IO_NO_HAL to reduce FLASH footprint when HAL features not required
|
||||
// The HAL is disabled by default on Nano and Uno platforms, because of limited flash space.
|
||||
#if defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_UNO)
|
||||
#define IO_NO_HAL
|
||||
#endif
|
||||
|
||||
// Define symbol IO_SWITCH_OFF_SERVO to set the PCA9685 output to 0 when an
|
||||
// animation has completed. This switches off the servo motor, preventing
|
||||
// the continuous buzz sometimes found on servos, and reducing the
|
||||
// power consumption of the servo when inactive.
|
||||
// It is recommended to enable this, unless it causes you problems.
|
||||
#define IO_SWITCH_OFF_SERVO
|
||||
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
#include "I2CManager.h"
|
||||
#include "inttypes.h"
|
||||
|
||||
typedef uint16_t VPIN;
|
||||
// Limit VPIN number to max 32767. Above this number, printing often gives negative values.
|
||||
// This should be enough for 99% of users.
|
||||
#define VPIN_MAX 32767
|
||||
#define VPIN_NONE 65535
|
||||
|
||||
/*
|
||||
* Callback support for state change notification from an IODevice subclass to a
|
||||
* handler, e.g. Sensor object handling.
|
||||
*/
|
||||
|
||||
class IONotifyCallback {
|
||||
public:
|
||||
typedef void IONotifyCallbackFunction(VPIN vpin, int value);
|
||||
static void add(IONotifyCallbackFunction *function) {
|
||||
IONotifyCallback *blk = new IONotifyCallback(function);
|
||||
if (first) blk->next = first;
|
||||
first = blk;
|
||||
}
|
||||
static void invokeAll(VPIN vpin, int value) {
|
||||
for (IONotifyCallback *blk = first; blk != NULL; blk = blk->next)
|
||||
blk->invoke(vpin, value);
|
||||
}
|
||||
static bool hasCallback() {
|
||||
return first != NULL;
|
||||
}
|
||||
private:
|
||||
IONotifyCallback(IONotifyCallbackFunction *function) { invoke = function; };
|
||||
IONotifyCallback *next = 0;
|
||||
IONotifyCallbackFunction *invoke = 0;
|
||||
static IONotifyCallback *first;
|
||||
};
|
||||
|
||||
/*
|
||||
* IODevice class
|
||||
*
|
||||
* This class is the basis of the Hardware Abstraction Layer (HAL) for
|
||||
* the DCC++EX Command Station. All device classes derive from this.
|
||||
*
|
||||
*/
|
||||
|
||||
class IODevice {
|
||||
public:
|
||||
|
||||
// Parameter values to identify type of call to IODevice::configure.
|
||||
typedef enum : uint8_t {
|
||||
CONFIGURE_INPUT = 1,
|
||||
CONFIGURE_SERVO = 2,
|
||||
CONFIGURE_OUTPUT = 3,
|
||||
} ConfigTypeEnum;
|
||||
|
||||
typedef enum : uint8_t {
|
||||
DEVSTATE_DORMANT = 0,
|
||||
DEVSTATE_PROBING = 1,
|
||||
DEVSTATE_INITIALISING = 2,
|
||||
DEVSTATE_NORMAL = 3,
|
||||
DEVSTATE_SCANNING = 4,
|
||||
DEVSTATE_FAILED = 5,
|
||||
} DeviceStateEnum;
|
||||
|
||||
// Static functions to find the device and invoke its member functions
|
||||
|
||||
// begin is invoked to create any standard IODevice subclass instances.
|
||||
// Also, the _begin method of any existing instances is called from here.
|
||||
static void begin();
|
||||
|
||||
// configure is used invoke an IODevice instance's _configure method
|
||||
static bool configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]);
|
||||
|
||||
// User-friendly function for configuring an input pin.
|
||||
inline static bool configureInput(VPIN vpin, bool pullupEnable) {
|
||||
int params[] = {pullupEnable};
|
||||
return IODevice::configure(vpin, CONFIGURE_INPUT, 1, params);
|
||||
}
|
||||
|
||||
// User-friendly function for configuring a servo pin.
|
||||
inline static bool configureServo(VPIN vpin, uint16_t activePosition, uint16_t inactivePosition, uint8_t profile=0, uint16_t duration=0, uint8_t initialState=0) {
|
||||
int params[] = {(int)activePosition, (int)inactivePosition, profile, (int)duration, initialState};
|
||||
return IODevice::configure(vpin, CONFIGURE_SERVO, 5, params);
|
||||
}
|
||||
|
||||
// write invokes the IODevice instance's _write method.
|
||||
static void write(VPIN vpin, int value);
|
||||
|
||||
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
|
||||
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
|
||||
|
||||
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
|
||||
// the output over a period of time.
|
||||
static bool isBusy(VPIN vpin);
|
||||
|
||||
// check whether the pin supports notification. If so, then regular _read calls are not required.
|
||||
static bool hasCallback(VPIN vpin);
|
||||
|
||||
// read invokes the IODevice instance's _read method.
|
||||
static int read(VPIN vpin);
|
||||
|
||||
// read invokes the IODevice instance's _readAnalogue method.
|
||||
static int readAnalogue(VPIN vpin);
|
||||
|
||||
// loop invokes the IODevice instance's _loop method.
|
||||
static void loop();
|
||||
|
||||
static void DumpAll();
|
||||
|
||||
// exists checks whether there is a device owning the specified vpin
|
||||
static bool exists(VPIN vpin);
|
||||
|
||||
// Enable shared interrupt on specified pin for GPIO extender modules. The extender module
|
||||
// should pull down this pin when requesting a scan. The pin may be shared by multiple modules.
|
||||
// Without the shared interrupt, input states are scanned periodically to detect changes on
|
||||
// GPIO extender pins. If a shared interrupt pin is configured, then input states are scanned
|
||||
// only when the shared interrupt pin is pulled low. The external GPIO module releases the pin
|
||||
// once the GPIO port concerned has been read.
|
||||
void setGPIOInterruptPin(int16_t pinNumber);
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
// Constructor
|
||||
IODevice(VPIN firstVpin=0, int nPins=0) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_nextEntryTime = 0;
|
||||
}
|
||||
|
||||
// Method to perform initialisation of the device (optionally implemented within device class)
|
||||
virtual void _begin() {}
|
||||
|
||||
// Method to configure device (optionally implemented within device class)
|
||||
virtual bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
|
||||
(void)vpin; (void)configType; (void)paramCount; (void)params; // Suppress compiler warning.
|
||||
return false;
|
||||
};
|
||||
|
||||
// Method to write new state (optionally implemented within device class)
|
||||
virtual void _write(VPIN vpin, int value) {
|
||||
(void)vpin; (void)value;
|
||||
};
|
||||
|
||||
// Method to write an 'analogue' value (optionally implemented within device class)
|
||||
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
|
||||
(void)vpin; (void)value; (void) param1; (void)param2;
|
||||
};
|
||||
|
||||
// Method to read digital pin state (optionally implemented within device class)
|
||||
virtual int _read(VPIN vpin) {
|
||||
(void)vpin;
|
||||
return 0;
|
||||
};
|
||||
|
||||
// Method to read analogue pin state (optionally implemented within device class)
|
||||
virtual int _readAnalogue(VPIN vpin) {
|
||||
(void)vpin;
|
||||
return 0;
|
||||
};
|
||||
|
||||
// Method to perform updates on an ongoing basis (optionally implemented within device class)
|
||||
virtual void _loop(unsigned long currentMicros) {
|
||||
delayUntil(currentMicros + 0x7fffffff); // Largest time in the future! Effectively disable _loop calls.
|
||||
};
|
||||
|
||||
// Method for displaying info on DIAG output (optionally implemented within device class)
|
||||
virtual void _display();
|
||||
|
||||
// Destructor
|
||||
virtual ~IODevice() {};
|
||||
|
||||
// Non-virtual function
|
||||
void delayUntil(unsigned long futureMicrosCount) {
|
||||
_nextEntryTime = futureMicrosCount;
|
||||
}
|
||||
|
||||
// Common object fields.
|
||||
VPIN _firstVpin;
|
||||
int _nPins;
|
||||
|
||||
// Flag whether the device supports callbacks.
|
||||
bool _hasCallback = false;
|
||||
|
||||
// Pin number of interrupt pin for GPIO extender devices. The extender module will pull this
|
||||
// pin low if an input changes state.
|
||||
int16_t _gpioInterruptPin = -1;
|
||||
|
||||
// Static support function for subclass creation
|
||||
static void addDevice(IODevice *newDevice);
|
||||
|
||||
// Current state of device
|
||||
DeviceStateEnum _deviceState = DEVSTATE_DORMANT;
|
||||
|
||||
private:
|
||||
// Method to check whether the vpin corresponds to this device
|
||||
bool owns(VPIN vpin);
|
||||
// Method to find device handling Vpin
|
||||
static IODevice *findDevice(VPIN vpin);
|
||||
|
||||
IODevice *_nextDevice = 0;
|
||||
unsigned long _nextEntryTime;
|
||||
static IODevice *_firstDevice;
|
||||
|
||||
static IODevice *_nextLoopDevice;
|
||||
static bool _initPhase;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for PCA9685 16-channel PWM module.
|
||||
*/
|
||||
|
||||
class PCA9685 : public IODevice {
|
||||
public:
|
||||
static void create(VPIN vpin, int nPins, uint8_t I2CAddress);
|
||||
// Constructor
|
||||
PCA9685(VPIN vpin, int nPins, uint8_t I2CAddress);
|
||||
enum ProfileType : uint8_t {
|
||||
Instant = 0, // Moves immediately between positions (if duration not specified)
|
||||
UseDuration = 0, // Use specified duration
|
||||
Fast = 1, // Takes around 500ms end-to-end
|
||||
Medium = 2, // 1 second end-to-end
|
||||
Slow = 3, // 2 seconds end-to-end
|
||||
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
|
||||
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
|
||||
};
|
||||
|
||||
private:
|
||||
// Device-specific initialisation
|
||||
void _begin() override;
|
||||
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override;
|
||||
// Device-specific write functions.
|
||||
void _write(VPIN vpin, int value) override;
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override;
|
||||
int _read(VPIN vpin) override; // returns the digital state or busy status of the device
|
||||
void _loop(unsigned long currentMicros) override;
|
||||
void updatePosition(uint8_t pin);
|
||||
void writeDevice(uint8_t pin, int value);
|
||||
void _display() override;
|
||||
|
||||
uint8_t _I2CAddress; // 0x40-0x43 possible
|
||||
|
||||
struct ServoData {
|
||||
uint16_t activePosition : 12; // Config parameter
|
||||
uint16_t inactivePosition : 12; // Config parameter
|
||||
uint16_t currentPosition : 12;
|
||||
uint16_t fromPosition : 12;
|
||||
uint16_t toPosition : 12;
|
||||
uint8_t profile; // Config parameter
|
||||
uint16_t stepNumber; // Index of current step (starting from 0)
|
||||
uint16_t numSteps; // Number of steps in animation, or 0 if none in progress.
|
||||
uint8_t currentProfile; // profile being used for current animation.
|
||||
uint16_t duration; // time (tenths of a second) for animation to complete.
|
||||
}; // 14 bytes per element, i.e. per pin in use
|
||||
|
||||
struct ServoData *_servoData [16];
|
||||
|
||||
static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off
|
||||
static const byte FLASH _bounceProfile[30];
|
||||
|
||||
const unsigned int refreshInterval = 50; // refresh every 50ms
|
||||
|
||||
// structures for setting up non-blocking writes to servo controller
|
||||
I2CRB requestBlock;
|
||||
uint8_t outputBuffer[5];
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for DCC accessory decoder.
|
||||
*/
|
||||
|
||||
class DCCAccessoryDecoder: public IODevice {
|
||||
public:
|
||||
static void create(VPIN firstVpin, int nPins, int DCCAddress, int DCCSubaddress);
|
||||
// Constructor
|
||||
DCCAccessoryDecoder(VPIN firstVpin, int nPins, int DCCAddress, int DCCSubaddress);
|
||||
|
||||
private:
|
||||
// Device-specific write function.
|
||||
void _begin() override;
|
||||
void _write(VPIN vpin, int value) override;
|
||||
void _display() override;
|
||||
int _packedAddress;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for arduino input/output pins.
|
||||
*/
|
||||
|
||||
class ArduinoPins: public IODevice {
|
||||
public:
|
||||
static void create(VPIN firstVpin, int nPins) {
|
||||
addDevice(new ArduinoPins(firstVpin, nPins));
|
||||
}
|
||||
|
||||
// Constructor
|
||||
ArduinoPins(VPIN firstVpin, int nPins);
|
||||
|
||||
static void fastWriteDigital(uint8_t pin, uint8_t value);
|
||||
static bool fastReadDigital(uint8_t pin);
|
||||
|
||||
private:
|
||||
// Device-specific pin configuration
|
||||
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override;
|
||||
// Device-specific write function.
|
||||
void _write(VPIN vpin, int value) override;
|
||||
// Device-specific read functions.
|
||||
int _read(VPIN vpin) override;
|
||||
int _readAnalogue(VPIN vpin) override;
|
||||
void _display() override;
|
||||
|
||||
|
||||
uint8_t *_pinPullups;
|
||||
uint8_t *_pinModes; // each bit is 1 for output, 0 for input
|
||||
uint8_t *_pinInUse;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "IO_MCP23008.h"
|
||||
#include "IO_MCP23017.h"
|
||||
#include "IO_PCF8574.h"
|
||||
|
||||
#endif // iodevice_h
|
165
IO_AnalogueInputs.h
Normal file
165
IO_AnalogueInputs.h
Normal file
|
@ -0,0 +1,165 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef io_analogueinputs_h
|
||||
#define io_analogueinputs_h
|
||||
|
||||
// Uncomment following line to slow the scan cycle down to 1second ADC samples, with
|
||||
// diagnostic output of scanned values.
|
||||
//#define IO_ANALOGUE_SLOW
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
|
||||
/**********************************************************************************************
|
||||
* ADS111x class for I2C-connected analogue input modules ADS1113, ADS1114 and ADS1115.
|
||||
*
|
||||
* ADS1113 and ADS1114 are restricted to 1 input. ADS1115 has a multiplexer which allows
|
||||
* any of four input pins to be read by its ADC.
|
||||
*
|
||||
* The driver polls the device in accordance with the constant 'scanInterval' below. On first loop
|
||||
* entry, the multiplexer is set to pin A0 and the ADC is triggered. On second and subsequent
|
||||
* entries, the analogue value is read from the conversion register and then the multiplexer and
|
||||
* ADC are set up to read the next pin.
|
||||
*
|
||||
* The ADS111x is set up as follows:
|
||||
* Single-shot scan
|
||||
* Data rate 128 samples/sec (7.8ms/sample, but scanned every 10ms)
|
||||
* Comparator off
|
||||
* Gain FSR=6.144V
|
||||
* The gain means that the maximum input voltage of 5V (when Vss=5V) gives a reading
|
||||
* of 32767*(5.0/6.144) = 26666.
|
||||
*
|
||||
* A device is configured by the following:
|
||||
* ADS111x::create(firstVpin, nPins, i2cAddress);
|
||||
* for example
|
||||
* ADS111x::create(300, 1, 0x48); // single-input ADS1113
|
||||
* ADS111x::create(300, 4, 0x48); // four-input ADS1115
|
||||
*
|
||||
* Note: The device is simple and does not need initial configuration, so it should recover from
|
||||
* temporary loss of communications or power.
|
||||
**********************************************************************************************/
|
||||
class ADS111x: public IODevice {
|
||||
public:
|
||||
ADS111x(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = min(nPins,4);
|
||||
_i2cAddress = i2cAddress;
|
||||
_currentPin = 0;
|
||||
for (int8_t i=0; i<_nPins; i++)
|
||||
_value[i] = -1;
|
||||
addDevice(this);
|
||||
}
|
||||
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
|
||||
new ADS111x(firstVpin, nPins, i2cAddress);
|
||||
}
|
||||
private:
|
||||
void _begin() {
|
||||
// Initialise ADS device
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
_nextState = STATE_STARTSCAN;
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
} else {
|
||||
DIAG(F("ADS111x device not found, I2C:%x"), _i2cAddress);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
}
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
|
||||
// Check that previous non-blocking write has completed, if not then wait
|
||||
uint8_t status = _i2crb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything.
|
||||
if (status == I2C_STATUS_OK) {
|
||||
switch (_nextState) {
|
||||
case STATE_STARTSCAN:
|
||||
// Configure ADC and multiplexer for next scan. See ADS111x datasheet for details
|
||||
// of configuration register settings.
|
||||
_outBuffer[0] = 0x01; // Config register address
|
||||
_outBuffer[1] = 0xC0 + (_currentPin << 4); // Trigger single-shot, channel n
|
||||
_outBuffer[2] = 0xA3; // 250 samples/sec, comparator off
|
||||
// Write command, without waiting for completion.
|
||||
I2CManager.write(_i2cAddress, _outBuffer, 3, &_i2crb);
|
||||
|
||||
delayUntil(currentMicros + scanInterval);
|
||||
_nextState = STATE_STARTREAD;
|
||||
break;
|
||||
|
||||
case STATE_STARTREAD:
|
||||
// Reading the pin value
|
||||
_outBuffer[0] = 0x00; // Conversion register address
|
||||
I2CManager.read(_i2cAddress, _inBuffer, 2, _outBuffer, 1, &_i2crb); // Read register
|
||||
_nextState = STATE_GETVALUE;
|
||||
break;
|
||||
|
||||
case STATE_GETVALUE:
|
||||
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
|
||||
#ifdef IO_ANALOGUE_SLOW
|
||||
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
|
||||
#endif
|
||||
|
||||
// Move to next pin
|
||||
if (++_currentPin >= _nPins) _currentPin = 0;
|
||||
_nextState = STATE_STARTSCAN;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else { // error status
|
||||
DIAG(F("ADS111x I2C:x%d Error:%d %S"), _i2cAddress, status, I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
return _value[pin];
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("ADS111x I2C:x%x Configured on Vpins:%d-%d %S"), _i2cAddress, _firstVpin, _firstVpin+_nPins-1,
|
||||
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
// ADC conversion rate is 250SPS, or 4ms per conversion. Set the period between updates to 10ms.
|
||||
// This is enough to allow the conversion to reliably complete in time.
|
||||
#ifndef IO_ANALOGUE_SLOW
|
||||
const unsigned long scanInterval = 10000UL; // Period between successive ADC scans in microseconds.
|
||||
#else
|
||||
const unsigned long scanInterval = 1000000UL; // Period between successive ADC scans in microseconds.
|
||||
#endif
|
||||
enum : uint8_t {
|
||||
STATE_STARTSCAN,
|
||||
STATE_STARTREAD,
|
||||
STATE_GETVALUE,
|
||||
};
|
||||
uint16_t _value[4];
|
||||
uint8_t _i2cAddress;
|
||||
uint8_t _outBuffer[3];
|
||||
uint8_t _inBuffer[2];
|
||||
uint8_t _currentPin; // ADC pin currently being scanned
|
||||
I2CRB _i2crb;
|
||||
uint8_t _nextState;
|
||||
};
|
||||
|
||||
#endif // io_analogueinputs_h
|
64
IO_DCCAccessory.cpp
Normal file
64
IO_DCCAccessory.cpp
Normal file
|
@ -0,0 +1,64 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "DCC.h"
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h"
|
||||
#include "defines.h"
|
||||
|
||||
#define PACKEDADDRESS(addr, subaddr) (((addr) << 2) + (subaddr))
|
||||
#define ADDRESS(packedaddr) ((packedaddr) >> 2)
|
||||
#define SUBADDRESS(packedaddr) ((packedaddr) % 4)
|
||||
|
||||
void DCCAccessoryDecoder::create(VPIN vpin, int nPins, int DCCAddress, int DCCSubaddress) {
|
||||
new DCCAccessoryDecoder(vpin, nPins, DCCAddress, DCCSubaddress);
|
||||
}
|
||||
|
||||
// Constructors
|
||||
DCCAccessoryDecoder::DCCAccessoryDecoder(VPIN vpin, int nPins, int DCCAddress, int DCCSubaddress) {
|
||||
_firstVpin = vpin;
|
||||
_nPins = nPins;
|
||||
_packedAddress = PACKEDADDRESS(DCCAddress, DCCSubaddress);
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
void DCCAccessoryDecoder::_begin() {
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Device-specific write function. State 1=closed, 0=thrown. Adjust for RCN-213 compliance
|
||||
void DCCAccessoryDecoder::_write(VPIN id, int state) {
|
||||
int packedAddress = _packedAddress + id - _firstVpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DCC Write Linear Address:%d State:%d"), packedAddress, state);
|
||||
#endif
|
||||
#if !defined(DCC_ACCESSORY_RCN_213)
|
||||
state = !state;
|
||||
#endif
|
||||
DCC::setAccessory(ADDRESS(packedAddress), SUBADDRESS(packedAddress), state);
|
||||
}
|
||||
|
||||
void DCCAccessoryDecoder::_display() {
|
||||
int endAddress = _packedAddress + _nPins - 1;
|
||||
DIAG(F("DCCAccessoryDecoder Configured on Vpins:%d-%d Addresses %d/%d-%d/%d)"), _firstVpin, _firstVpin+_nPins-1,
|
||||
ADDRESS(_packedAddress), SUBADDRESS(_packedAddress), ADDRESS(endAddress), SUBADDRESS(endAddress));
|
||||
}
|
||||
|
255
IO_DFPlayer.h
Normal file
255
IO_DFPlayer.h
Normal file
|
@ -0,0 +1,255 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
|
||||
* amplifier, so it only needs a power supply and a speaker.
|
||||
*
|
||||
* This driver allows the device to be controlled through IODevice::write() and
|
||||
* IODevice::writeAnalogue() calls.
|
||||
*
|
||||
* The driver is configured as follows:
|
||||
*
|
||||
* DFPlayer::create(firstVpin, nPins, Serialn);
|
||||
*
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is the number of pins to be allocated (max 5)
|
||||
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
|
||||
*
|
||||
* Example:
|
||||
* In mySetup function within mySetup.cpp:
|
||||
* DFPlayer::create(3500, 5, Serial1);
|
||||
*
|
||||
* Writing an analogue value 0-2999 to the first pin will select a numbered file from the SD card;
|
||||
* Writing an analogue value 0-30 to the second pin will set the volume of the output;
|
||||
* Writing a digital value to the first pin will play or stop the file;
|
||||
* Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise.
|
||||
*
|
||||
* From EX-RAIL, the following commands may be used:
|
||||
* SET(3500) -- starts playing the first file on the SD card
|
||||
* SET(3501) -- starts playing the second file on the SD card
|
||||
* etc.
|
||||
* RESET(3500) -- stops all playing on the player
|
||||
* WAITFOR(3500) -- wait for the file currently being played by the player to complete
|
||||
* SERVO(3500,23,0) -- plays file 23 at current volume
|
||||
* SERVO(3500,23,30) -- plays file 23 at volume 30 (maximum)
|
||||
* SERVO(3501,20,0) -- Sets the volume to 20
|
||||
*
|
||||
* NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly
|
||||
* to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse.
|
||||
* A 1k resistor in series with the module's RX terminal will alleviate this.
|
||||
*/
|
||||
|
||||
#ifndef IO_DFPlayer_h
|
||||
#define IO_DFPlayer_h
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class DFPlayer : public IODevice {
|
||||
private:
|
||||
HardwareSerial *_serial;
|
||||
bool _playing = false;
|
||||
uint8_t _inputIndex = 0;
|
||||
unsigned long _commandSendTime; // Allows timeout processing
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
DFPlayer(VPIN firstVpin, int nPins, HardwareSerial &serial) :
|
||||
IODevice(firstVpin, nPins),
|
||||
_serial(&serial)
|
||||
{
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
static void create(VPIN firstVpin, int nPins, HardwareSerial &serial) {
|
||||
new DFPlayer(firstVpin, nPins, serial);
|
||||
}
|
||||
|
||||
protected:
|
||||
void _begin() override {
|
||||
_serial->begin(9600);
|
||||
_deviceState = DEVSTATE_INITIALISING;
|
||||
|
||||
// Send a query to the device to see if it responds
|
||||
sendPacket(0x42);
|
||||
_commandSendTime = micros();
|
||||
}
|
||||
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
// Check for incoming data on _serial, and update busy flag accordingly.
|
||||
// Expected message is in the form "7F FF 06 3D xx xx xx xx xx EF"
|
||||
while (_serial->available()) {
|
||||
int c = _serial->read();
|
||||
if (c == 0x7E)
|
||||
_inputIndex = 1;
|
||||
else if ((c==0xFF && _inputIndex==1)
|
||||
|| (c==0x3D && _inputIndex==3)
|
||||
|| (_inputIndex >=4 && _inputIndex <= 8))
|
||||
_inputIndex++;
|
||||
else if (c==0x06 && _inputIndex==2) {
|
||||
// Valid message prefix, so consider the device online
|
||||
if (_deviceState==DEVSTATE_INITIALISING) {
|
||||
_deviceState = DEVSTATE_NORMAL;
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
_inputIndex++;
|
||||
} else if (c==0xEF && _inputIndex==9) {
|
||||
// End of play
|
||||
if (_playing) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Finished"));
|
||||
#endif
|
||||
_playing = false;
|
||||
}
|
||||
_inputIndex = 0;
|
||||
} else
|
||||
_inputIndex = 0; // Unrecognised character sequence, start again!
|
||||
}
|
||||
// Check if the initial prompt to device has timed out. Allow 1 second
|
||||
if (_deviceState == DEVSTATE_INITIALISING && currentMicros - _commandSendTime > 1000000UL) {
|
||||
DIAG(F("DFPlayer device not responding on serial port"));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
delayUntil(currentMicros + 10000); // Only enter every 10ms
|
||||
}
|
||||
|
||||
// Write with value 1 starts playing a song. The relative pin number is the file number.
|
||||
// Write with value 0 stops playing.
|
||||
void _write(VPIN vpin, int value) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
if (value) {
|
||||
// Value 1, start playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Play %d"), pin+1);
|
||||
#endif
|
||||
sendPacket(0x03, pin+1);
|
||||
_playing = true;
|
||||
} else {
|
||||
// Value 0, stop playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Stop"));
|
||||
#endif
|
||||
sendPacket(0x16);
|
||||
_playing = false;
|
||||
}
|
||||
}
|
||||
|
||||
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
|
||||
// Volume may be specified as second parameter to writeAnalogue.
|
||||
// If value is zero, the player stops playing.
|
||||
// WriteAnalogue on second pin sets the output volume.
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
|
||||
uint8_t pin = vpin - _firstVpin;
|
||||
|
||||
// Validate parameter.
|
||||
volume = min(30,volume);
|
||||
|
||||
if (pin == 0) {
|
||||
// Play track
|
||||
if (value > 0) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Play %d"), value);
|
||||
#endif
|
||||
sendPacket(0x03, value); // Play track
|
||||
_playing = true;
|
||||
if (volume > 0) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Volume %d"), volume);
|
||||
#endif
|
||||
sendPacket(0x06, volume); // Set volume
|
||||
}
|
||||
} else {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Stop"));
|
||||
#endif
|
||||
sendPacket(0x16); // Stop play
|
||||
_playing = false;
|
||||
}
|
||||
} else if (pin == 1) {
|
||||
// Set volume (0-30)
|
||||
if (value > 30) value = 30;
|
||||
else if (value < 0) value = 0;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Volume %d"), value);
|
||||
#endif
|
||||
sendPacket(0x06, value);
|
||||
}
|
||||
}
|
||||
|
||||
// A read on any pin indicates whether the player is still playing.
|
||||
int _read(VPIN) override {
|
||||
return _playing;
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("DFPlayer Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
|
||||
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
private:
|
||||
// 7E FF 06 0F 00 01 01 xx xx EF
|
||||
// 0 -> 7E is start code
|
||||
// 1 -> FF is version
|
||||
// 2 -> 06 is length
|
||||
// 3 -> 0F is command
|
||||
// 4 -> 00 is no receive
|
||||
// 5~6 -> 01 01 is argument
|
||||
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
|
||||
// 9 -> EF is end code
|
||||
|
||||
void sendPacket(uint8_t command, uint16_t arg = 0)
|
||||
{
|
||||
uint8_t out[] = { 0x7E,
|
||||
0xFF,
|
||||
06,
|
||||
command,
|
||||
00,
|
||||
static_cast<uint8_t>(arg >> 8),
|
||||
static_cast<uint8_t>(arg & 0x00ff),
|
||||
00,
|
||||
00,
|
||||
0xEF };
|
||||
|
||||
setChecksum(out);
|
||||
|
||||
_serial->write(out, sizeof(out));
|
||||
}
|
||||
|
||||
uint16_t calcChecksum(uint8_t* packet)
|
||||
{
|
||||
uint16_t sum = 0;
|
||||
for (int i = 1; i < 7; i++)
|
||||
{
|
||||
sum += packet[i];
|
||||
}
|
||||
return -sum;
|
||||
}
|
||||
|
||||
void setChecksum(uint8_t* out)
|
||||
{
|
||||
uint16_t sum = calcChecksum(out);
|
||||
|
||||
out[7] = (sum >> 8);
|
||||
out[8] = (sum & 0xff);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // IO_DFPlayer_h
|
129
IO_ExampleSerial.cpp
Normal file
129
IO_ExampleSerial.cpp
Normal file
|
@ -0,0 +1,129 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "IO_ExampleSerial.h"
|
||||
#include "FSH.h"
|
||||
|
||||
// Constructor
|
||||
IO_ExampleSerial::IO_ExampleSerial(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_pinValues = (uint16_t *)calloc(_nPins, sizeof(uint16_t));
|
||||
_baud = baud;
|
||||
|
||||
// Save reference to serial port driver
|
||||
_serial = serial;
|
||||
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
// Static create method for one module.
|
||||
void IO_ExampleSerial::create(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
|
||||
new IO_ExampleSerial(firstVpin, nPins, serial, baud);
|
||||
}
|
||||
|
||||
// Device-specific initialisation
|
||||
void IO_ExampleSerial::_begin() {
|
||||
_serial->begin(_baud);
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
|
||||
// Send a few # characters to the output
|
||||
for (uint8_t i=0; i<3; i++)
|
||||
_serial->write('#');
|
||||
}
|
||||
|
||||
// Device-specific write function. Write a string in the form "#Wm,n#"
|
||||
// where m is the vpin number, and n is the value.
|
||||
void IO_ExampleSerial::_write(VPIN vpin, int value) {
|
||||
int pin = vpin -_firstVpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("IO_ExampleSerial::_write Pin:%d Value:%d"), (int)vpin, value);
|
||||
#endif
|
||||
// Send a command string over the serial line
|
||||
_serial->print('#');
|
||||
_serial->print('W');
|
||||
_serial->print(pin);
|
||||
_serial->print(',');
|
||||
_serial->print(value);
|
||||
_serial->println('#');
|
||||
DIAG(F("ExampleSerial Sent command, p1=%d, p2=%d"), vpin, value);
|
||||
}
|
||||
|
||||
// Device-specific read function.
|
||||
int IO_ExampleSerial::_read(VPIN vpin) {
|
||||
|
||||
// Return a value for the specified vpin.
|
||||
int result = _pinValues[vpin-_firstVpin];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Loop function to do background scanning of the input port. State
|
||||
// machine parses the incoming command as it is received. Command
|
||||
// is in the form "#Nm,n#" where m is the index and n is the value.
|
||||
void IO_ExampleSerial::_loop(unsigned long currentMicros) {
|
||||
(void)currentMicros; // Suppress compiler warnings
|
||||
if (_serial->available()) {
|
||||
// Input data available to read. Read a character.
|
||||
char c = _serial->read();
|
||||
switch (_inputState) {
|
||||
case 0: // Waiting for start of command
|
||||
if (c == '#') // Start of command received.
|
||||
_inputState = 1;
|
||||
break;
|
||||
case 1: // Expecting command character
|
||||
if (c == 'N') { // 'Notify' character received
|
||||
_inputState = 2;
|
||||
_inputValue = _inputIndex = 0;
|
||||
} else
|
||||
_inputState = 0; // Unexpected char, reset
|
||||
break;
|
||||
case 2: // reading first parameter (index)
|
||||
if (isdigit(c))
|
||||
_inputIndex = _inputIndex * 10 + (c-'0');
|
||||
else if (c==',')
|
||||
_inputState = 3;
|
||||
else
|
||||
_inputState = 0; // Unexpected char, reset
|
||||
break;
|
||||
case 3: // reading reading second parameter (value)
|
||||
if (isdigit(c))
|
||||
_inputValue = _inputValue * 10 - (c-'0');
|
||||
else if (c=='#') { // End of command
|
||||
// Complete command received, do something with it.
|
||||
DIAG(F("ExampleSerial Received command, p1=%d, p2=%d"), _inputIndex, _inputValue);
|
||||
if (_inputIndex < _nPins) { // Store value
|
||||
_pinValues[_inputIndex] = _inputValue;
|
||||
}
|
||||
_inputState = 0; // Done, start again.
|
||||
} else
|
||||
_inputState = 0; // Unexpected char, reset
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void IO_ExampleSerial::_display() {
|
||||
DIAG(F("IO_ExampleSerial Configured on VPins:%d-%d"), (int)_firstVpin,
|
||||
(int)_firstVpin+_nPins-1);
|
||||
}
|
||||
|
58
IO_ExampleSerial.h
Normal file
58
IO_ExampleSerial.h
Normal file
|
@ -0,0 +1,58 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To declare a device instance,
|
||||
* IO_ExampleSerial myDevice(1000, 10, Serial3, 9600);
|
||||
* or to create programmatically,
|
||||
* IO_ExampleSerial::create(1000, 10, Serial3, 9600);
|
||||
*
|
||||
* (uses VPINs 1000-1009, talke on Serial 3 at 9600 baud.)
|
||||
*
|
||||
* See IO_ExampleSerial.cpp for the protocol used over the serial line.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef IO_EXAMPLESERIAL_H
|
||||
#define IO_EXAMPLESERIAL_H
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class IO_ExampleSerial : public IODevice {
|
||||
public:
|
||||
IO_ExampleSerial(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud);
|
||||
static void create(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud);
|
||||
|
||||
protected:
|
||||
void _begin() override;
|
||||
void _loop(unsigned long currentMicros) override;
|
||||
void _write(VPIN vpin, int value) override;
|
||||
int _read(VPIN vpin) override;
|
||||
void _display() override;
|
||||
|
||||
private:
|
||||
HardwareSerial *_serial;
|
||||
uint8_t _inputState = 0;
|
||||
int _inputIndex = 0;
|
||||
int _inputValue = 0;
|
||||
uint16_t *_pinValues; // Pointer to block of memory containing pin values
|
||||
unsigned long _baud;
|
||||
};
|
||||
|
||||
#endif // IO_EXAMPLESERIAL_H
|
249
IO_GPIOBase.h
Normal file
249
IO_GPIOBase.h
Normal file
|
@ -0,0 +1,249 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef IO_GPIOBASE_H
|
||||
#define IO_GPIOBASE_H
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
// GPIOBase is defined as a class template. This allows it to be instantiated by
|
||||
// subclasses with different types, according to the number of pins on the GPIO module.
|
||||
// For example, GPIOBase<uint8_t> for 8 pins, GPIOBase<uint16_t> for 16 pins etc.
|
||||
// A module with up to 64 pins can be handled in this way (uint64_t).
|
||||
|
||||
template <class T>
|
||||
class GPIOBase : public IODevice {
|
||||
|
||||
protected:
|
||||
// Constructor
|
||||
GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin);
|
||||
// Device-specific initialisation
|
||||
void _begin() override;
|
||||
// Device-specific pin configuration function.
|
||||
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override;
|
||||
// Pin write function.
|
||||
void _write(VPIN vpin, int value) override;
|
||||
// Pin read function.
|
||||
int _read(VPIN vpin) override;
|
||||
void _display() override;
|
||||
void _loop(unsigned long currentMicros) override;
|
||||
|
||||
// Data fields
|
||||
uint8_t _I2CAddress;
|
||||
// Allocate enough space for all input pins
|
||||
T _portInputState;
|
||||
T _portOutputState;
|
||||
T _portMode;
|
||||
T _portPullup;
|
||||
T _portInUse;
|
||||
// Interval between refreshes of each input port
|
||||
static const int _portTickTime = 4000;
|
||||
|
||||
// Virtual functions for interfacing with I2C GPIO Device
|
||||
virtual void _writeGpioPort() = 0;
|
||||
virtual void _readGpioPort(bool immediate=true) = 0;
|
||||
virtual void _writePullups() {};
|
||||
virtual void _writePortModes() {};
|
||||
virtual void _setupDevice() {};
|
||||
virtual void _processCompletion(uint8_t status) {
|
||||
(void)status; // Suppress compiler warning
|
||||
};
|
||||
|
||||
I2CRB requestBlock;
|
||||
FSH *_deviceName;
|
||||
};
|
||||
|
||||
// Because class GPIOBase is a template, the implementation (below) must be contained within the same
|
||||
// file as the class declaration (above). Otherwise it won't compile!
|
||||
|
||||
// Constructor
|
||||
template <class T>
|
||||
GPIOBase<T>::GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin) :
|
||||
IODevice(firstVpin, nPins)
|
||||
{
|
||||
_deviceName = deviceName;
|
||||
_I2CAddress = I2CAddress;
|
||||
_gpioInterruptPin = interruptPin;
|
||||
_hasCallback = true;
|
||||
// Add device to list of devices.
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void GPIOBase<T>::_begin() {
|
||||
// Configure pin used for GPIO extender notification of change (if allocated)
|
||||
if (_gpioInterruptPin >= 0)
|
||||
pinMode(_gpioInterruptPin, INPUT_PULLUP);
|
||||
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(400000);
|
||||
if (I2CManager.exists(_I2CAddress)) {
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
_portMode = 0; // default to input mode
|
||||
_portPullup = -1; // default to pullup enabled
|
||||
_portInputState = -1;
|
||||
_portInUse = 0;
|
||||
_setupDevice();
|
||||
_deviceState = DEVSTATE_NORMAL;
|
||||
} else {
|
||||
DIAG(F("%S I2C:x%x Device not detected"), _deviceName, _I2CAddress);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
// Configuration parameters for inputs:
|
||||
// params[0]: enable pullup
|
||||
// params[1]: invert input (optional)
|
||||
template <class T>
|
||||
bool GPIOBase<T>::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
|
||||
if (configType != CONFIGURE_INPUT) return false;
|
||||
if (paramCount == 0 || paramCount > 1) return false;
|
||||
bool pullup = params[0];
|
||||
int pin = vpin - _firstVpin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("%S I2C:x%x Config Pin:%d Val:%d"), _deviceName, _I2CAddress, pin, pullup);
|
||||
#endif
|
||||
uint16_t mask = 1 << pin;
|
||||
if (pullup)
|
||||
_portPullup |= mask;
|
||||
else
|
||||
_portPullup &= ~mask;
|
||||
// Mark that port has been accessed
|
||||
_portInUse |= mask;
|
||||
// Set input mode
|
||||
_portMode &= ~mask;
|
||||
|
||||
// Call subclass's virtual function to write to device
|
||||
_writePortModes();
|
||||
_writePullups();
|
||||
// Port change will be notified on next loop entry.
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Periodically read the input port
|
||||
template <class T>
|
||||
void GPIOBase<T>::_loop(unsigned long currentMicros) {
|
||||
T lastPortStates = _portInputState;
|
||||
if (_deviceState == DEVSTATE_SCANNING && !requestBlock.isBusy()) {
|
||||
uint8_t status = requestBlock.status;
|
||||
if (status == I2C_STATUS_OK) {
|
||||
_deviceState = DEVSTATE_NORMAL;
|
||||
} else {
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
DIAG(F("%S I2C:x%x Error:%d %S"), _deviceName, _I2CAddress, status,
|
||||
I2CManager.getErrorMessage(status));
|
||||
}
|
||||
_processCompletion(status);
|
||||
// Set unused pin and write mode pin value to 1
|
||||
_portInputState |= ~_portInUse | _portMode;
|
||||
|
||||
// Scan for changes in input states and invoke callback (if present)
|
||||
T differences = lastPortStates ^ _portInputState;
|
||||
if (differences && IONotifyCallback::hasCallback()) {
|
||||
// Scan for differences bit by bit
|
||||
T mask = 1;
|
||||
for (int pin=0; pin<_nPins; pin++) {
|
||||
if (differences & mask) {
|
||||
// Change detected.
|
||||
IONotifyCallback::invokeAll(_firstVpin+pin, (_portInputState & mask) == 0);
|
||||
}
|
||||
mask <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DIAG_IO
|
||||
if (differences)
|
||||
DIAG(F("%S I2C:x%x PortStates:%x"), _deviceName, _I2CAddress, _portInputState);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Check if interrupt configured. If not, or if it is active (pulled down), then
|
||||
// initiate a scan.
|
||||
if (_gpioInterruptPin < 0 || !digitalRead(_gpioInterruptPin)) {
|
||||
// TODO: Could suppress reads if there are no pins configured as inputs!
|
||||
|
||||
// Read input
|
||||
if (_deviceState == DEVSTATE_NORMAL) {
|
||||
_readGpioPort(false); // Initiate non-blocking read
|
||||
_deviceState= DEVSTATE_SCANNING;
|
||||
}
|
||||
}
|
||||
// Delay next entry until tick elapsed.
|
||||
delayUntil(currentMicros + _portTickTime);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void GPIOBase<T>::_display() {
|
||||
DIAG(F("%S I2C:x%x Configured on Vpins:%d-%d %S"), _deviceName, _I2CAddress,
|
||||
_firstVpin, _firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void GPIOBase<T>::_write(VPIN vpin, int value) {
|
||||
int pin = vpin - _firstVpin;
|
||||
T mask = 1 << pin;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("%S I2C:x%x Write Pin:%d Val:%d"), _deviceName, _I2CAddress, pin, value);
|
||||
#endif
|
||||
|
||||
// Set port mode output if currently not output mode
|
||||
if (!(_portMode & mask)) {
|
||||
_portInUse |= mask;
|
||||
_portMode |= mask;
|
||||
_writePortModes();
|
||||
}
|
||||
|
||||
// Update port output state
|
||||
if (value)
|
||||
_portOutputState |= mask;
|
||||
else
|
||||
_portOutputState &= ~mask;
|
||||
|
||||
// Call subclass's virtual function to write to device.
|
||||
return _writeGpioPort();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int GPIOBase<T>::_read(VPIN vpin) {
|
||||
int pin = vpin - _firstVpin;
|
||||
T mask = 1 << pin;
|
||||
|
||||
// Set port mode to input if currently output or first use
|
||||
if ((_portMode | ~_portInUse) & mask) {
|
||||
_portMode &= ~mask;
|
||||
_portInUse |= mask;
|
||||
_writePullups();
|
||||
_writePortModes();
|
||||
// Port won't have been read yet, so read it now.
|
||||
_readGpioPort();
|
||||
// Set unused pin and write mode pin value to 1
|
||||
_portInputState |= ~_portInUse | _portMode;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("%S I2C:x%x PortStates:%x"), _deviceName, _I2CAddress, _portInputState);
|
||||
#endif
|
||||
}
|
||||
return (_portInputState & mask) ? 0 : 1; // Invert state (5v=0, 0v=1)
|
||||
}
|
||||
|
||||
#endif
|
188
IO_HCSR04.h
Normal file
188
IO_HCSR04.h
Normal file
|
@ -0,0 +1,188 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The HC-SR04 module has an ultrasonic transmitter (40kHz) and a receiver.
|
||||
* It is operated through two signal pins. When the transmit pin is set to 1
|
||||
* for 10us, on the falling edge the transmitter sends a short transmission of
|
||||
* 8 pulses (like a sonar 'ping'). This is reflected off objects and received
|
||||
* by the receiver. A pulse is sent on the receive pin whose length is equal
|
||||
* to the delay between the transmission of the pulse and the detection of
|
||||
* its echo. The distance of the reflecting object is calculated by halving
|
||||
* the time (to allow for the out and back distance), then multiplying by the
|
||||
* speed of sound (assumed to be constant).
|
||||
*
|
||||
* This driver polls the HC-SR04 by sending the trigger pulse and then measuring
|
||||
* the length of the received pulse. If the calculated distance is less than
|
||||
* the threshold, the output state returned by a read() call changes to 1. If
|
||||
* the distance is greater than the threshold plus a hysteresis margin, the
|
||||
* output changes to 0. The device also supports readAnalogue(), which returns
|
||||
* the measured distance in cm, or 32767 if the distance exceeds the
|
||||
* offThreshold.
|
||||
*
|
||||
* It might be thought that the measurement would be more reliable if interrupts
|
||||
* were disabled while the pulse is being timed. However, this would affect
|
||||
* other functions in the CS so the measurement is being performed with
|
||||
* interrupts enabled. Also, we could use an interrupt pin in the Arduino for
|
||||
* the timing, but the same consideration applies. In any case, the DCC
|
||||
* interrupt occurs once every 58us, so any IRC code is much faster than that.
|
||||
* And 58us corresponds to 1cm in the calculation, so the effect of
|
||||
* interrupts is negligible.
|
||||
*
|
||||
* Note: The timing accuracy required for measuring the pulse length means that
|
||||
* the pins have to be direct Arduino pins; GPIO pins on an IO Extender cannot
|
||||
* provide the required accuracy.
|
||||
*/
|
||||
|
||||
#ifndef IO_HCSR04_H
|
||||
#define IO_HCSR04_H
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class HCSR04 : public IODevice {
|
||||
|
||||
private:
|
||||
// pins must be arduino GPIO pins, not extender pins or HAL pins.
|
||||
int _trigPin = -1;
|
||||
int _echoPin = -1;
|
||||
// Thresholds for setting active state in cm.
|
||||
uint8_t _onThreshold; // cm
|
||||
uint8_t _offThreshold; // cm
|
||||
// Last measured distance in cm.
|
||||
uint16_t _distance;
|
||||
// Active=1/inactive=0 state
|
||||
uint8_t _value = 0;
|
||||
// Factor for calculating the distance (cm) from echo time (ms).
|
||||
// Based on a speed of sound of 345 metres/second.
|
||||
const uint16_t factor = 58; // ms/cm
|
||||
|
||||
public:
|
||||
// Constructor perfroms static initialisation of the device object
|
||||
HCSR04 (VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
_firstVpin = vpin;
|
||||
_nPins = 1;
|
||||
_trigPin = trigPin;
|
||||
_echoPin = echoPin;
|
||||
_onThreshold = onThreshold;
|
||||
_offThreshold = offThreshold;
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
// Static create function provides alternative way to create object
|
||||
static void create(VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
new HCSR04(vpin, trigPin, echoPin, onThreshold, offThreshold);
|
||||
}
|
||||
|
||||
protected:
|
||||
// _begin function called to perform dynamic initialisation of the device
|
||||
void _begin() override {
|
||||
pinMode(_trigPin, OUTPUT);
|
||||
pinMode(_echoPin, INPUT);
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 0);
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
|
||||
// _read function - just return _value (calculated in _loop).
|
||||
int _read(VPIN vpin) override {
|
||||
(void)vpin; // avoid compiler warning
|
||||
return _value;
|
||||
}
|
||||
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
(void)vpin; // avoid compiler warning
|
||||
return _distance;
|
||||
}
|
||||
|
||||
// _loop function - read HC-SR04 once every 50 milliseconds.
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
read_HCSR04device();
|
||||
// Delay next loop entry until 50ms have elapsed.
|
||||
delayUntil(currentMicros + 50000UL);
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("HCSR04 Configured on Vpin:%d TrigPin:%d EchoPin:%d On:%dcm Off:%dcm"),
|
||||
_firstVpin, _trigPin, _echoPin, _onThreshold, _offThreshold);
|
||||
}
|
||||
|
||||
private:
|
||||
// This polls the HC-SR04 device by sending a pulse and measuring the duration of
|
||||
// the pulse observed on the receive pin. In order to be kind to the rest of the CS
|
||||
// software, no interrupts are used and interrupts are not disabled. The pulse duration
|
||||
// is measured in a loop, using the micros() function. Therefore, interrupts from other
|
||||
// sources may affect the result. However, interrupts response code in CS typically takes
|
||||
// much less than the 58us frequency for the DCC interrupt, and 58us corresponds to only 1cm
|
||||
// in the HC-SR04.
|
||||
// To reduce chatter on the output, hysteresis is applied on reset: the output is set to 1 when the
|
||||
// measured distance is less than the onThreshold, and is set to 0 if the measured distance is
|
||||
// greater than the offThreshold.
|
||||
//
|
||||
void read_HCSR04device() {
|
||||
// uint16 enough to time up to 65ms
|
||||
uint16_t startTime, waitTime, currentTime, maxTime;
|
||||
|
||||
// If receive pin is still set on from previous call, abort the read.
|
||||
if (ArduinoPins::fastReadDigital(_echoPin))
|
||||
return;
|
||||
|
||||
// Send 10us pulse to trigger transmitter
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 1);
|
||||
delayMicroseconds(10);
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 0);
|
||||
|
||||
// Wait for receive pin to be set
|
||||
startTime = currentTime = micros();
|
||||
maxTime = factor * _offThreshold * 2;
|
||||
while (!ArduinoPins::fastReadDigital(_echoPin)) {
|
||||
// lastTime = currentTime;
|
||||
currentTime = micros();
|
||||
waitTime = currentTime - startTime;
|
||||
if (waitTime > maxTime) {
|
||||
// Timeout waiting for pulse start, abort the read
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for receive pin to reset, and measure length of pulse
|
||||
startTime = currentTime = micros();
|
||||
maxTime = factor * _offThreshold;
|
||||
while (ArduinoPins::fastReadDigital(_echoPin)) {
|
||||
currentTime = micros();
|
||||
waitTime = currentTime - startTime;
|
||||
// If pulse is too long then set return value to zero,
|
||||
// and finish without waiting for end of pulse.
|
||||
if (waitTime > maxTime) {
|
||||
// Pulse length longer than maxTime, reset value.
|
||||
_value = 0;
|
||||
_distance = 32767;
|
||||
return;
|
||||
}
|
||||
}
|
||||
// Check if pulse length is below threshold, if so set value.
|
||||
//DIAG(F("HCSR04: Pulse Len=%l Distance=%d"), waitTime, distance);
|
||||
_distance = waitTime / factor; // in centimetres
|
||||
if (_distance < _onThreshold)
|
||||
_value = 1;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif //IO_HCSR04_H
|
100
IO_MCP23008.h
Normal file
100
IO_MCP23008.h
Normal file
|
@ -0,0 +1,100 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef IO_MCP23008_H
|
||||
#define IO_MCP23008_H
|
||||
|
||||
#include "IO_GPIOBase.h"
|
||||
|
||||
class MCP23008 : public GPIOBase<uint8_t> {
|
||||
public:
|
||||
static void create(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1) {
|
||||
new MCP23008(firstVpin, nPins, I2CAddress, interruptPin);
|
||||
}
|
||||
|
||||
// Constructor
|
||||
MCP23008(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1)
|
||||
: GPIOBase<uint8_t>((FSH *)F("MCP23008"), firstVpin, min(nPins, 8), I2CAddress, interruptPin) {
|
||||
|
||||
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
|
||||
outputBuffer, sizeof(outputBuffer));
|
||||
outputBuffer[0] = REG_GPIO;
|
||||
}
|
||||
|
||||
private:
|
||||
void _writeGpioPort() override {
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO, _portOutputState);
|
||||
}
|
||||
void _writePullups() override {
|
||||
// Set pullups only for in-use pins. This prevents pullup being set for a pin that
|
||||
// is intended for use as an output but hasn't been written to yet.
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPPU, _portPullup & _portInUse);
|
||||
}
|
||||
void _writePortModes() override {
|
||||
// Write 0 to IODIR for in-use pins that are outputs, 1 for others.
|
||||
uint8_t temp = ~(_portMode & _portInUse);
|
||||
I2CManager.write(_I2CAddress, 2, REG_IODIR, temp);
|
||||
// Enable interrupt-on-change for in-use pins that are inputs (_portMode=0)
|
||||
temp = ~_portMode & _portInUse;
|
||||
I2CManager.write(_I2CAddress, 2, REG_INTCON, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPINTEN, temp);
|
||||
}
|
||||
void _readGpioPort(bool immediate) override {
|
||||
if (immediate) {
|
||||
uint8_t buffer;
|
||||
I2CManager.read(_I2CAddress, &buffer, 1, 1, REG_GPIO);
|
||||
_portInputState = buffer;
|
||||
} else {
|
||||
// Queue new request
|
||||
requestBlock.wait(); // Wait for preceding operation to complete
|
||||
// Issue new request to read GPIO register
|
||||
I2CManager.queueRequest(&requestBlock);
|
||||
}
|
||||
}
|
||||
// This function is invoked when an I/O operation on the requestBlock completes.
|
||||
void _processCompletion(uint8_t status) override {
|
||||
if (status == I2C_STATUS_OK)
|
||||
_portInputState = inputBuffer[0];
|
||||
else
|
||||
_portInputState = 0xff;
|
||||
}
|
||||
void _setupDevice() override {
|
||||
// IOCON is set ODR=1 (open drain shared interrupt pin), INTPOL=0 (active-Low)
|
||||
I2CManager.write(_I2CAddress, 2, REG_IOCON, 0x04);
|
||||
_writePortModes();
|
||||
_writePullups();
|
||||
_writeGpioPort();
|
||||
}
|
||||
|
||||
uint8_t inputBuffer[1];
|
||||
uint8_t outputBuffer[1];
|
||||
|
||||
enum {
|
||||
// Register definitions for MCP23008
|
||||
REG_IODIR=0x00,
|
||||
REG_GPINTEN=0x02,
|
||||
REG_INTCON=0x04,
|
||||
REG_IOCON=0x05,
|
||||
REG_GPPU=0x06,
|
||||
REG_GPIO=0x09,
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
112
IO_MCP23017.h
Normal file
112
IO_MCP23017.h
Normal file
|
@ -0,0 +1,112 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef io_mcp23017_h
|
||||
#define io_mcp23017_h
|
||||
|
||||
#include "IO_GPIOBase.h"
|
||||
#include "FSH.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for MCP23017 16-bit I/O expander.
|
||||
*/
|
||||
|
||||
class MCP23017 : public GPIOBase<uint16_t> {
|
||||
public:
|
||||
static void create(VPIN vpin, int nPins, uint8_t I2CAddress, int interruptPin=-1) {
|
||||
new MCP23017(vpin, min(nPins,16), I2CAddress, interruptPin);
|
||||
}
|
||||
|
||||
// Constructor
|
||||
MCP23017(VPIN vpin, int nPins, uint8_t I2CAddress, int interruptPin=-1)
|
||||
: GPIOBase<uint16_t>((FSH *)F("MCP23017"), vpin, nPins, I2CAddress, interruptPin)
|
||||
{
|
||||
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
|
||||
outputBuffer, sizeof(outputBuffer));
|
||||
outputBuffer[0] = REG_GPIOA;
|
||||
}
|
||||
|
||||
private:
|
||||
void _writeGpioPort() override {
|
||||
I2CManager.write(_I2CAddress, 3, REG_GPIOA, _portOutputState, _portOutputState>>8);
|
||||
}
|
||||
void _writePullups() override {
|
||||
// Set pullups only for in-use pins. This prevents pullup being set for a pin that
|
||||
// is intended for use as an output but hasn't been written to yet.
|
||||
uint16_t temp = _portPullup & _portInUse;
|
||||
I2CManager.write(_I2CAddress, 3, REG_GPPUA, temp, temp>>8);
|
||||
}
|
||||
void _writePortModes() override {
|
||||
// Write 0 to IODIR for in-use pins that are outputs, 1 for others.
|
||||
uint16_t temp = ~(_portMode & _portInUse);
|
||||
I2CManager.write(_I2CAddress, 3, REG_IODIRA, temp, temp>>8);
|
||||
// Enable interrupt for in-use pins which are inputs (_portMode=0)
|
||||
temp = ~_portMode & _portInUse;
|
||||
I2CManager.write(_I2CAddress, 3, REG_INTCONA, 0x00, 0x00);
|
||||
I2CManager.write(_I2CAddress, 3, REG_GPINTENA, temp, temp>>8);
|
||||
}
|
||||
void _readGpioPort(bool immediate) override {
|
||||
if (immediate) {
|
||||
uint8_t buffer[2];
|
||||
I2CManager.read(_I2CAddress, buffer, 2, 1, REG_GPIOA);
|
||||
_portInputState = ((uint16_t)buffer[1]<<8) | buffer[0];
|
||||
} else {
|
||||
// Queue new request
|
||||
requestBlock.wait(); // Wait for preceding operation to complete
|
||||
// Issue new request to read GPIO register
|
||||
I2CManager.queueRequest(&requestBlock);
|
||||
}
|
||||
}
|
||||
// This function is invoked when an I/O operation on the requestBlock completes.
|
||||
void _processCompletion(uint8_t status) override {
|
||||
if (status == I2C_STATUS_OK)
|
||||
_portInputState = ((uint16_t)inputBuffer[1]<<8) | inputBuffer[0];
|
||||
else
|
||||
_portInputState = 0xffff;
|
||||
}
|
||||
|
||||
void _setupDevice() override {
|
||||
// IOCON is set MIRROR=1, ODR=1 (open drain shared interrupt pin)
|
||||
I2CManager.write(_I2CAddress, 2, REG_IOCON, 0x44);
|
||||
_writePortModes();
|
||||
_writePullups();
|
||||
_writeGpioPort();
|
||||
}
|
||||
|
||||
uint8_t inputBuffer[2];
|
||||
uint8_t outputBuffer[1];
|
||||
|
||||
enum {
|
||||
REG_IODIRA = 0x00,
|
||||
REG_IODIRB = 0x01,
|
||||
REG_GPINTENA = 0x04,
|
||||
REG_GPINTENB = 0x05,
|
||||
REG_INTCONA = 0x08,
|
||||
REG_INTCONB = 0x09,
|
||||
REG_IOCON = 0x0A,
|
||||
REG_GPPUA = 0x0C,
|
||||
REG_GPPUB = 0x0D,
|
||||
REG_GPIOA = 0x12,
|
||||
REG_GPIOB = 0x13,
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
274
IO_PCA9685.cpp
Normal file
274
IO_PCA9685.cpp
Normal file
|
@ -0,0 +1,274 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
// REGISTER ADDRESSES
|
||||
static const byte PCA9685_MODE1=0x00; // Mode Register
|
||||
static const byte PCA9685_FIRST_SERVO=0x06; /** low byte first servo register ON*/
|
||||
static const byte PCA9685_PRESCALE=0xFE; /** Prescale register for PWM output frequency */
|
||||
// MODE1 bits
|
||||
static const byte MODE1_SLEEP=0x10; /**< Low power mode. Oscillator off */
|
||||
static const byte MODE1_AI=0x20; /**< Auto-Increment enabled */
|
||||
static const byte MODE1_RESTART=0x80; /**< Restart enabled */
|
||||
|
||||
static const float FREQUENCY_OSCILLATOR=25000000.0; /** Accurate enough for our purposes */
|
||||
static const uint8_t PRESCALE_50HZ = (uint8_t)(((FREQUENCY_OSCILLATOR / (50.0 * 4096.0)) + 0.5) - 1);
|
||||
static const uint32_t MAX_I2C_SPEED = 1000000L; // PCA9685 rated up to 1MHz I2C clock speed
|
||||
|
||||
// Predeclare helper function
|
||||
static void writeRegister(byte address, byte reg, byte value);
|
||||
|
||||
// Create device driver instance.
|
||||
void PCA9685::create(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
|
||||
new PCA9685(firstVpin, nPins, I2CAddress);
|
||||
}
|
||||
|
||||
// Configure a port on the PCA9685.
|
||||
bool PCA9685::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
|
||||
if (configType != CONFIGURE_SERVO) return false;
|
||||
if (paramCount != 5) return false;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("PCA9685 Configure VPIN:%d Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"),
|
||||
vpin, params[0], params[1], params[2], params[3], params[4]);
|
||||
#endif
|
||||
|
||||
int8_t pin = vpin - _firstVpin;
|
||||
struct ServoData *s = _servoData[pin];
|
||||
if (s == NULL) {
|
||||
_servoData[pin] = (struct ServoData *)calloc(1, sizeof(struct ServoData));
|
||||
s = _servoData[pin];
|
||||
if (!s) return false; // Check for failed memory allocation
|
||||
}
|
||||
|
||||
s->activePosition = params[0];
|
||||
s->inactivePosition = params[1];
|
||||
s->profile = params[2];
|
||||
s->duration = params[3];
|
||||
int state = params[4];
|
||||
|
||||
if (state != -1) {
|
||||
// Position servo to initial state
|
||||
_writeAnalogue(vpin, state ? s->activePosition : s->inactivePosition, 0, 0);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Constructor
|
||||
PCA9685::PCA9685(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = min(nPins, 16);
|
||||
_I2CAddress = I2CAddress;
|
||||
// To save RAM, space for servo configuration is not allocated unless a pin is used.
|
||||
// Initialise the pointers to NULL.
|
||||
for (int i=0; i<_nPins; i++)
|
||||
_servoData[i] = NULL;
|
||||
|
||||
addDevice(this);
|
||||
|
||||
// Initialise structure used for setting pulse rate
|
||||
requestBlock.setWriteParams(_I2CAddress, outputBuffer, sizeof(outputBuffer));
|
||||
}
|
||||
|
||||
// Device-specific initialisation
|
||||
void PCA9685::_begin() {
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(1000000); // Nominally able to run up to 1MHz on I2C
|
||||
// In reality, other devices including the Arduino will limit
|
||||
// the clock speed to a lower rate.
|
||||
|
||||
// Initialise I/O module here.
|
||||
if (I2CManager.exists(_I2CAddress)) {
|
||||
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_SLEEP | MODE1_AI);
|
||||
writeRegister(_I2CAddress, PCA9685_PRESCALE, PRESCALE_50HZ); // 50Hz clock, 20ms pulse period.
|
||||
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_AI);
|
||||
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_RESTART | MODE1_AI);
|
||||
// In theory, we should wait 500us before sending any other commands to each device, to allow
|
||||
// the PWM oscillator to get running. However, we don't do any specific wait, as there's
|
||||
// plenty of other stuff to do before we will send a command.
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
} else
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
|
||||
// Device-specific write function, invoked from IODevice::write().
|
||||
// For this function, the configured profile is used.
|
||||
void PCA9685::_write(VPIN vpin, int value) {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("PCA9685 Write Vpin:%d Value:%d"), vpin, value);
|
||||
#endif
|
||||
int pin = vpin - _firstVpin;
|
||||
if (value) value = 1;
|
||||
|
||||
struct ServoData *s = _servoData[pin];
|
||||
if (s != NULL) {
|
||||
// Use configured parameters
|
||||
_writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration);
|
||||
} // else { /* ignorethe request */ }
|
||||
}
|
||||
|
||||
// Device-specific writeAnalogue function, invoked from IODevice::writeAnalogue().
|
||||
// Profile is as follows:
|
||||
// Bit 7: 0=Set PWM to 0% to power off servo motor when finished
|
||||
// 1=Keep PWM pulses on (better when using PWM to drive an LED)
|
||||
// Bits 6-0: 0 Use specified duration (defaults to 0 deciseconds)
|
||||
// 1 (Fast) Move servo in 0.5 seconds
|
||||
// 2 (Medium) Move servo in 1.0 seconds
|
||||
// 3 (Slow) Move servo in 2.0 seconds
|
||||
// 4 (Bounce) Servo 'bounces' at extremes.
|
||||
//
|
||||
void PCA9685::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("PCA9685 WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d"),
|
||||
vpin, value, profile, duration);
|
||||
#endif
|
||||
int pin = vpin - _firstVpin;
|
||||
if (value > 4095) value = 4095;
|
||||
else if (value < 0) value = 0;
|
||||
|
||||
struct ServoData *s = _servoData[pin];
|
||||
if (s == NULL) {
|
||||
// Servo pin not configured, so configure now using defaults
|
||||
s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1);
|
||||
if (s == NULL) return; // Check for memory allocation failure
|
||||
s->activePosition = 0;
|
||||
s->inactivePosition = 0;
|
||||
s->currentPosition = value;
|
||||
s->profile = Instant; // Use instant profile (but not this time)
|
||||
}
|
||||
|
||||
// Animated profile. Initiate the appropriate action.
|
||||
s->currentProfile = profile;
|
||||
uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit.
|
||||
s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds
|
||||
profileValue==Medium ? 20 : // 1.0 seconds
|
||||
profileValue==Slow ? 40 : // 2.0 seconds
|
||||
profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds
|
||||
duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms)
|
||||
s->stepNumber = 0;
|
||||
s->toPosition = value;
|
||||
s->fromPosition = s->currentPosition;
|
||||
}
|
||||
|
||||
// _read returns true if the device is currently in executing an animation,
|
||||
// changing the output over a period of time.
|
||||
int PCA9685::_read(VPIN vpin) {
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
int pin = vpin - _firstVpin;
|
||||
struct ServoData *s = _servoData[pin];
|
||||
if (s == NULL)
|
||||
return false; // No structure means no animation!
|
||||
else
|
||||
return (s->stepNumber < s->numSteps);
|
||||
}
|
||||
|
||||
void PCA9685::_loop(unsigned long currentMicros) {
|
||||
for (int pin=0; pin<_nPins; pin++) {
|
||||
updatePosition(pin);
|
||||
}
|
||||
delayUntil(currentMicros + refreshInterval * 1000UL);
|
||||
}
|
||||
|
||||
// Private function to reposition servo
|
||||
// TODO: Could calculate step number from elapsed time, to allow for erratic loop timing.
|
||||
void PCA9685::updatePosition(uint8_t pin) {
|
||||
struct ServoData *s = _servoData[pin];
|
||||
|
||||
if (s == NULL) return; // No pin configuration/state data
|
||||
|
||||
if (s->numSteps == 0) return; // No animation in progress
|
||||
|
||||
if (s->stepNumber == 0 && s->fromPosition == s->toPosition) {
|
||||
// Go straight to end of sequence, output final position.
|
||||
s->stepNumber = s->numSteps-1;
|
||||
}
|
||||
|
||||
if (s->stepNumber < s->numSteps) {
|
||||
// Animation in progress, reposition servo
|
||||
s->stepNumber++;
|
||||
if ((s->currentProfile & ~NoPowerOff) == Bounce) {
|
||||
// Retrieve step positions from array in flash
|
||||
byte profileValue = GETFLASH(&_bounceProfile[s->stepNumber]);
|
||||
s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition);
|
||||
} else {
|
||||
// All other profiles - calculate step by linear interpolation between from and to positions.
|
||||
s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition);
|
||||
}
|
||||
// Send servo command
|
||||
writeDevice(pin, s->currentPosition);
|
||||
} else if (s->stepNumber < s->numSteps + _catchupSteps) {
|
||||
// We've finished animation, wait a little to allow servo to catch up
|
||||
s->stepNumber++;
|
||||
} else if (s->stepNumber == s->numSteps + _catchupSteps
|
||||
&& s->currentPosition != 0) {
|
||||
#ifdef IO_SWITCH_OFF_SERVO
|
||||
if ((s->currentProfile & NoPowerOff) == 0) {
|
||||
// Wait has finished, so switch off PWM to prevent annoying servo buzz
|
||||
writeDevice(pin, 0);
|
||||
}
|
||||
#endif
|
||||
s->numSteps = 0; // Done now.
|
||||
}
|
||||
}
|
||||
|
||||
// writeDevice takes a pin in range 0 to _nPins-1 within the device, and a value
|
||||
// between 0 and 4095 for the PWM mark-to-period ratio, with 4095 being 100%.
|
||||
void PCA9685::writeDevice(uint8_t pin, int value) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("PCA9685 I2C:x%x WriteDevice Pin:%d Value:%d"), _I2CAddress, pin, value);
|
||||
#endif
|
||||
// Wait for previous request to complete
|
||||
uint8_t status = requestBlock.wait();
|
||||
if (status != I2C_STATUS_OK) {
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
DIAG(F("PCA9685 I2C:x%x failed %S"), _I2CAddress, I2CManager.getErrorMessage(status));
|
||||
} else {
|
||||
// Set up new request.
|
||||
outputBuffer[0] = PCA9685_FIRST_SERVO + 4 * pin;
|
||||
outputBuffer[1] = 0;
|
||||
outputBuffer[2] = (value == 4095 ? 0x10 : 0); // 4095=full on
|
||||
outputBuffer[3] = value & 0xff;
|
||||
outputBuffer[4] = value >> 8;
|
||||
I2CManager.queueRequest(&requestBlock);
|
||||
}
|
||||
}
|
||||
|
||||
// Display details of this device.
|
||||
void PCA9685::_display() {
|
||||
DIAG(F("PCA9685 I2C:x%x Configured on Vpins:%d-%d %S"), _I2CAddress, (int)_firstVpin,
|
||||
(int)_firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
// Internal helper function for this device
|
||||
static void writeRegister(byte address, byte reg, byte value) {
|
||||
I2CManager.write(address, 2, reg, value);
|
||||
}
|
||||
|
||||
// Profile for a bouncing signal or turnout
|
||||
// The profile below is in the range 0-100% and should be combined with the desired limits
|
||||
// of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here,
|
||||
// i.e. the bounce is the same on the down action as on the up action. First entry isn't used.
|
||||
const byte FLASH PCA9685::_bounceProfile[30] =
|
||||
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};
|
102
IO_PCF8574.h
Normal file
102
IO_PCF8574.h
Normal file
|
@ -0,0 +1,102 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The PCF8574 is a simple device; it only has one register. The device
|
||||
* input/output mode and pullup are configured through this, and the
|
||||
* output state is written and the input state read through it too.
|
||||
*
|
||||
* This is accomplished by having a weak resistor in series with the output,
|
||||
* and a read-back of the other end of the resistor. As an output, the
|
||||
* pin state is set to 1 or 0, and the output voltage goes to +5V or 0V
|
||||
* (through the weak resistor).
|
||||
*
|
||||
* In order to use the pin as an input, the output is written as
|
||||
* a '1' in order to pull up the resistor. Therefore the input will be
|
||||
* 1 unless the pin is pulled down externally, in which case it will be 0.
|
||||
*
|
||||
* As a consequence of this approach, it is not possible to use the device for
|
||||
* inputs without pullups.
|
||||
*/
|
||||
|
||||
#ifndef IO_PCF8574_H
|
||||
#define IO_PCF8574_H
|
||||
|
||||
#include "IO_GPIOBase.h"
|
||||
|
||||
class PCF8574 : public GPIOBase<uint8_t> {
|
||||
public:
|
||||
static void create(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1) {
|
||||
new PCF8574(firstVpin, nPins, I2CAddress, interruptPin);
|
||||
}
|
||||
|
||||
PCF8574(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1)
|
||||
: GPIOBase<uint8_t>((FSH *)F("PCF8574"), firstVpin, min(nPins, 8), I2CAddress, interruptPin)
|
||||
{
|
||||
requestBlock.setReadParams(_I2CAddress, inputBuffer, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
// The pin state is '1' if the pin is an input or if it is an output set to 1. Zero otherwise.
|
||||
void _writeGpioPort() override {
|
||||
I2CManager.write(_I2CAddress, 1, _portOutputState | ~_portMode);
|
||||
}
|
||||
|
||||
// The PCF8574 handles inputs by applying a weak pull-up when output is driven to '1'.
|
||||
// Therefore, writing '1' in _writePortModes is enough to set the module to input mode
|
||||
// and enable pull-up.
|
||||
void _writePullups() override { }
|
||||
|
||||
// The pin state is '1' if the pin is an input or if it is an output set to 1. Zero otherwise.
|
||||
void _writePortModes() override {
|
||||
I2CManager.write(_I2CAddress, 1, _portOutputState | ~_portMode);
|
||||
}
|
||||
|
||||
// In immediate mode, _readGpioPort reads the device GPIO port and updates _portInputState accordingly.
|
||||
// When not in immediate mode, it initiates a request using the request block and returns.
|
||||
// When the request completes, _processCompletion finishes the operation.
|
||||
void _readGpioPort(bool immediate) override {
|
||||
if (immediate) {
|
||||
uint8_t buffer[1];
|
||||
I2CManager.read(_I2CAddress, buffer, 1);
|
||||
_portInputState = ((uint16_t)buffer) & 0xff;
|
||||
} else {
|
||||
requestBlock.wait(); // Wait for preceding operation to complete
|
||||
// Issue new request to read GPIO register
|
||||
I2CManager.queueRequest(&requestBlock);
|
||||
}
|
||||
}
|
||||
|
||||
// This function is invoked when an I/O operation on the requestBlock completes.
|
||||
void _processCompletion(uint8_t status) override {
|
||||
if (status == I2C_STATUS_OK)
|
||||
_portInputState = ((uint16_t)inputBuffer[0]) & 0xff;
|
||||
else
|
||||
_portInputState = 0xff;
|
||||
}
|
||||
|
||||
// Set up device ports
|
||||
void _setupDevice() override {
|
||||
_writePortModes();
|
||||
}
|
||||
|
||||
uint8_t inputBuffer[1];
|
||||
};
|
||||
|
||||
#endif
|
299
IO_VL53L0X.h
Normal file
299
IO_VL53L0X.h
Normal file
|
@ -0,0 +1,299 @@
|
|||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The VL53L0X Time-Of-Flight sensor operates by sending a short laser pulse and detecting
|
||||
* the reflection of the pulse. The time between the pulse and the receipt of reflections
|
||||
* is measured and used to determine the distance to the reflecting object.
|
||||
*
|
||||
* For economy of memory and processing time, this driver includes only part of the code
|
||||
* that ST provide in their API. Also, the API code isn't very clear and it is not easy
|
||||
* to identify what operations are useful and what are not.
|
||||
* The operation shown here doesn't include any calibration, so is probably not as accurate
|
||||
* as using the full driver, but it's probably accurate enough for the purpose.
|
||||
*
|
||||
* The device driver allocates up to 3 vpins to the device. A digital read on the first pin
|
||||
* will return a value that indicates whether the object is within the threshold range (1)
|
||||
* or not (0). An analogue read on the first pin returns the last measured distance (in mm),
|
||||
* the second pin returns the signal strength, and the third pin returns detected
|
||||
* ambient light level. By default the device takes around 60ms to complete a ranging
|
||||
* operation, so we do a 100ms cycle (10 samples per second).
|
||||
*
|
||||
* The VL53L0X is initially set to respond to I2C address 0x29. If you only have one module,
|
||||
* you can use this address. However, the address can be modified by software. If
|
||||
* you select another address, that address will be written to the device and used until the device is reset.
|
||||
*
|
||||
* If you have more than one module, then you will need to specify a digital VPIN (Arduino
|
||||
* digital output or I/O extender pin) which you connect to the module's XSHUT pin. Now,
|
||||
* when the device driver starts, the XSHUT pin is set LOW to turn the module off. Once
|
||||
* all VL53L0X modules are turned off, the driver works through each module in turn by
|
||||
* setting XSHUT to HIGH to turn the module on,, then writing the module's desired I2C address.
|
||||
* In this way, many VL53L0X modules can be connected to the one I2C bus, each one
|
||||
* using a distinct I2C address.
|
||||
*
|
||||
* WARNING: If the device's XSHUT pin is not connected, then it is very prone to noise,
|
||||
* and the device may even reset when handled. If you're not using XSHUT, then it's
|
||||
* best to tie it to +5V.
|
||||
*
|
||||
* The driver is configured as follows:
|
||||
*
|
||||
* Single VL53L0X module:
|
||||
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold);
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is 1, 2 or 3,
|
||||
* i2cAddress is the address of the device (normally 0x29),
|
||||
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
|
||||
* and highThreshold is the distance at which the digital vpin state is set to 0 (in mm).
|
||||
*
|
||||
* Multiple VL53L0X modules:
|
||||
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold, xshutPin);
|
||||
* ...
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is 1, 2 or 3,
|
||||
* i2cAddress is the address of the device (any valid address except 0x29),
|
||||
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
|
||||
* highThreshold is the distance at which the digital vpin state is set to 0 (in mm),
|
||||
* and xshutPin is the VPIN number corresponding to a digital output that is connected to the
|
||||
* XSHUT terminal on the module.
|
||||
*
|
||||
* Example:
|
||||
* In mySetup function within mySetup.cpp:
|
||||
* VL53L0X::create(4000, 3, 0x29, 200, 250);
|
||||
* Sensor::create(4000, 4000, 0); // Create a sensor
|
||||
*
|
||||
* When an object comes within 200mm of the sensor, a message
|
||||
* <Q 4000>
|
||||
* will be sent over the serial USB, and when the object moves more than 250mm from the sensor,
|
||||
* a message
|
||||
* <q 4000>
|
||||
* will be sent.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef IO_VL53L0X_h
|
||||
#define IO_VL53L0X_h
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class VL53L0X : public IODevice {
|
||||
private:
|
||||
uint8_t _i2cAddress;
|
||||
uint16_t _ambient;
|
||||
uint16_t _distance;
|
||||
uint16_t _signal;
|
||||
uint16_t _onThreshold;
|
||||
uint16_t _offThreshold;
|
||||
VPIN _xshutPin;
|
||||
bool _value;
|
||||
uint8_t _nextState = 0;
|
||||
I2CRB _rb;
|
||||
uint8_t _inBuffer[12];
|
||||
uint8_t _outBuffer[2];
|
||||
// State machine states.
|
||||
enum : uint8_t {
|
||||
STATE_INIT = 0,
|
||||
STATE_CONFIGUREADDRESS = 1,
|
||||
STATE_SKIP = 2,
|
||||
STATE_CONFIGUREDEVICE = 3,
|
||||
STATE_INITIATESCAN = 4,
|
||||
STATE_CHECKSTATUS = 5,
|
||||
STATE_GETRESULTS = 6,
|
||||
STATE_DECODERESULTS = 7,
|
||||
};
|
||||
|
||||
// Register addresses
|
||||
enum : uint8_t {
|
||||
VL53L0X_REG_SYSRANGE_START=0x00,
|
||||
VL53L0X_REG_RESULT_INTERRUPT_STATUS=0x13,
|
||||
VL53L0X_REG_RESULT_RANGE_STATUS=0x14,
|
||||
VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV=0x89,
|
||||
VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS=0x8A,
|
||||
};
|
||||
const uint8_t VL53L0X_I2C_DEFAULT_ADDRESS=0x29;
|
||||
|
||||
public:
|
||||
VL53L0X(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = min(nPins, 3);
|
||||
_i2cAddress = i2cAddress;
|
||||
_onThreshold = onThreshold;
|
||||
_offThreshold = offThreshold;
|
||||
_xshutPin = xshutPin;
|
||||
_value = 0;
|
||||
addDevice(this);
|
||||
}
|
||||
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
|
||||
new VL53L0X(firstVpin, nPins, i2cAddress, onThreshold, offThreshold, xshutPin);
|
||||
}
|
||||
|
||||
protected:
|
||||
void _begin() override {
|
||||
if (_xshutPin == VPIN_NONE) {
|
||||
// Check if device is already responding on the nominated address.
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
// Yes, it's already on this address, so skip the address initialisation.
|
||||
_nextState = STATE_CONFIGUREDEVICE;
|
||||
} else {
|
||||
_nextState = STATE_INIT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
uint8_t status;
|
||||
switch (_nextState) {
|
||||
case STATE_INIT:
|
||||
// On first entry to loop, reset this module by pulling XSHUT low. All modules
|
||||
// will be reset in turn.
|
||||
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 0);
|
||||
_nextState = STATE_CONFIGUREADDRESS;
|
||||
break;
|
||||
case STATE_CONFIGUREADDRESS:
|
||||
// On second entry, set XSHUT pin high to allow the module to restart.
|
||||
// On the module, there is a diode in series with the XSHUT pin to
|
||||
// protect the low-voltage pin against +5V.
|
||||
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 1);
|
||||
// Allow the module time to restart
|
||||
delay(10);
|
||||
// Then write the desired I2C address to the device, while this is the only
|
||||
// module responding to the default address.
|
||||
I2CManager.write(VL53L0X_I2C_DEFAULT_ADDRESS, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _i2cAddress);
|
||||
_nextState = STATE_SKIP;
|
||||
break;
|
||||
case STATE_SKIP:
|
||||
// Do nothing on the third entry.
|
||||
_nextState = STATE_CONFIGUREDEVICE;
|
||||
break;
|
||||
case STATE_CONFIGUREDEVICE:
|
||||
// On next entry, check if device address has been set.
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
// Set 2.8V mode
|
||||
write_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
|
||||
read_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
|
||||
} else {
|
||||
DIAG(F("VL53L0X I2C:x%x device not responding"), _i2cAddress);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
_nextState = STATE_INITIATESCAN;
|
||||
break;
|
||||
case STATE_INITIATESCAN:
|
||||
// Not scanning, so initiate a scan
|
||||
_outBuffer[0] = VL53L0X_REG_SYSRANGE_START;
|
||||
_outBuffer[1] = 0x01;
|
||||
I2CManager.write(_i2cAddress, _outBuffer, 2, &_rb);
|
||||
_nextState = STATE_CHECKSTATUS;
|
||||
break;
|
||||
case STATE_CHECKSTATUS:
|
||||
status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // try next time
|
||||
if (status != I2C_STATUS_OK) {
|
||||
DIAG(F("VL53L0X I2C:x%x Error:%d %S"), _i2cAddress, status, I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
_value = false;
|
||||
} else
|
||||
_nextState = 2;
|
||||
delayUntil(currentMicros + 95000); // wait for 95 ms before checking.
|
||||
_nextState = STATE_GETRESULTS;
|
||||
break;
|
||||
case STATE_GETRESULTS:
|
||||
// Ranging completed. Request results
|
||||
_outBuffer[0] = VL53L0X_REG_RESULT_RANGE_STATUS;
|
||||
I2CManager.read(_i2cAddress, _inBuffer, 12, _outBuffer, 1, &_rb);
|
||||
_nextState = 3;
|
||||
delayUntil(currentMicros + 5000); // Allow 5ms to get data
|
||||
_nextState = STATE_DECODERESULTS;
|
||||
break;
|
||||
case STATE_DECODERESULTS:
|
||||
// If I2C write still busy, return.
|
||||
status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // try again next time
|
||||
if (status == I2C_STATUS_OK) {
|
||||
if (!(_inBuffer[0] & 1)) return; // device still busy
|
||||
uint8_t deviceRangeStatus = ((_inBuffer[0] & 0x78) >> 3);
|
||||
if (deviceRangeStatus == 0x0b) {
|
||||
// Range status OK, so use data
|
||||
_ambient = makeuint16(_inBuffer[7], _inBuffer[6]);
|
||||
_signal = makeuint16(_inBuffer[9], _inBuffer[8]);
|
||||
_distance = makeuint16(_inBuffer[11], _inBuffer[10]);
|
||||
if (_distance <= _onThreshold)
|
||||
_value = true;
|
||||
else if (_distance > _offThreshold)
|
||||
_value = false;
|
||||
}
|
||||
}
|
||||
// Completed. Restart scan on next loop entry.
|
||||
_nextState = STATE_INITIATESCAN;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// For analogue read, first pin returns distance, second pin is signal strength, and third is ambient level.
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
switch (pin) {
|
||||
case 0:
|
||||
return _distance;
|
||||
case 1:
|
||||
return _signal;
|
||||
case 2:
|
||||
return _ambient;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// For digital read, return zero for all but first pin.
|
||||
int _read(VPIN vpin) override {
|
||||
if (vpin == _firstVpin)
|
||||
return _value;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("VL53L0X I2C:x%x Configured on Vpins:%d-%d On:%dmm Off:%dmm %S"),
|
||||
_i2cAddress, _firstVpin, _firstVpin+_nPins-1, _onThreshold, _offThreshold,
|
||||
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
inline uint16_t makeuint16(byte lsb, byte msb) {
|
||||
return (((uint16_t)msb) << 8) | lsb;
|
||||
}
|
||||
uint8_t write_reg(uint8_t reg, uint8_t data) {
|
||||
// write byte to register
|
||||
uint8_t outBuffer[2];
|
||||
outBuffer[0] = reg;
|
||||
outBuffer[1] = data;
|
||||
return I2CManager.write(_i2cAddress, outBuffer, 2);
|
||||
}
|
||||
uint8_t read_reg(uint8_t reg) {
|
||||
// read byte from register and return value
|
||||
I2CManager.read(_i2cAddress, _inBuffer, 1, ®, 1);
|
||||
return _inBuffer[0];
|
||||
}
|
||||
};
|
||||
|
||||
#endif // IO_VL53L0X_h
|
|
@ -74,6 +74,10 @@ void LCDDisplay::loop() {
|
|||
LCDDisplay *LCDDisplay::loop2(bool force) {
|
||||
if (!lcdDisplay) return NULL;
|
||||
|
||||
// If output device is busy, don't do anything on this loop
|
||||
// This avoids blocking while waiting for the device to complete.
|
||||
if (isBusy()) return NULL;
|
||||
|
||||
unsigned long currentMillis = millis();
|
||||
|
||||
if (!force) {
|
||||
|
|
17
LCDDisplay.h
17
LCDDisplay.h
|
@ -19,15 +19,12 @@
|
|||
#ifndef LCDDisplay_h
|
||||
#define LCDDisplay_h
|
||||
#include <Arduino.h>
|
||||
#include "defines.h"
|
||||
#include "DisplayInterface.h"
|
||||
|
||||
#if __has_include ( "config.h")
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
// Allow maximum message length to be overridden from config.h
|
||||
#if !defined(MAX_MSG_SIZE)
|
||||
#define MAX_MSG_SIZE 16
|
||||
#define MAX_MSG_SIZE 20
|
||||
#endif
|
||||
|
||||
// Set default scroll mode (overridable in config.h)
|
||||
|
@ -39,17 +36,18 @@
|
|||
|
||||
class LCDDisplay : public DisplayInterface {
|
||||
public:
|
||||
LCDDisplay() {};
|
||||
static const int MAX_LCD_ROWS = 8;
|
||||
static const int MAX_LCD_COLS = MAX_MSG_SIZE;
|
||||
static const long LCD_SCROLL_TIME = 3000; // 3 seconds
|
||||
|
||||
// Internally handled functions
|
||||
static void loop();
|
||||
LCDDisplay* loop2(bool force);
|
||||
void setRow(byte line);
|
||||
void clear();
|
||||
LCDDisplay* loop2(bool force) override;
|
||||
void setRow(byte line) override;
|
||||
void clear() override;
|
||||
|
||||
size_t write(uint8_t b);
|
||||
size_t write(uint8_t b) override;
|
||||
|
||||
protected:
|
||||
uint8_t lcdRows;
|
||||
|
@ -63,6 +61,7 @@ protected:
|
|||
virtual void clearNative() = 0;
|
||||
virtual void setRowNative(byte line) = 0;
|
||||
virtual size_t writeNative(uint8_t b) = 0;
|
||||
virtual bool isBusy() = 0;
|
||||
|
||||
unsigned long lastScrollTime = 0;
|
||||
int8_t hotRow = 0;
|
||||
|
|
33
LCD_LCD.h
33
LCD_LCD.h
|
@ -1,33 +0,0 @@
|
|||
/*
|
||||
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "LiquidCrystal_I2C.h"
|
||||
LiquidCrystal_I2C LCDDriver(LCD_DRIVER); // set the LCD address, cols, rows
|
||||
// DEVICE SPECIFIC LCDDisplay Implementation for LCD_DRIVER
|
||||
LCDDisplay::LCDDisplay() {
|
||||
lcdDisplay=this;
|
||||
LCDDriver.init();
|
||||
LCDDriver.backlight();
|
||||
interfake(LCD_DRIVER);
|
||||
clear();
|
||||
}
|
||||
void LCDDisplay::interfake(int p1, int p2, int p3) {(void)p1; (void)p2; lcdRows=p3; }
|
||||
void LCDDisplay::clearNative() {LCDDriver.clear();}
|
||||
void LCDDisplay::setRowNative(byte row) { LCDDriver.setCursor(0, row); }
|
||||
void LCDDisplay::writeNative(char b){ LCDDriver.write(b); }
|
||||
void LCDDisplay::displayNative() { LCDDriver.display(); }
|
27
LCD_NONE.h
27
LCD_NONE.h
|
@ -1,27 +0,0 @@
|
|||
/*
|
||||
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// dummy LCD shim to keep linker happy
|
||||
LCDDisplay::LCDDisplay() {}
|
||||
void LCDDisplay::interfake(int p1, int p2, int p3) {(void)p1; (void)p2; (void)p3;}
|
||||
void LCDDisplay::setRowNative(byte row) { (void)row;}
|
||||
void LCDDisplay::clearNative() {}
|
||||
void LCDDisplay::writeNative(char b){ (void)b;} //
|
||||
void LCDDisplay::displayNative(){}
|
||||
|
73
LCD_OLED.h
73
LCD_OLED.h
|
@ -1,73 +0,0 @@
|
|||
/*
|
||||
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// OLED Implementation of LCDDisplay class
|
||||
// Note: this file is optionally included by LCD_Implementation.h
|
||||
// It is NOT a .cpp file to prevent it being compiled and demanding libraries
|
||||
// even when not needed.
|
||||
|
||||
#include "I2CManager.h"
|
||||
#include "SSD1306Ascii.h"
|
||||
SSD1306AsciiWire LCDDriver;
|
||||
|
||||
// DEVICE SPECIFIC LCDDisplay Implementation for OLED
|
||||
|
||||
LCDDisplay::LCDDisplay() {
|
||||
// Scan for device on 0x3c and 0x3d.
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(400000L); // Set max supported I2C speed
|
||||
for (byte address = 0x3c; address <= 0x3d; address++) {
|
||||
if (I2CManager.exists(address)) {
|
||||
// Device found
|
||||
DIAG(F("OLED display found at 0x%x"), address);
|
||||
interfake(OLED_DRIVER, 0);
|
||||
const DevType *devType;
|
||||
if (lcdCols == 132)
|
||||
devType = &SH1106_128x64; // Actually 132x64 but treated as 128x64
|
||||
else if (lcdCols == 128 && lcdRows == 4)
|
||||
devType = &Adafruit128x32;
|
||||
else
|
||||
devType = &Adafruit128x64;
|
||||
LCDDriver.begin(devType, address);
|
||||
lcdDisplay = this;
|
||||
LCDDriver.setFont(System5x7); // Normal 1:1 pixel scale, 8 bits high
|
||||
clear();
|
||||
return;
|
||||
}
|
||||
}
|
||||
DIAG(F("OLED display not found"));
|
||||
}
|
||||
|
||||
void LCDDisplay::interfake(int p1, int p2, int p3) {
|
||||
lcdCols = p1;
|
||||
lcdRows = p2 / 8;
|
||||
(void)p3;
|
||||
}
|
||||
|
||||
void LCDDisplay::clearNative() { LCDDriver.clear(); }
|
||||
|
||||
void LCDDisplay::setRowNative(byte row) {
|
||||
// Positions text write to start of row 1..n
|
||||
int y = row;
|
||||
LCDDriver.setCursor(0, y);
|
||||
}
|
||||
|
||||
void LCDDisplay::writeNative(char b) { LCDDriver.write(b); }
|
||||
|
||||
void LCDDisplay::displayNative() {}
|
10
LCN.cpp
10
LCN.cpp
|
@ -48,18 +48,16 @@ void LCN::loop() {
|
|||
}
|
||||
else if (ch == 't' || ch == 'T') { // Turnout opcodes
|
||||
if (Diag::LCN) DIAG(F("LCN IN %d%c"),id,(char)ch);
|
||||
Turnout * tt = Turnout::get(id);
|
||||
if (!tt) Turnout::create(id, LCN_TURNOUT_ADDRESS, 0);
|
||||
if (ch == 't') tt->data.tStatus |= STATUS_ACTIVE;
|
||||
else tt->data.tStatus &= ~STATUS_ACTIVE;
|
||||
if (!Turnout::exists(id)) LCNTurnout::create(id);
|
||||
Turnout::setClosedStateOnly(id,ch=='t');
|
||||
Turnout::turnoutlistHash++; // signals ED update of turnout data
|
||||
id = 0;
|
||||
}
|
||||
else if (ch == 'S' || ch == 's') {
|
||||
if (Diag::LCN) DIAG(F("LCN IN %d%c"),id,(char)ch);
|
||||
Sensor * ss = Sensor::get(id);
|
||||
if (!ss) ss = Sensor::create(id, 255,0); // impossible pin
|
||||
ss->active = ch == 'S';
|
||||
if (!ss) ss = Sensor::create(id, VPIN_NONE, 0); // impossible pin
|
||||
ss->setState(ch == 'S');
|
||||
id = 0;
|
||||
}
|
||||
else id = 0; // ignore any other garbage from LCN
|
||||
|
|
|
@ -119,7 +119,7 @@ void LiquidCrystal_I2C::clearNative() {
|
|||
|
||||
void LiquidCrystal_I2C::setRowNative(byte row) {
|
||||
int row_offsets[] = {0x00, 0x40, 0x14, 0x54};
|
||||
if (row > lcdRows) {
|
||||
if (row >= lcdRows) {
|
||||
row = lcdRows - 1; // we count rows starting w/0
|
||||
}
|
||||
command(LCD_SETDDRAMADDR | (row_offsets[row]));
|
||||
|
@ -196,7 +196,7 @@ void LiquidCrystal_I2C::send(uint8_t value, uint8_t mode) {
|
|||
outputBuffer[len++] = highnib;
|
||||
outputBuffer[len++] = lownib|En;
|
||||
outputBuffer[len++] = lownib;
|
||||
I2CManager.write(_Addr, outputBuffer, len);
|
||||
I2CManager.write(_Addr, outputBuffer, len); // Write command synchronously
|
||||
}
|
||||
|
||||
// write 4 data bits to the HD44780 LCD controller.
|
||||
|
@ -208,12 +208,12 @@ void LiquidCrystal_I2C::write4bits(uint8_t value) {
|
|||
uint8_t len = 0;
|
||||
outputBuffer[len++] = _data|En;
|
||||
outputBuffer[len++] = _data;
|
||||
I2CManager.write(_Addr, outputBuffer, len);
|
||||
I2CManager.write(_Addr, outputBuffer, len); // Write command synchronously
|
||||
}
|
||||
|
||||
// write a byte to the PCF8574 I2C interface. We don't need to set
|
||||
// the enable pin for this.
|
||||
void LiquidCrystal_I2C::expanderWrite(uint8_t value) {
|
||||
outputBuffer[0] = value | _backlightval;
|
||||
I2CManager.write(_Addr, outputBuffer, 1);
|
||||
I2CManager.write(_Addr, outputBuffer, 1); // Write command synchronously
|
||||
}
|
|
@ -66,19 +66,17 @@ class LiquidCrystal_I2C : public LCDDisplay {
|
|||
public:
|
||||
LiquidCrystal_I2C(uint8_t lcd_Addr,uint8_t lcd_cols,uint8_t lcd_rows);
|
||||
void begin();
|
||||
void clearNative();
|
||||
void setRowNative(byte line);
|
||||
size_t writeNative(uint8_t c);
|
||||
void clearNative() override;
|
||||
void setRowNative(byte line) override;
|
||||
size_t writeNative(uint8_t c) override;
|
||||
|
||||
void display();
|
||||
void noBacklight();
|
||||
void backlight();
|
||||
|
||||
void command(uint8_t);
|
||||
void init();
|
||||
|
||||
private:
|
||||
void init_priv();
|
||||
void send(uint8_t, uint8_t);
|
||||
void write4bits(uint8_t);
|
||||
void expanderWrite(uint8_t);
|
||||
|
@ -89,6 +87,8 @@ private:
|
|||
uint8_t _backlightval;
|
||||
|
||||
uint8_t outputBuffer[4];
|
||||
// I/O is synchronous, so if this is called we're not busy!
|
||||
bool isBusy() override { return false; }
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -82,5 +82,9 @@
|
|||
#define IBT_2_WITH_ARDUINO F("IBT_2_WITH_ARDUINO_SHIELD"), \
|
||||
new MotorDriver(4, 5, 6, UNUSED_PIN, A5, 41.54, 5000, UNUSED_PIN), \
|
||||
new MotorDriver(11, 13, UNUSED_PIN, UNUSED_PIN, A1, 2.99, 2000, UNUSED_PIN)
|
||||
// YFROBOT Motor Shield (V3.1)
|
||||
#define YFROBOT_MOTOR_SHIELD F("YFROBOT_MOTOR_SHIELD"), \
|
||||
new MotorDriver(5, 4, UNUSED_PIN, UNUSED_PIN, A0, 2.99, 2000, UNUSED_PIN), \
|
||||
new MotorDriver(6, 7, UNUSED_PIN, UNUSED_PIN, A1, 2.99, 2000, UNUSED_PIN)
|
||||
|
||||
#endif
|
||||
|
|
102
Outputs.cpp
102
Outputs.cpp
|
@ -84,28 +84,43 @@ the state of any outputs being monitored or controlled by a separate interface o
|
|||
#include "Outputs.h"
|
||||
#include "EEStore.h"
|
||||
#include "StringFormatter.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to print all output states to stream in the form "<Y id state>"
|
||||
|
||||
// print all output states to stream
|
||||
void Output::printAll(Print *stream){
|
||||
for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput)
|
||||
StringFormatter::send(stream, F("<Y %d %d>\n"), tt->data.id, tt->data.oStatus);
|
||||
StringFormatter::send(stream, F("<Y %d %d>\n"), tt->data.id, tt->data.active);
|
||||
} // Output::printAll
|
||||
|
||||
void Output::activate(int s){
|
||||
data.oStatus=(s>0); // if s>0, set status to active, else inactive
|
||||
digitalWrite(data.pin,data.oStatus ^ bitRead(data.iFlag,0)); // set state of output pin to HIGH or LOW depending on whether bit zero of iFlag is set to 0 (ACTIVE=HIGH) or 1 (ACTIVE=LOW)
|
||||
if(num>0)
|
||||
EEPROM.put(num,data.oStatus);
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Object method to activate / deactivate the Output state.
|
||||
|
||||
void Output::activate(uint16_t s){
|
||||
s = (s>0); // Make 0 or 1
|
||||
data.active = s; // if s>0, set status to active, else inactive
|
||||
// set state of output pin to HIGH or LOW depending on whether bit zero of iFlag is set to 0 (ACTIVE=HIGH) or 1 (ACTIVE=LOW)
|
||||
IODevice::write(data.pin, s ^ data.invert);
|
||||
|
||||
// Update EEPROM if output has been stored.
|
||||
if(EEStore::eeStore->data.nOutputs > 0 && num > 0)
|
||||
EEPROM.put(num, data.oStatus);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to locate Output object specified by ID 'n'.
|
||||
// Return NULL if not found.
|
||||
|
||||
Output* Output::get(uint16_t n){
|
||||
Output *tt;
|
||||
for(tt=firstOutput;tt!=NULL && tt->data.id!=n;tt=tt->nextOutput);
|
||||
return(tt);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to delete Output object specified by ID 'n'.
|
||||
// Return false if not found.
|
||||
|
||||
bool Output::remove(uint16_t n){
|
||||
Output *tt,*pp=NULL;
|
||||
|
@ -125,52 +140,26 @@ bool Output::remove(uint16_t n){
|
|||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to load configuration and state of all Outputs from EEPROM
|
||||
|
||||
void Output::load(){
|
||||
struct BrokenOutputData bdata;
|
||||
struct OutputData data;
|
||||
Output *tt;
|
||||
bool isBroken=1;
|
||||
|
||||
// This is a scary kluge. As we have two formats in EEPROM due to an
|
||||
// earlier bug, we don't know which we encounter now. So we guess
|
||||
// that if in all entries this byte has value of 7 or lower this is
|
||||
// an iFlag and thus the broken format. Otherwise it would be a pin
|
||||
// id. If someone uses only pins 0 to 7 of their arduino, they
|
||||
// loose. This is (if you look at an arduino) however unlikely.
|
||||
|
||||
for(uint16_t i=0;i<EEStore::eeStore->data.nOutputs;i++){
|
||||
EEPROM.get(EEStore::pointer()+ i*sizeof(struct BrokenOutputData),bdata);
|
||||
if (bdata.iFlag > 7) { // it's a pin and not an iFlag!
|
||||
isBroken=0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if ( isBroken ) {
|
||||
for(uint16_t i=0;i<EEStore::eeStore->data.nOutputs;i++){
|
||||
EEPROM.get(EEStore::pointer(),bdata);
|
||||
tt=create(bdata.id,bdata.pin,bdata.iFlag);
|
||||
tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):bdata.oStatus; // restore status to EEPROM value is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
|
||||
digitalWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0));
|
||||
pinMode(tt->data.pin,OUTPUT);
|
||||
tt->num=EEStore::pointer();
|
||||
EEStore::advance(sizeof(struct BrokenOutputData));
|
||||
}
|
||||
} else {
|
||||
struct OutputData data;
|
||||
EEPROM.get(EEStore::pointer(),data);
|
||||
// Create new object, set current state to default or to saved state from eeprom.
|
||||
tt=create(data.id, data.pin, data.flags);
|
||||
uint8_t state = data.setDefault ? data.defaultValue : data.active;
|
||||
tt->activate(state);
|
||||
|
||||
for(uint16_t i=0;i<EEStore::eeStore->data.nOutputs;i++){
|
||||
EEPROM.get(EEStore::pointer(),data);
|
||||
tt=create(data.id,data.pin,data.iFlag);
|
||||
tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):data.oStatus; // restore status to EEPROM value is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
|
||||
digitalWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0));
|
||||
pinMode(tt->data.pin,OUTPUT);
|
||||
tt->num=EEStore::pointer();
|
||||
EEStore::advance(sizeof(struct OutputData));
|
||||
}
|
||||
if (tt) tt->num=EEStore::pointer() + offsetof(OutputData, oStatus); // Save pointer to flags within EEPROM
|
||||
EEStore::advance(sizeof(tt->data));
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to store configuration and state of all Outputs to EEPROM
|
||||
|
||||
void Output::store(){
|
||||
Output *tt;
|
||||
|
@ -179,19 +168,25 @@ void Output::store(){
|
|||
EEStore::eeStore->data.nOutputs=0;
|
||||
|
||||
while(tt!=NULL){
|
||||
tt->num=EEStore::pointer();
|
||||
EEPROM.put(EEStore::pointer(),tt->data);
|
||||
tt->num=EEStore::pointer() + offsetof(OutputData, oStatus); // Save pointer to flags within EEPROM
|
||||
EEStore::advance(sizeof(tt->data));
|
||||
tt=tt->nextOutput;
|
||||
EEStore::eeStore->data.nOutputs++;
|
||||
}
|
||||
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Output *Output::create(uint16_t id, uint8_t pin, uint8_t iFlag, uint8_t v){
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static function to create an Output object
|
||||
// The obscurely named parameter 'v' is 0 if called from the load() function
|
||||
// and 1 if called from the <Z> command processing.
|
||||
|
||||
Output *Output::create(uint16_t id, VPIN pin, int iFlag, int v){
|
||||
Output *tt;
|
||||
|
||||
if (pin > VPIN_MAX) return NULL;
|
||||
|
||||
if(firstOutput==NULL){
|
||||
firstOutput=(Output *)calloc(1,sizeof(Output));
|
||||
tt=firstOutput;
|
||||
|
@ -204,20 +199,21 @@ Output *Output::create(uint16_t id, uint8_t pin, uint8_t iFlag, uint8_t v){
|
|||
}
|
||||
|
||||
if(tt==NULL) return tt;
|
||||
|
||||
tt->num = 0; // make sure new object doesn't get written to EEPROM until store() command
|
||||
tt->data.id=id;
|
||||
tt->data.pin=pin;
|
||||
tt->data.iFlag=iFlag;
|
||||
tt->data.oStatus=0;
|
||||
tt->data.flags=iFlag;
|
||||
|
||||
if(v==1){
|
||||
tt->data.oStatus=bitRead(tt->data.iFlag,1)?bitRead(tt->data.iFlag,2):0; // sets status to 0 (INACTIVE) is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
|
||||
digitalWrite(tt->data.pin,tt->data.oStatus ^ bitRead(tt->data.iFlag,0));
|
||||
pinMode(tt->data.pin,OUTPUT);
|
||||
// sets status to 0 (INACTIVE) is bit 1 of iFlag=0, otherwise set to value of bit 2 of iFlag
|
||||
if (tt->data.setDefault)
|
||||
tt->data.active = tt->data.defaultValue;
|
||||
else
|
||||
tt->data.active = 0;
|
||||
}
|
||||
IODevice::write(tt->data.pin, tt->data.active ^ tt->data.invert);
|
||||
|
||||
return(tt);
|
||||
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
|
34
Outputs.h
34
Outputs.h
|
@ -20,37 +20,43 @@
|
|||
#define Outputs_h
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "IODevice.h"
|
||||
|
||||
struct OutputData {
|
||||
uint8_t oStatus;
|
||||
union {
|
||||
uint8_t oStatus; // (Bit 0=Invert, Bit 1=Set state to default, Bit 2=default state, Bit 7=active)
|
||||
struct {
|
||||
unsigned int flags : 7; // Bit 0=Invert, Bit 1=Set state to default, Bit 2=default state
|
||||
unsigned int : 1;
|
||||
};
|
||||
struct {
|
||||
unsigned int invert : 1;
|
||||
unsigned int setDefault : 1;
|
||||
unsigned int defaultValue : 1;
|
||||
unsigned int: 4;
|
||||
unsigned int active : 1;
|
||||
};
|
||||
};
|
||||
uint16_t id;
|
||||
uint8_t pin;
|
||||
uint8_t iFlag;
|
||||
VPIN pin;
|
||||
};
|
||||
|
||||
struct BrokenOutputData {
|
||||
uint8_t oStatus;
|
||||
uint8_t id;
|
||||
uint8_t pin;
|
||||
uint8_t iFlag;
|
||||
};
|
||||
|
||||
class Output{
|
||||
|
||||
public:
|
||||
void activate(int s);
|
||||
void activate(uint16_t s);
|
||||
bool isActive();
|
||||
static Output* get(uint16_t);
|
||||
static bool remove(uint16_t);
|
||||
static void load();
|
||||
static void store();
|
||||
static Output *create(uint16_t, uint8_t, uint8_t, uint8_t=0);
|
||||
static Output *create(uint16_t, VPIN, int, int=0);
|
||||
static Output *firstOutput;
|
||||
struct OutputData data;
|
||||
Output *nextOutput;
|
||||
static void printAll(Print *);
|
||||
|
||||
private:
|
||||
int num; // EEPROM pointer (Chris has no idea what this is all about!)
|
||||
uint16_t num; // EEPROM address of oStatus in OutputData struct, or zero if not stored.
|
||||
|
||||
}; // Output
|
||||
|
||||
|
|
|
@ -1,109 +0,0 @@
|
|||
/*
|
||||
* (c) 2020 Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* @file PWMServoDriver.cpp
|
||||
*
|
||||
* @mainpage Adafruit 16-channel PWM & Servo driver, based on Adafruit_PWMServoDriver
|
||||
*
|
||||
* @section intro_sec Introduction
|
||||
*
|
||||
* This is a library for the 16-channel PWM & Servo driver.
|
||||
*
|
||||
* Designed specifically to work with the Adafruit PWM & Servo driver.
|
||||
* This class contains a very small subset of the Adafruit version which
|
||||
* is relevant to driving simple servos at 50Hz through a number of chained
|
||||
* servo driver boards (ie servos 0-15 on board 0x40, 16-31 on board 0x41 etc.)
|
||||
*
|
||||
* @section author Author
|
||||
* Chris Harlow (TPL)
|
||||
*
|
||||
*/
|
||||
#include <Arduino.h>
|
||||
#include "PWMServoDriver.h"
|
||||
#include "DIAG.h"
|
||||
#include "I2CManager.h"
|
||||
|
||||
|
||||
// REGISTER ADDRESSES
|
||||
const byte PCA9685_MODE1=0x00; // Mode Register
|
||||
const byte PCA9685_FIRST_SERVO=0x06; /** low byte first servo register ON*/
|
||||
const byte PCA9685_PRESCALE=0xFE; /** Prescale register for PWM output frequency */
|
||||
// MODE1 bits
|
||||
const byte MODE1_SLEEP=0x10; /**< Low power mode. Oscillator off */
|
||||
const byte MODE1_AI=0x20; /**< Auto-Increment enabled */
|
||||
const byte MODE1_RESTART=0x80; /**< Restart enabled */
|
||||
|
||||
const byte PCA9685_I2C_ADDRESS=0x40; /** First PCA9685 I2C Slave Address */
|
||||
const float FREQUENCY_OSCILLATOR=25000000.0; /** Accurate enough for our purposes */
|
||||
const uint8_t PRESCALE_50HZ = (uint8_t)(((FREQUENCY_OSCILLATOR / (50.0 * 4096.0)) + 0.5) - 1);
|
||||
const uint32_t MAX_I2C_SPEED = 1000000L; // PCA9685 rated up to 1MHz I2C clock speed
|
||||
|
||||
/*!
|
||||
* @brief Sets the PWM frequency for a chip to 50Hz for servos
|
||||
*/
|
||||
|
||||
byte PWMServoDriver::setupFlags=0; // boards that have been initialised
|
||||
byte PWMServoDriver::failFlags=0; // boards that have faild initialisation
|
||||
|
||||
bool PWMServoDriver::setup(int board) {
|
||||
if (board>3 || (failFlags & (1<<board))) return false;
|
||||
if (setupFlags & (1<<board)) return true;
|
||||
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(MAX_I2C_SPEED);
|
||||
|
||||
uint8_t i2caddr=PCA9685_I2C_ADDRESS + board;
|
||||
|
||||
// Test if device is available
|
||||
byte error = I2CManager.checkAddress(i2caddr);
|
||||
if (error) {
|
||||
DIAG(F("I2C Servo device 0x%x Not Found %d"),i2caddr, error);
|
||||
failFlags|=1<<board;
|
||||
return false;
|
||||
}
|
||||
|
||||
//DIAG(F("PWMServoDriver::setup %x prescale=%d"),i2caddr,PRESCALE_50HZ);
|
||||
writeRegister(i2caddr,PCA9685_MODE1, MODE1_SLEEP | MODE1_AI);
|
||||
writeRegister(i2caddr,PCA9685_PRESCALE, PRESCALE_50HZ);
|
||||
writeRegister(i2caddr,PCA9685_MODE1,MODE1_AI);
|
||||
writeRegister(i2caddr,PCA9685_MODE1, MODE1_RESTART | MODE1_AI);
|
||||
setupFlags|=1<<board;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Sets the PWM output to a servo
|
||||
*/
|
||||
void PWMServoDriver::setServo(byte servoNum, uint16_t value) {
|
||||
int board=servoNum/16;
|
||||
int pin=servoNum%16;
|
||||
|
||||
if (setup(board)) {
|
||||
DIAG(F("SetServo %d %d"),servoNum,value);
|
||||
uint8_t buffer[] = {(uint8_t)(PCA9685_FIRST_SERVO + 4 * pin), // 4 registers per pin
|
||||
0, 0, (uint8_t)(value & 0xff), (uint8_t)(value >> 8)};
|
||||
if (value == 4095) buffer[2] = 0x10; // Full on
|
||||
byte error=I2CManager.write(PCA9685_I2C_ADDRESS + board, buffer, sizeof(buffer));
|
||||
if (error!=0) DIAG(F("SetServo error %d"),error);
|
||||
}
|
||||
}
|
||||
|
||||
void PWMServoDriver::writeRegister(uint8_t i2caddr,uint8_t hardwareRegister, uint8_t d) {
|
||||
I2CManager.write(i2caddr, 2, hardwareRegister, d);
|
||||
}
|
|
@ -1,39 +0,0 @@
|
|||
/*
|
||||
* (c) 2020 Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* @file PWMServoDriver.h
|
||||
*
|
||||
* Used to set servo positions on an I2C bus with 1 or more PCA96685 boards.
|
||||
*/
|
||||
#ifndef PWMServoDriver_H
|
||||
#define PWMServoDriver_H
|
||||
|
||||
|
||||
class PWMServoDriver {
|
||||
public:
|
||||
static void setServo(byte servoNum, uint16_t pos);
|
||||
|
||||
private:
|
||||
static byte setupFlags;
|
||||
static byte failFlags;
|
||||
static bool setup(int board);
|
||||
static void writeRegister(uint8_t i2caddr,uint8_t hardwareRegister, uint8_t d);
|
||||
};
|
||||
|
||||
#endif
|
23
RMFT.h
Normal file
23
RMFT.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
#ifndef RMFT_H
|
||||
#define RMFT_H
|
||||
|
||||
#if defined(RMFT_ACTIVE)
|
||||
#include "RMFT2.h"
|
||||
|
||||
class RMFT {
|
||||
public:
|
||||
static void inline begin() {RMFT2::begin();}
|
||||
static void inline loop() {RMFT2::loop();}
|
||||
};
|
||||
|
||||
#include "RMFTMacros.h"
|
||||
|
||||
#else
|
||||
// Dummy RMFT
|
||||
class RMFT {
|
||||
public:
|
||||
static void inline begin() {}
|
||||
static void inline loop() {}
|
||||
};
|
||||
#endif
|
||||
#endif
|
769
RMFT2.cpp
Normal file
769
RMFT2.cpp
Normal file
|
@ -0,0 +1,769 @@
|
|||
/*
|
||||
* © 2020,2021 Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <Arduino.h>
|
||||
#include "RMFT2.h"
|
||||
#include "DCC.h"
|
||||
#include "DCCWaveform.h"
|
||||
#include "DIAG.h"
|
||||
#include "WiThrottle.h"
|
||||
#include "DCCEXParser.h"
|
||||
#include "Turnouts.h"
|
||||
|
||||
|
||||
// Command parsing keywords
|
||||
const int16_t HASH_KEYWORD_EXRAIL=15435;
|
||||
const int16_t HASH_KEYWORD_ON = 2657;
|
||||
const int16_t HASH_KEYWORD_START=23232;
|
||||
const int16_t HASH_KEYWORD_RESERVE=11392;
|
||||
const int16_t HASH_KEYWORD_FREE=-23052;
|
||||
const int16_t HASH_KEYWORD_LATCH=1618;
|
||||
const int16_t HASH_KEYWORD_UNLATCH=1353;
|
||||
const int16_t HASH_KEYWORD_PAUSE=-4142;
|
||||
const int16_t HASH_KEYWORD_RESUME=27609;
|
||||
const int16_t HASH_KEYWORD_KILL=5218;
|
||||
const int16_t HASH_KEYWORD_ROUTES=-3702;
|
||||
|
||||
// One instance of RMFT clas is used for each "thread" in the automation.
|
||||
// Each thread manages a loco on a journey through the layout, and/or may manage a scenery automation.
|
||||
// The thrrads exist in a ring, each time through loop() the next thread in the ring is serviced.
|
||||
|
||||
// Statics
|
||||
const int16_t LOCO_ID_WAITING=-99; // waiting for loco id from prog track
|
||||
int16_t RMFT2::progtrackLocoId; // used for callback when detecting a loco on prograck
|
||||
bool RMFT2::diag=false; // <D EXRAIL ON>
|
||||
RMFT2 * RMFT2::loopTask=NULL; // loopTask contains the address of ONE of the tasks in a ring.
|
||||
RMFT2 * RMFT2::pausingTask=NULL; // Task causing a PAUSE.
|
||||
// when pausingTask is set, that is the ONLY task that gets any service,
|
||||
// and all others will have their locos stopped, then resumed after the pausing task resumes.
|
||||
byte RMFT2::flags[MAX_FLAGS];
|
||||
|
||||
#define GET_OPCODE GETFLASH(RMFT2::RouteCode+progCounter)
|
||||
#define GET_OPERAND(n) GETFLASHW(RMFT2::RouteCode+progCounter+1+(n*3))
|
||||
#define SKIPOP progCounter+=3
|
||||
|
||||
/* static */ void RMFT2::begin() {
|
||||
DCCEXParser::setRMFTFilter(RMFT2::ComandFilter);
|
||||
for (int f=0;f<MAX_FLAGS;f++) flags[f]=0;
|
||||
int progCounter;
|
||||
// first pass startup, define any turnouts or servos, set signals red and count size.
|
||||
for (progCounter=0;; SKIPOP){
|
||||
byte opcode=GET_OPCODE;
|
||||
if (opcode==OPCODE_ENDEXRAIL) break;
|
||||
|
||||
switch (opcode) {
|
||||
case OPCODE_AT:
|
||||
case OPCODE_AFTER:
|
||||
case OPCODE_IF:
|
||||
case OPCODE_IFNOT:
|
||||
int16_t pin = (int16_t)GET_OPERAND(0);
|
||||
if (pin<0) pin = -pin;
|
||||
IODevice::configureInput((VPIN)pin,true);
|
||||
}
|
||||
|
||||
if (opcode==OPCODE_SIGNAL) {
|
||||
VPIN red=GET_OPERAND(0);
|
||||
VPIN amber=GET_OPERAND(1);
|
||||
VPIN green=GET_OPERAND(2);
|
||||
IODevice::write(red,true);
|
||||
if (amber) IODevice::write(amber,false);
|
||||
IODevice::write(green,false);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (opcode==OPCODE_TURNOUT) {
|
||||
VPIN id=GET_OPERAND(0);
|
||||
int addr=GET_OPERAND(1);
|
||||
byte subAddr=GET_OPERAND(2);
|
||||
DCCTurnout::create(id,addr,subAddr);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (opcode==OPCODE_SERVOTURNOUT) {
|
||||
int16_t id=GET_OPERAND(0);
|
||||
VPIN pin=GET_OPERAND(1);
|
||||
int activeAngle=GET_OPERAND(2);
|
||||
int inactiveAngle=GET_OPERAND(3);
|
||||
int profile=GET_OPERAND(4);
|
||||
ServoTurnout::create(id,pin,activeAngle,inactiveAngle,profile);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (opcode==OPCODE_PINTURNOUT) {
|
||||
int16_t id=GET_OPERAND(0);
|
||||
VPIN pin=GET_OPERAND(1);
|
||||
VpinTurnout::create(id,pin);
|
||||
continue;
|
||||
}
|
||||
// other opcodes are not needed on this pass
|
||||
}
|
||||
SKIPOP; // include ENDROUTES opcode
|
||||
DIAG(F("EXRAIL %db, MAX_FLAGS=%d"), progCounter,MAX_FLAGS);
|
||||
new RMFT2(0); // add the startup route
|
||||
}
|
||||
|
||||
// This filter intercepts <> commands to do the following:
|
||||
// - Implement RMFT specific commands/diagnostics
|
||||
// - Reject/modify JMRI commands that would interfere with RMFT processing
|
||||
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
|
||||
(void)stream; // avoid compiler warning if we don't access this parameter
|
||||
bool reject=false;
|
||||
switch(opcode) {
|
||||
|
||||
case 'D':
|
||||
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
|
||||
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
|
||||
opcode=0;
|
||||
}
|
||||
break;
|
||||
|
||||
case '/': // New EXRAIL command
|
||||
reject=!parseSlash(stream,paramCount,p);
|
||||
opcode=0;
|
||||
break;
|
||||
|
||||
default: // other commands pass through
|
||||
break;
|
||||
}
|
||||
if (reject) {
|
||||
opcode=0;
|
||||
StringFormatter::send(stream,F("<X>"));
|
||||
}
|
||||
}
|
||||
|
||||
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
|
||||
|
||||
if (paramCount==0) { // STATUS
|
||||
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
|
||||
(int)(task->taskId),task->progCounter,task->loco,
|
||||
task->invert?'I':' ',
|
||||
task->speedo,
|
||||
task->forward?'F':'R'
|
||||
);
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
// Now stream the flags
|
||||
for (int id=0;id<MAX_FLAGS; id++) {
|
||||
byte flag=flags[id];
|
||||
if (flag & ~TASK_FLAG) { // not interested in TASK_FLAG only. Already shown above
|
||||
StringFormatter::send(stream,F("\nflags[%d} "),id);
|
||||
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
|
||||
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
|
||||
}
|
||||
}
|
||||
StringFormatter::send(stream,F(" *>\n"));
|
||||
return true;
|
||||
}
|
||||
switch (p[0]) {
|
||||
case HASH_KEYWORD_PAUSE: // </ PAUSE>
|
||||
if (paramCount!=1) return false;
|
||||
DCC::setThrottle(0,1,true); // pause all locos on the track
|
||||
pausingTask=(RMFT2 *)1; // Impossible task address
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_RESUME: // </ RESUME>
|
||||
if (paramCount!=1) return false;
|
||||
pausingTask=NULL;
|
||||
{
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if (task->loco) task->driveLoco(task->speedo);
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
||||
|
||||
case HASH_KEYWORD_START: // </ START [cab] route >
|
||||
if (paramCount<2 || paramCount>3) return false;
|
||||
{
|
||||
int route=(paramCount==2) ? p[1] : p[2];
|
||||
uint16_t cab=(paramCount==2)? 0 : p[1];
|
||||
int pc=locateRouteStart(route);
|
||||
if (pc<0) return false;
|
||||
RMFT2* task=new RMFT2(pc);
|
||||
task->loco=cab;
|
||||
}
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_ROUTES: // </ ROUTES > JMRI withrottle support
|
||||
if (paramCount>1) return false;
|
||||
StringFormatter::send(stream,F("</ROUTES "));
|
||||
emitWithrottleRouteList(stream);
|
||||
StringFormatter::send(stream,F(">"));
|
||||
return true;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// all other / commands take 1 parameter 0 to MAX_FLAGS-1
|
||||
|
||||
if (paramCount!=2 || p[1]<0 || p[1]>=MAX_FLAGS) return false;
|
||||
|
||||
switch (p[0]) {
|
||||
case HASH_KEYWORD_KILL: // Kill taskid
|
||||
{
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if (task->taskId==p[1]) {
|
||||
delete task;
|
||||
return true;
|
||||
}
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
case HASH_KEYWORD_RESERVE: // force reserve a section
|
||||
setFlag(p[1],SECTION_FLAG);
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_FREE: // force free a section
|
||||
setFlag(p[1],0,SECTION_FLAG);
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_LATCH:
|
||||
setFlag(p[1], LATCH_FLAG);
|
||||
return true;
|
||||
|
||||
case HASH_KEYWORD_UNLATCH:
|
||||
setFlag(p[1], 0, LATCH_FLAG);
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// This emits Routes and Automations to Withrottle
|
||||
// Automations are given a state to set the button to "handoff" which implies
|
||||
// handing over the loco to the automation.
|
||||
// Routes are given "Set" buttons and do not cause the loco to be handed over.
|
||||
void RMFT2::emitWithrottleRouteList(Print* stream) {
|
||||
StringFormatter::send(stream,F("PRT]\\[Routes}|{Route]\\[Set}|{2]\\[Handoff}|{4\nPRL"));
|
||||
emitWithrottleDescriptions(stream);
|
||||
StringFormatter::send(stream,F("\n"));
|
||||
}
|
||||
|
||||
|
||||
RMFT2::RMFT2(int progCtr) {
|
||||
progCounter=progCtr;
|
||||
|
||||
// get an unused task id from the flags table
|
||||
taskId=255; // in case of overflow
|
||||
for (int f=0;f<MAX_FLAGS;f++) {
|
||||
if (!getFlag(f,TASK_FLAG)) {
|
||||
taskId=f;
|
||||
setFlag(f, TASK_FLAG);
|
||||
break;
|
||||
}
|
||||
}
|
||||
delayTime=0;
|
||||
loco=0;
|
||||
speedo=0;
|
||||
forward=true;
|
||||
invert=false;
|
||||
stackDepth=0;
|
||||
onTurnoutId=0; // Not handling an ONTHROW/ONCLOSE
|
||||
|
||||
// chain into ring of RMFTs
|
||||
if (loopTask==NULL) {
|
||||
loopTask=this;
|
||||
next=this;
|
||||
}
|
||||
else {
|
||||
next=loopTask->next;
|
||||
loopTask->next=this;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
RMFT2::~RMFT2() {
|
||||
driveLoco(1); // ESTOP my loco if any
|
||||
setFlag(taskId,0,TASK_FLAG); // we are no longer using this id
|
||||
if (next==this) loopTask=NULL;
|
||||
else for (RMFT2* ring=next;;ring=ring->next) if (ring->next == this) {
|
||||
ring->next=next;
|
||||
loopTask=next;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void RMFT2::createNewTask(int route, uint16_t cab) {
|
||||
int pc=locateRouteStart(route);
|
||||
if (pc<0) return;
|
||||
RMFT2* task=new RMFT2(pc);
|
||||
task->loco=cab;
|
||||
}
|
||||
|
||||
|
||||
int RMFT2::locateRouteStart(int16_t _route) {
|
||||
if (_route==0) return 0; // Route 0 is always start of ROUTES for default startup
|
||||
for (int progCounter=0;;SKIPOP) {
|
||||
byte opcode=GET_OPCODE;
|
||||
if (opcode==OPCODE_ENDEXRAIL) {
|
||||
DIAG(F("RMFT2 sequence %d not found"), _route);
|
||||
return -1;
|
||||
}
|
||||
if ((opcode==OPCODE_ROUTE || opcode==OPCODE_AUTOMATION || opcode==OPCODE_SEQUENCE)
|
||||
&& _route==(int)GET_OPERAND(0)) return progCounter;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
void RMFT2::driveLoco(byte speed) {
|
||||
if (loco<=0) return; // Prevent broadcast!
|
||||
if (diag) DIAG(F("EXRAIL drive %d %d %d"),loco,speed,forward^invert);
|
||||
if (DCCWaveform::mainTrack.getPowerMode()==POWERMODE::OFF) {
|
||||
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
|
||||
Serial.println(F("<p1>")); // tell JMRI
|
||||
}
|
||||
DCC::setThrottle(loco,speed, forward^invert);
|
||||
speedo=speed;
|
||||
}
|
||||
|
||||
bool RMFT2::readSensor(uint16_t sensorId) {
|
||||
// Exrail operands are unsigned but we need the signed version as inserted by the macros.
|
||||
int16_t sId=(int16_t) sensorId;
|
||||
|
||||
VPIN vpin=abs(sId);
|
||||
if (getFlag(vpin,LATCH_FLAG)) return true; // latched on
|
||||
|
||||
// negative sensorIds invert the logic (e.g. for a break-beam sensor which goes OFF when detecting)
|
||||
bool s= IODevice::read(vpin) ^ (sId<0);
|
||||
if (s && diag) DIAG(F("EXRAIL Sensor %d hit"),sId);
|
||||
return s;
|
||||
}
|
||||
|
||||
bool RMFT2::skipIfBlock() {
|
||||
// returns false if killed
|
||||
short nest = 1;
|
||||
while (nest > 0) {
|
||||
SKIPOP;
|
||||
byte opcode = GET_OPCODE;
|
||||
switch(opcode) {
|
||||
case OPCODE_ENDEXRAIL:
|
||||
kill(F("missing ENDIF"), nest);
|
||||
return false;
|
||||
case OPCODE_IF:
|
||||
case OPCODE_IFNOT:
|
||||
case OPCODE_IFRANDOM:
|
||||
case OPCODE_IFRESERVE:
|
||||
nest++;
|
||||
break;
|
||||
case OPCODE_ENDIF:
|
||||
nest--;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* static */ void RMFT2::readLocoCallback(int16_t cv) {
|
||||
progtrackLocoId=cv;
|
||||
}
|
||||
|
||||
void RMFT2::loop() {
|
||||
|
||||
// Round Robin call to a RMFT task each time
|
||||
if (loopTask==NULL) return;
|
||||
|
||||
loopTask=loopTask->next;
|
||||
|
||||
if (pausingTask==NULL || pausingTask==loopTask) loopTask->loop2();
|
||||
}
|
||||
|
||||
|
||||
void RMFT2::loop2() {
|
||||
if (delayTime!=0 && millis()-delayStart < delayTime) return;
|
||||
|
||||
byte opcode = GET_OPCODE;
|
||||
int16_t operand = GET_OPERAND(0);
|
||||
// if (diag) DIAG(F("RMFT2 %d %d"),opcode,operand);
|
||||
// Attention: Returning from this switch leaves the program counter unchanged.
|
||||
// This is used for unfinished waits for timers or sensors.
|
||||
// Breaking from this switch will step to the next step in the route.
|
||||
switch ((OPCODE)opcode) {
|
||||
|
||||
case OPCODE_THROW:
|
||||
Turnout::setClosed(operand, false);
|
||||
break;
|
||||
|
||||
case OPCODE_CLOSE:
|
||||
Turnout::setClosed(operand, true);
|
||||
break;
|
||||
|
||||
case OPCODE_REV:
|
||||
forward = false;
|
||||
driveLoco(operand);
|
||||
break;
|
||||
|
||||
case OPCODE_FWD:
|
||||
forward = true;
|
||||
driveLoco(operand);
|
||||
break;
|
||||
|
||||
case OPCODE_SPEED:
|
||||
driveLoco(operand);
|
||||
break;
|
||||
|
||||
case OPCODE_INVERT_DIRECTION:
|
||||
invert= !invert;
|
||||
driveLoco(speedo);
|
||||
break;
|
||||
|
||||
case OPCODE_RESERVE:
|
||||
if (getFlag(operand,SECTION_FLAG)) {
|
||||
driveLoco(0);
|
||||
delayMe(500);
|
||||
return;
|
||||
}
|
||||
setFlag(operand,SECTION_FLAG);
|
||||
break;
|
||||
|
||||
case OPCODE_FREE:
|
||||
setFlag(operand,0,SECTION_FLAG);
|
||||
break;
|
||||
|
||||
case OPCODE_AT:
|
||||
if (readSensor(operand)) break;
|
||||
delayMe(50);
|
||||
return;
|
||||
|
||||
case OPCODE_AFTER: // waits for sensor to hit and then remain off for 0.5 seconds. (must come after an AT operation)
|
||||
if (readSensor(operand)) {
|
||||
// reset timer to half a second and keep waiting
|
||||
waitAfter=millis();
|
||||
delayMe(50);
|
||||
return;
|
||||
}
|
||||
if (millis()-waitAfter < 500 ) return;
|
||||
break;
|
||||
|
||||
case OPCODE_LATCH:
|
||||
setFlag(operand,LATCH_FLAG);
|
||||
break;
|
||||
|
||||
case OPCODE_UNLATCH:
|
||||
setFlag(operand,0,LATCH_FLAG);
|
||||
break;
|
||||
|
||||
case OPCODE_SET:
|
||||
IODevice::write(operand,true);
|
||||
break;
|
||||
|
||||
case OPCODE_RESET:
|
||||
IODevice::write(operand,false);
|
||||
break;
|
||||
|
||||
case OPCODE_PAUSE:
|
||||
DCC::setThrottle(0,1,true); // pause all locos on the track
|
||||
pausingTask=this;
|
||||
break;
|
||||
|
||||
case OPCODE_POM:
|
||||
if (loco) DCC::writeCVByteMain(loco, operand, GET_OPERAND(1));
|
||||
break;
|
||||
|
||||
case OPCODE_POWEROFF:
|
||||
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
|
||||
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
|
||||
DCC::setProgTrackSyncMain(false);
|
||||
Serial.println(F("<p0>")); // Tell JMRI
|
||||
break;
|
||||
|
||||
case OPCODE_RESUME:
|
||||
pausingTask=NULL;
|
||||
driveLoco(speedo);
|
||||
for (RMFT2 * t=next; t!=this;t=t->next) if (t->loco >0) t->driveLoco(t->speedo);
|
||||
break;
|
||||
|
||||
case OPCODE_IF: // do next operand if sensor set
|
||||
if (!readSensor(operand)) if (!skipIfBlock()) return;
|
||||
break;
|
||||
|
||||
case OPCODE_IFNOT: // do next operand if sensor not set
|
||||
if (readSensor(operand)) if (!skipIfBlock()) return;
|
||||
break;
|
||||
|
||||
case OPCODE_IFRANDOM: // do block on random percentage
|
||||
if (random(100)>=operand) if (!skipIfBlock()) return;
|
||||
break;
|
||||
|
||||
case OPCODE_IFRESERVE: // do block if we successfully RERSERVE
|
||||
if (!getFlag(operand,SECTION_FLAG)) setFlag(operand,SECTION_FLAG);
|
||||
else if (!skipIfBlock()) return;
|
||||
break;
|
||||
|
||||
case OPCODE_ENDIF:
|
||||
break;
|
||||
|
||||
case OPCODE_DELAY:
|
||||
delayMe(operand*100L);
|
||||
break;
|
||||
|
||||
case OPCODE_DELAYMINS:
|
||||
delayMe(operand*60L*1000L);
|
||||
break;
|
||||
|
||||
case OPCODE_RANDWAIT:
|
||||
delayMe(random(operand)*100L);
|
||||
break;
|
||||
|
||||
case OPCODE_RED:
|
||||
doSignal(operand,true,false,false);
|
||||
break;
|
||||
|
||||
case OPCODE_AMBER:
|
||||
doSignal(operand,false,true,false);
|
||||
break;
|
||||
|
||||
case OPCODE_GREEN:
|
||||
doSignal(operand,false,false,true);
|
||||
break;
|
||||
|
||||
case OPCODE_FON:
|
||||
if (loco) DCC::setFn(loco,operand,true);
|
||||
break;
|
||||
|
||||
case OPCODE_FOFF:
|
||||
if (loco) DCC::setFn(loco,operand,false);
|
||||
break;
|
||||
|
||||
case OPCODE_XFON:
|
||||
DCC::setFn(operand,GET_OPERAND(1),true);
|
||||
break;
|
||||
|
||||
case OPCODE_XFOFF:
|
||||
DCC::setFn(operand,GET_OPERAND(1),false);
|
||||
break;
|
||||
|
||||
case OPCODE_FOLLOW:
|
||||
progCounter=locateRouteStart(operand);
|
||||
if (progCounter<0) kill(F("FOLLOW unknown"), operand);
|
||||
return;
|
||||
|
||||
case OPCODE_CALL:
|
||||
if (stackDepth==MAX_STACK_DEPTH) {
|
||||
kill(F("CALL stack"), stackDepth);
|
||||
return;
|
||||
}
|
||||
callStack[stackDepth++]=progCounter+3;
|
||||
progCounter=locateRouteStart(operand);
|
||||
if (progCounter<0) kill(F("CALL unknown"),operand);
|
||||
return;
|
||||
|
||||
case OPCODE_RETURN:
|
||||
if (stackDepth==0) {
|
||||
kill(F("RETURN stack"));
|
||||
return;
|
||||
}
|
||||
progCounter=callStack[--stackDepth];
|
||||
return;
|
||||
|
||||
case OPCODE_ENDTASK:
|
||||
case OPCODE_ENDEXRAIL:
|
||||
kill();
|
||||
return;
|
||||
|
||||
case OPCODE_JOIN:
|
||||
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
|
||||
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
|
||||
DCC::setProgTrackSyncMain(true);
|
||||
Serial.println(F("<p1 JOIN>")); // Tell JMRI
|
||||
break;
|
||||
|
||||
case OPCODE_UNJOIN:
|
||||
DCC::setProgTrackSyncMain(false);
|
||||
break;
|
||||
|
||||
case OPCODE_READ_LOCO1: // READ_LOCO is implemented as 2 separate opcodes
|
||||
progtrackLocoId=LOCO_ID_WAITING; // Nothing found yet
|
||||
DCC::getLocoId(readLocoCallback);
|
||||
break;
|
||||
|
||||
case OPCODE_READ_LOCO2:
|
||||
if (progtrackLocoId==LOCO_ID_WAITING) {
|
||||
delayMe(100);
|
||||
return; // still waiting for callback
|
||||
}
|
||||
if (progtrackLocoId<0) {
|
||||
kill(F("No Loco Found"),progtrackLocoId);
|
||||
return; // still waiting for callback
|
||||
}
|
||||
|
||||
loco=progtrackLocoId;
|
||||
speedo=0;
|
||||
forward=true;
|
||||
invert=false;
|
||||
break;
|
||||
|
||||
case OPCODE_START:
|
||||
{
|
||||
int newPc=locateRouteStart(operand);
|
||||
if (newPc<0) break;
|
||||
new RMFT2(newPc);
|
||||
}
|
||||
break;
|
||||
|
||||
case OPCODE_SENDLOCO: // cab, route
|
||||
{
|
||||
int newPc=locateRouteStart(GET_OPERAND(1));
|
||||
if (newPc<0) break;
|
||||
RMFT2* newtask=new RMFT2(newPc); // create new task
|
||||
newtask->loco=operand;
|
||||
}
|
||||
break;
|
||||
|
||||
case OPCODE_SETLOCO:
|
||||
{
|
||||
loco=operand;
|
||||
speedo=0;
|
||||
forward=true;
|
||||
invert=false;
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case OPCODE_SERVO: // OPCODE_SERVO,V(vpin),OPCODE_PAD,V(position),OPCODE_PAD,V(profile),OPCODE_PAD,V(duration)
|
||||
IODevice::writeAnalogue(operand,GET_OPERAND(1),GET_OPERAND(2),GET_OPERAND(3));
|
||||
break;
|
||||
|
||||
case OPCODE_WAITFOR: // OPCODE_SERVO,V(pin)
|
||||
if (IODevice::isBusy(operand)) {
|
||||
delayMe(100);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case OPCODE_PRINT:
|
||||
printMessage(operand);
|
||||
break;
|
||||
|
||||
case OPCODE_ROUTE:
|
||||
case OPCODE_AUTOMATION:
|
||||
case OPCODE_SEQUENCE:
|
||||
if (diag) DIAG(F("EXRAIL begin(%d)"),operand);
|
||||
break;
|
||||
|
||||
case OPCODE_PAD: // Just a padding for previous opcode needing >1 operad byte.
|
||||
case OPCODE_SIGNAL: // Signal definition ignore at run time
|
||||
case OPCODE_TURNOUT: // Turnout definition ignored at runtime
|
||||
case OPCODE_SERVOTURNOUT: // Turnout definition ignored at runtime
|
||||
case OPCODE_PINTURNOUT: // Turnout definition ignored at runtime
|
||||
case OPCODE_ONCLOSE: // Turnout event catcers ignored here
|
||||
case OPCODE_ONTHROW: // Turnout definition ignored at runtime
|
||||
break;
|
||||
|
||||
default:
|
||||
kill(F("INVOP"),operand);
|
||||
}
|
||||
// Falling out of the switch means move on to the next opcode
|
||||
SKIPOP;
|
||||
}
|
||||
|
||||
void RMFT2::delayMe(long delay) {
|
||||
delayTime=delay;
|
||||
delayStart=millis();
|
||||
}
|
||||
|
||||
void RMFT2::setFlag(VPIN id,byte onMask, byte offMask) {
|
||||
if (FLAGOVERFLOW(id)) return; // Outside range limit
|
||||
byte f=flags[id];
|
||||
f &= ~offMask;
|
||||
f |= onMask;
|
||||
flags[id]=f;
|
||||
}
|
||||
|
||||
bool RMFT2::getFlag(VPIN id,byte mask) {
|
||||
if (FLAGOVERFLOW(id)) return 0; // Outside range limit
|
||||
return flags[id]&mask;
|
||||
}
|
||||
|
||||
void RMFT2::kill(const FSH * reason, int operand) {
|
||||
if (reason) DIAG(F("EXRAIL ERROR pc=%d, cab=%d, %S %d"), progCounter,loco, reason, operand);
|
||||
else if (diag) DIAG(F("ENDTASK at pc=%d"), progCounter);
|
||||
delete this;
|
||||
}
|
||||
|
||||
/* static */ void RMFT2::doSignal(VPIN id,bool red, bool amber, bool green) {
|
||||
// CAUTION: hides class member progCounter
|
||||
for (int progCounter=0;; SKIPOP){
|
||||
byte opcode=GET_OPCODE;
|
||||
if (opcode==OPCODE_ENDEXRAIL) return;
|
||||
if (opcode!=OPCODE_SIGNAL) continue;
|
||||
byte redpin=GET_OPERAND(0);
|
||||
if (redpin!=id)continue;
|
||||
byte amberpin=GET_OPERAND(1);
|
||||
byte greenpin=GET_OPERAND(2);
|
||||
// If amberpin is zero, synthesise amber from red+green
|
||||
IODevice::write(redpin,red || (amber && (amberpin==0)));
|
||||
if (amberpin) IODevice::write(amberpin,amber);
|
||||
if (greenpin) IODevice::write(greenpin,green || (amber && (amberpin==0)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
void RMFT2::turnoutEvent(int16_t turnoutId, bool closed) {
|
||||
|
||||
// Check we dont already have a task running this turnout
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if (task->onTurnoutId==turnoutId) {
|
||||
DIAG(F("Recursive ONTHROW/ONCLOSE for Turnout %d"),turnoutId);
|
||||
return;
|
||||
}
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
// Hunt for an ONTHROW/ONCLOSE for this turnout
|
||||
byte huntFor=closed ? OPCODE_ONCLOSE : OPCODE_ONTHROW ;
|
||||
// caution hides class progCounter;
|
||||
for (int progCounter=0;; SKIPOP){
|
||||
byte opcode=GET_OPCODE;
|
||||
if (opcode==OPCODE_ENDEXRAIL) return;
|
||||
if (opcode!=huntFor) continue;
|
||||
if (turnoutId!=(int16_t)GET_OPERAND(0)) continue;
|
||||
task=new RMFT2(progCounter); // new task starts at this instruction
|
||||
task->onTurnoutId=turnoutId; // flag for recursion detector
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void RMFT2::printMessage2(const FSH * msg) {
|
||||
DIAG(F("EXRAIL(%d) %S"),loco,msg);
|
||||
}
|
||||
|
||||
// This is called by emitRouteDescriptions to emit a withrottle description for a route or autoomation.
|
||||
void RMFT2::emitRouteDescription(Print * stream, char type, int id, const FSH * description) {
|
||||
StringFormatter::send(stream,F("]\\[%c%d}|{%S}|{%c"),
|
||||
type,id,description, type=='R'?'2':'4');
|
||||
}
|
||||
|
117
RMFT2.h
Normal file
117
RMFT2.h
Normal file
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
* © 2020, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef RMFT2_H
|
||||
#define RMFT2_H
|
||||
#include "FSH.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
// The following are the operation codes (or instructions) for a kind of virtual machine.
|
||||
// Each instruction is normally 2 bytes long with an operation code followed by a parameter.
|
||||
// In cases where more than one parameter is required, the first parameter is followed by one
|
||||
// or more OPCODE_PAD instructions with the subsequent parameters. This wastes a byte but makes
|
||||
// searching easier as a parameter can never be confused with an opcode.
|
||||
//
|
||||
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
|
||||
OPCODE_FWD,OPCODE_REV,OPCODE_SPEED,OPCODE_INVERT_DIRECTION,
|
||||
OPCODE_RESERVE,OPCODE_FREE,
|
||||
OPCODE_AT,OPCODE_AFTER,
|
||||
OPCODE_LATCH,OPCODE_UNLATCH,OPCODE_SET,OPCODE_RESET,
|
||||
OPCODE_IF,OPCODE_IFNOT,OPCODE_ENDIF,OPCODE_IFRANDOM,OPCODE_IFRESERVE,
|
||||
OPCODE_DELAY,OPCODE_DELAYMINS,OPCODE_RANDWAIT,
|
||||
OPCODE_FON,OPCODE_FOFF,OPCODE_XFON,OPCODE_XFOFF,
|
||||
OPCODE_RED,OPCODE_GREEN,OPCODE_AMBER,
|
||||
OPCODE_SERVO,OPCODE_SIGNAL,OPCODE_TURNOUT,OPCODE_WAITFOR,
|
||||
OPCODE_PAD,OPCODE_FOLLOW,OPCODE_CALL,OPCODE_RETURN,
|
||||
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,OPCODE_POM,
|
||||
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,
|
||||
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,
|
||||
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
|
||||
OPCODE_PRINT,
|
||||
OPCODE_ROUTE,OPCODE_AUTOMATION,OPCODE_SEQUENCE,OPCODE_ENDTASK,OPCODE_ENDEXRAIL
|
||||
};
|
||||
|
||||
|
||||
|
||||
// Flag bits for status of hardware and TPL
|
||||
static const byte SECTION_FLAG = 0x01;
|
||||
static const byte LATCH_FLAG = 0x02;
|
||||
static const byte TASK_FLAG = 0x04;
|
||||
|
||||
static const byte MAX_STACK_DEPTH=4;
|
||||
|
||||
static const short MAX_FLAGS=256;
|
||||
#define FLAGOVERFLOW(x) x>=MAX_FLAGS
|
||||
|
||||
class RMFT2 {
|
||||
public:
|
||||
static void begin();
|
||||
static void loop();
|
||||
RMFT2(int progCounter);
|
||||
RMFT2(int route, uint16_t cab);
|
||||
~RMFT2();
|
||||
static void readLocoCallback(int16_t cv);
|
||||
static void emitWithrottleRouteList(Print* stream);
|
||||
static void createNewTask(int route, uint16_t cab);
|
||||
static void turnoutEvent(int16_t id, bool closed);
|
||||
private:
|
||||
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
|
||||
static bool parseSlash(Print * stream, byte & paramCount, int16_t p[]) ;
|
||||
static void streamFlags(Print* stream);
|
||||
static void setFlag(VPIN id,byte onMask, byte OffMask=0);
|
||||
static bool getFlag(VPIN id,byte mask);
|
||||
static int locateRouteStart(int16_t _route);
|
||||
static int16_t progtrackLocoId;
|
||||
static void doSignal(VPIN id,bool red, bool amber, bool green);
|
||||
static void emitRouteDescription(Print * stream, char type, int id, const FSH * description);
|
||||
static void emitWithrottleDescriptions(Print * stream);
|
||||
|
||||
static RMFT2 * loopTask;
|
||||
static RMFT2 * pausingTask;
|
||||
void delayMe(long millisecs);
|
||||
void driveLoco(byte speedo);
|
||||
bool readSensor(uint16_t sensorId);
|
||||
bool skipIfBlock();
|
||||
bool readLoco();
|
||||
void loop2();
|
||||
void kill(const FSH * reason=NULL,int operand=0);
|
||||
void printMessage(uint16_t id); // Built by RMFTMacros.h
|
||||
void printMessage2(const FSH * msg);
|
||||
|
||||
|
||||
static bool diag;
|
||||
static const FLASH byte RouteCode[];
|
||||
static byte flags[MAX_FLAGS];
|
||||
|
||||
// Local variables - exist for each instance/task
|
||||
RMFT2 *next; // loop chain
|
||||
int progCounter; // Byte offset of next route opcode in ROUTES table
|
||||
unsigned long delayStart; // Used by opcodes that must be recalled before completing
|
||||
unsigned long waitAfter; // Used by OPCODE_AFTER
|
||||
unsigned long delayTime;
|
||||
byte taskId;
|
||||
|
||||
uint16_t loco;
|
||||
bool forward;
|
||||
bool invert;
|
||||
byte speedo;
|
||||
int16_t onTurnoutId;
|
||||
byte stackDepth;
|
||||
int callStack[MAX_STACK_DEPTH];
|
||||
};
|
||||
#endif
|
311
RMFTMacros.h
Normal file
311
RMFTMacros.h
Normal file
|
@ -0,0 +1,311 @@
|
|||
/*
|
||||
* © 2020,2021 Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef RMFTMacros_H
|
||||
#define RMFTMacros_H
|
||||
|
||||
// remove normal code LCD & SERIAL macros (will be restored later)
|
||||
#undef LCD
|
||||
#undef SERIAL
|
||||
|
||||
|
||||
// This file will include and build the EXRAIL script and associated helper tricks.
|
||||
// It does this by incliding myAutomation.h several times, each with a set of macros to
|
||||
// extract the relevant parts.
|
||||
|
||||
// The entire automation script is contained within a byte array RMFT2::RouteCode[]
|
||||
// made up of opcode and parameter pairs.
|
||||
// ech opcode is a 1 byte operation plus 2 byte operand.
|
||||
// The array is normally built using the macros below as this makes it easier
|
||||
// to manage the cases where:
|
||||
// - padding must be applied to ensure the correct alignment of the next instruction
|
||||
// - large parameters must be split up
|
||||
// - multiple parameters aligned correctly
|
||||
// - a single macro requires multiple operations
|
||||
|
||||
// Descriptive texts for routes and animations are created in a sepaerate function which
|
||||
// can be called to emit a list of routes/automatuions in a form suitable for Withrottle.
|
||||
|
||||
// PRINT(msg) and LCD(row,msg) is implemented in a separate pass to create
|
||||
// a getMessageText(id) function.
|
||||
|
||||
// CAUTION: The macros below are multiple passed over myAutomation.h
|
||||
|
||||
// Pass 1 Implements aliases and
|
||||
// converts descriptions to withrottle format emitter function
|
||||
// Most macros are simply ignored in this pass.
|
||||
|
||||
|
||||
#define ALIAS(name,value) const int name=value;
|
||||
#define EXRAIL void RMFT2::emitWithrottleDescriptions(Print * stream) {(void)stream;
|
||||
#define ROUTE(id, description) emitRouteDescription(stream,'R',id,F(description));
|
||||
#define AUTOMATION(id, description) emitRouteDescription(stream,'A',id,F(description));
|
||||
#define ENDEXRAIL }
|
||||
|
||||
#define AFTER(sensor_id)
|
||||
#define AMBER(signal_id)
|
||||
#define AT(sensor_id)
|
||||
#define CALL(route)
|
||||
#define CLOSE(id)
|
||||
#define DELAY(mindelay)
|
||||
#define DELAYMINS(mindelay)
|
||||
#define DELAYRANDOM(mindelay,maxdelay)
|
||||
#define DONE
|
||||
#define ENDIF
|
||||
#define ENDTASK
|
||||
#define ESTOP
|
||||
#define FADE(pin,value,ms)
|
||||
#define FOFF(func)
|
||||
#define FOLLOW(route)
|
||||
#define FON(func)
|
||||
#define FREE(blockid)
|
||||
#define FWD(speed)
|
||||
#define GREEN(signal_id)
|
||||
#define IF(sensor_id)
|
||||
#define IFNOT(sensor_id)
|
||||
#define IFRANDOM(percent)
|
||||
#define IFRESERVE(block)
|
||||
#define INVERT_DIRECTION
|
||||
#define JOIN
|
||||
#define LATCH(sensor_id)
|
||||
#define LCD(row,msg)
|
||||
#define LCN(msg)
|
||||
#define ONCLOSE(turnout_id)
|
||||
#define ONTHROW(turnout_id)
|
||||
#define PAUSE
|
||||
#define PRINT(msg)
|
||||
#define POM(cv,value)
|
||||
#define POWEROFF
|
||||
#define READ_LOCO
|
||||
#define RED(signal_id)
|
||||
#define RESERVE(blockid)
|
||||
#define RESET(pin)
|
||||
#define RESUME
|
||||
#define RETURN
|
||||
#define REV(speed)
|
||||
#define START(route)
|
||||
#define SENDLOCO(cab,route)
|
||||
#define SERIAL(msg)
|
||||
#define SERIAL1(msg)
|
||||
#define SERIAL2(msg)
|
||||
#define SERIAL3(msg)
|
||||
#define SERVO(id,position,profile)
|
||||
#define SERVO2(id,position,duration)
|
||||
#define SETLOCO(loco)
|
||||
#define SET(pin)
|
||||
#define SEQUENCE(id)
|
||||
#define SPEED(speed)
|
||||
#define STOP
|
||||
#undef SIGNAL
|
||||
#define SIGNAL(redpin,amberpin,greenpin)
|
||||
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile)
|
||||
#define PIN_TURNOUT(id,pin)
|
||||
#define THROW(id)
|
||||
#define TURNOUT(id,addr,subaddr)
|
||||
#define UNJOIN
|
||||
#define UNLATCH(sensor_id)
|
||||
#define WAITFOR(pin)
|
||||
#define XFOFF(cab,func)
|
||||
#define XFON(cab,func)
|
||||
|
||||
#include "myAutomation.h"
|
||||
|
||||
// setup for pass 2... Create getMessageText function
|
||||
#undef ALIAS
|
||||
#undef ROUTE
|
||||
#undef AUTOMATION
|
||||
#define ROUTE(id, description)
|
||||
#define AUTOMATION(id, description)
|
||||
|
||||
#undef EXRAIL
|
||||
#undef PRINT
|
||||
#undef LCN
|
||||
#undef SERIAL
|
||||
#undef SERIAL1
|
||||
#undef SERIAL2
|
||||
#undef SERIAL3
|
||||
#undef ENDEXRAIL
|
||||
#undef LCD
|
||||
const int StringMacroTracker1=__COUNTER__;
|
||||
#define ALIAS(name,value)
|
||||
#define EXRAIL void RMFT2::printMessage(uint16_t id) { switch(id) {
|
||||
#define ENDEXRAIL default: DIAG(F("printMessage error %d %d"),id,StringMacroTracker1); return ; }}
|
||||
#define PRINT(msg) case (__COUNTER__ - StringMacroTracker1) : printMessage2(F(msg));break;
|
||||
#define LCN(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&LCN_SERIAL,F(msg));break;
|
||||
#define SERIAL(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial,F(msg));break;
|
||||
#define SERIAL1(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial1,F(msg));break;
|
||||
#define SERIAL2(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial2,F(msg));break;
|
||||
#define SERIAL3(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial3,F(msg));break;
|
||||
#define LCD(id,msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::lcd(id,F(msg));break;
|
||||
#include "myAutomation.h"
|
||||
|
||||
// Setup for Pass 3: create main routes table
|
||||
#undef AFTER
|
||||
#undef AMBER
|
||||
#undef AT
|
||||
#undef AUTOMATION
|
||||
#undef CALL
|
||||
#undef CLOSE
|
||||
#undef DELAY
|
||||
#undef DELAYMINS
|
||||
#undef DELAYRANDOM
|
||||
#undef DONE
|
||||
#undef ENDIF
|
||||
#undef ENDEXRAIL
|
||||
#undef ENDTASK
|
||||
#undef ESTOP
|
||||
#undef EXRAIL
|
||||
#undef FOFF
|
||||
#undef FOLLOW
|
||||
#undef FON
|
||||
#undef FREE
|
||||
#undef FWD
|
||||
#undef GREEN
|
||||
#undef IF
|
||||
#undef IFNOT
|
||||
#undef IFRANDOM
|
||||
#undef IFRESERVE
|
||||
#undef INVERT_DIRECTION
|
||||
#undef JOIN
|
||||
#undef LATCH
|
||||
#undef LCD
|
||||
#undef LCN
|
||||
#undef ONCLOSE
|
||||
#undef ONTHROW
|
||||
#undef PAUSE
|
||||
#undef POM
|
||||
#undef POWEROFF
|
||||
#undef PRINT
|
||||
#undef READ_LOCO
|
||||
#undef RED
|
||||
#undef RESERVE
|
||||
#undef RESET
|
||||
#undef RESUME
|
||||
#undef RETURN
|
||||
#undef REV
|
||||
#undef ROUTE
|
||||
#undef START
|
||||
#undef SEQUENCE
|
||||
#undef SERVO
|
||||
#undef SERVO2
|
||||
#undef FADE
|
||||
#undef SENDLOCO
|
||||
#undef SERIAL
|
||||
#undef SERIAL1
|
||||
#undef SERIAL2
|
||||
#undef SERIAL3
|
||||
#undef SETLOCO
|
||||
#undef SET
|
||||
#undef SPEED
|
||||
#undef STOP
|
||||
#undef SIGNAL
|
||||
#undef SERVO_TURNOUT
|
||||
#undef PIN_TURNOUT
|
||||
#undef THROW
|
||||
#undef TURNOUT
|
||||
#undef UNJOIN
|
||||
#undef UNLATCH
|
||||
#undef WAITFOR
|
||||
#undef XFOFF
|
||||
#undef XFON
|
||||
|
||||
// Define macros for route code creation
|
||||
#define V(val) ((int16_t)(val))&0x00FF,((int16_t)(val)>>8)&0x00FF
|
||||
#define NOP 0,0
|
||||
|
||||
#define ALIAS(name,value)
|
||||
#define EXRAIL const FLASH byte RMFT2::RouteCode[] = {
|
||||
#define AUTOMATION(id, description) OPCODE_AUTOMATION, V(id),
|
||||
#define ROUTE(id, description) OPCODE_ROUTE, V(id),
|
||||
#define SEQUENCE(id) OPCODE_SEQUENCE, V(id),
|
||||
#define ENDTASK OPCODE_ENDTASK,NOP,
|
||||
#define DONE OPCODE_ENDTASK,NOP,
|
||||
#define ENDEXRAIL OPCODE_ENDTASK,NOP,OPCODE_ENDEXRAIL,NOP };
|
||||
|
||||
#define AFTER(sensor_id) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),
|
||||
#define AMBER(signal_id) OPCODE_AMBER,V(signal_id),
|
||||
#define AT(sensor_id) OPCODE_AT,V(sensor_id),
|
||||
#define CALL(route) OPCODE_CALL,V(route),
|
||||
#define CLOSE(id) OPCODE_CLOSE,V(id),
|
||||
#define DELAY(ms) OPCODE_DELAY,V(ms/100L),
|
||||
#define DELAYMINS(mindelay) OPCODE_DELAYMINS,V(mindelay),
|
||||
#define DELAYRANDOM(mindelay,maxdelay) OPCODE_DELAY,V(mindelay/100L),OPCODE_RANDWAIT,V((maxdelay-mindelay)/100L),
|
||||
#define ENDIF OPCODE_ENDIF,NOP,
|
||||
#define ESTOP OPCODE_SPEED,V(1),
|
||||
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V(PCA9685::ProfileType::UseDuration|PCA9685::NoPowerOff),OPCODE_PAD,V(ms/100L),
|
||||
#define FOFF(func) OPCODE_FOFF,V(func),
|
||||
#define FOLLOW(route) OPCODE_FOLLOW,V(route),
|
||||
#define FON(func) OPCODE_FON,V(func),
|
||||
#define FREE(blockid) OPCODE_FREE,V(blockid),
|
||||
#define FWD(speed) OPCODE_FWD,V(speed),
|
||||
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
|
||||
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
|
||||
#define IFNOT(sensor_id) OPCODE_IFNOT,V(sensor_id),
|
||||
#define IFRANDOM(percent) OPCODE_IFRANDOM,V(percent),
|
||||
#define IFRESERVE(block) OPCODE_IFRESERVE,V(block),
|
||||
#define INVERT_DIRECTION OPCODE_INVERT_DIRECTION,NOP,
|
||||
#define JOIN OPCODE_JOIN,NOP,
|
||||
#define LATCH(sensor_id) OPCODE_LATCH,V(sensor_id),
|
||||
#define LCD(id,msg) PRINT(msg)
|
||||
#define LCN(msg) PRINT(msg)
|
||||
#define ONCLOSE(turnout_id) OPCODE_ONCLOSE,V(turnout_id),
|
||||
#define ONTHROW(turnout_id) OPCODE_ONTHROW,V(turnout_id),
|
||||
#define PAUSE OPCODE_PAUSE,NOP,
|
||||
#define POM(cv,value) OPCODE_POM,V(cv),OPCODE_PAD,V(value),
|
||||
#define POWEROFF OPCODE_POWEROFF,NOP,
|
||||
#define PRINT(msg) OPCODE_PRINT,V(__COUNTER__ - StringMacroTracker2),
|
||||
#define READ_LOCO OPCODE_READ_LOCO1,NOP,OPCODE_READ_LOCO2,NOP,
|
||||
#define RED(signal_id) OPCODE_RED,V(signal_id),
|
||||
#define RESERVE(blockid) OPCODE_RESERVE,V(blockid),
|
||||
#define RESET(pin) OPCODE_RESET,V(pin),
|
||||
#define RESUME OPCODE_RESUME,NOP,
|
||||
#define RETURN OPCODE_RETURN,NOP,
|
||||
#define REV(speed) OPCODE_REV,V(speed),
|
||||
#define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route),
|
||||
#define SERIAL(msg) PRINT(msg)
|
||||
#define SERIAL1(msg) PRINT(msg)
|
||||
#define SERIAL2(msg) PRINT(msg)
|
||||
#define SERIAL3(msg) PRINT(msg)
|
||||
#define START(route) OPCODE_START,V(route),
|
||||
#define SERVO(id,position,profile) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::profile),OPCODE_PAD,V(0),
|
||||
#define SERVO2(id,position,ms) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::Instant),OPCODE_PAD,V(ms/100L),
|
||||
#define SETLOCO(loco) OPCODE_SETLOCO,V(loco),
|
||||
#define SET(pin) OPCODE_SET,V(pin),
|
||||
#define SPEED(speed) OPCODE_SPEED,V(speed),
|
||||
#define STOP OPCODE_SPEED,V(0),
|
||||
#define SIGNAL(redpin,amberpin,greenpin) OPCODE_SIGNAL,V(redpin),OPCODE_PAD,V(amberpin),OPCODE_PAD,V(greenpin),
|
||||
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile) OPCODE_SERVOTURNOUT,V(id),OPCODE_PAD,V(pin),OPCODE_PAD,V(activeAngle),OPCODE_PAD,V(inactiveAngle),OPCODE_PAD,V(PCA9685::ProfileType::profile),
|
||||
#define PIN_TURNOUT(id,pin) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
|
||||
#define THROW(id) OPCODE_THROW,V(id),
|
||||
#define TURNOUT(id,addr,subaddr) OPCODE_TURNOUT,V(id),OPCODE_PAD,V(addr),OPCODE_PAD,V(subaddr),
|
||||
#define UNJOIN OPCODE_UNJOIN,NOP,
|
||||
#define UNLATCH(sensor_id) OPCODE_UNLATCH,V(sensor_id),
|
||||
#define WAITFOR(pin) OPCODE_WAITFOR,V(pin),
|
||||
#define XFOFF(cab,func) OPCODE_XFOFF,V(cab),OPCODE_PAD,V(func),
|
||||
#define XFON(cab,func) OPCODE_XFON,V(cab),OPCODE_PAD,V(func),
|
||||
|
||||
// PASS2 Build RouteCode
|
||||
const int StringMacroTracker2=__COUNTER__;
|
||||
#include "myAutomation.h"
|
||||
|
||||
// Restore normal code LCD & SERIAL macro
|
||||
#undef LCD
|
||||
#define LCD StringFormatter::lcd
|
||||
#undef SERIAL
|
||||
#define SERIAL 0x0
|
||||
#endif
|
|
@ -158,13 +158,15 @@ void SSD1306AsciiWire::setRowNative(uint8_t line) {
|
|||
if (row < m_displayHeight) {
|
||||
m_row = row;
|
||||
m_col = m_colOffset;
|
||||
// Before using buffer, wait for last request to complete
|
||||
requestBlock.wait();
|
||||
// Build output buffer for I2C
|
||||
uint8_t len = 0;
|
||||
outputBuffer[len++] = 0x00; // Set to command mode
|
||||
outputBuffer[len++] = SSD1306_SETLOWCOLUMN | (m_col & 0XF);
|
||||
outputBuffer[len++] = SSD1306_SETHIGHCOLUMN | (m_col >> 4);
|
||||
outputBuffer[len++] = SSD1306_SETSTARTPAGE | (m_row/8);
|
||||
I2CManager.write(m_i2cAddr, outputBuffer, len);
|
||||
I2CManager.write(m_i2cAddr, outputBuffer, len, &requestBlock);
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -189,6 +191,8 @@ size_t SSD1306AsciiWire::writeNative(uint8_t ch) {
|
|||
#endif
|
||||
ch -= m_fontFirstChar;
|
||||
base += fontWidth * ch;
|
||||
// Before using buffer, wait for last request to complete
|
||||
requestBlock.wait();
|
||||
// Build output buffer for I2C
|
||||
outputBuffer[0] = 0x40; // set SSD1306 controller to data mode
|
||||
uint8_t bufferPos = 1;
|
||||
|
@ -200,7 +204,7 @@ size_t SSD1306AsciiWire::writeNative(uint8_t ch) {
|
|||
outputBuffer[bufferPos++] = 0;
|
||||
|
||||
// Write the data to I2C display
|
||||
I2CManager.write(m_i2cAddr, outputBuffer, bufferPos);
|
||||
I2CManager.write(m_i2cAddr, outputBuffer, bufferPos, &requestBlock);
|
||||
m_col += fontWidth + letterSpacing;
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -58,22 +58,24 @@ class SSD1306AsciiWire : public LCDDisplay {
|
|||
void begin(const DevType* dev, uint8_t i2cAddr);
|
||||
|
||||
// Clear the display and set the cursor to (0, 0).
|
||||
void clearNative();
|
||||
void clearNative() override;
|
||||
|
||||
// Set cursor to start of specified text line
|
||||
void setRowNative(byte line);
|
||||
void setRowNative(byte line) override;
|
||||
|
||||
// Initialize the display controller.
|
||||
void init(const DevType* dev);
|
||||
|
||||
// Write one character to OLED
|
||||
size_t writeNative(uint8_t c);
|
||||
size_t writeNative(uint8_t c) override;
|
||||
|
||||
// Display characteristics / initialisation
|
||||
static const DevType FLASH Adafruit128x32;
|
||||
static const DevType FLASH Adafruit128x64;
|
||||
static const DevType FLASH SH1106_132x64;
|
||||
|
||||
bool isBusy() override { return requestBlock.isBusy(); }
|
||||
|
||||
private:
|
||||
// Cursor column.
|
||||
uint8_t m_col;
|
||||
|
@ -97,6 +99,7 @@ class SSD1306AsciiWire : public LCDDisplay {
|
|||
|
||||
uint8_t m_i2cAddr;
|
||||
|
||||
I2CRB requestBlock;
|
||||
uint8_t outputBuffer[fontWidth+letterSpacing+1];
|
||||
|
||||
static const uint8_t blankPixels[];
|
||||
|
|
210
Sensors.cpp
210
Sensors.cpp
|
@ -1,5 +1,6 @@
|
|||
/*
|
||||
* © 2020, Chris Harlow. All rights reserved.
|
||||
* © 2021, modified by Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of Asbelos DCC API
|
||||
*
|
||||
|
@ -27,9 +28,9 @@ or be allowed to float HIGH if use of the Arduino Pin's internal pull-up resisto
|
|||
To ensure proper voltage levels, some part of the Sensor circuitry
|
||||
MUST be tied back to the same ground as used by the Arduino.
|
||||
|
||||
The Sensor code below utilizes exponential smoothing to "de-bounce" spikes generated by
|
||||
The Sensor code below utilises "de-bounce" logic to remove spikes generated by
|
||||
mechanical switches and transistors. This avoids the need to create smoothing circuitry
|
||||
for each sensor. You may need to change these parameters through trial and error for your specific sensors.
|
||||
for each sensor. You may need to change the parameters through trial and error for your specific sensors.
|
||||
|
||||
To have this sketch monitor one or more Arduino pins for sensor triggers, first define/edit/delete
|
||||
sensor definitions using the following variation of the "S" command:
|
||||
|
@ -68,45 +69,108 @@ decide to ignore the <q ID> return and only react to <Q ID> triggers.
|
|||
#include "StringFormatter.h"
|
||||
#include "Sensors.h"
|
||||
#include "EEStore.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// checks one defined sensors and prints _changed_ sensor state
|
||||
// checks a number of defined sensors per entry and prints _changed_ sensor state
|
||||
// to stream unless stream is NULL in which case only internal
|
||||
// state is updated. Then advances to next sensor which will
|
||||
// be checked att next invocation.
|
||||
// be checked at next invocation. Each cycle of reading all sensors will
|
||||
// be initiated no more frequently than the time set by 'cycleInterval' microseconds.
|
||||
//
|
||||
// The list of sensors is divided such that the first part of the list
|
||||
// contains sensors that support change notification via callback, and the second
|
||||
// part of the list contains sensors that require cyclic polling. The start of the
|
||||
// second part of the list is determined from by the 'firstPollSensor' pointer.
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void Sensor::checkAll(Print *stream){
|
||||
uint16_t sensorCount = 0;
|
||||
|
||||
if (firstSensor == NULL) return;
|
||||
if (readingSensor == NULL) readingSensor=firstSensor;
|
||||
#ifdef USE_NOTIFY
|
||||
// Register the event handler ONCE!
|
||||
if (!inputChangeCallbackRegistered)
|
||||
IONotifyCallback::add(inputChangeCallback);
|
||||
inputChangeCallbackRegistered = true;
|
||||
#endif
|
||||
|
||||
bool sensorstate = digitalRead(readingSensor->data.pin);
|
||||
|
||||
if (!sensorstate == readingSensor->active) { // active==true means sensorstate=0/false so sensor unchanged
|
||||
// no change
|
||||
if (readingSensor->latchdelay != 0) {
|
||||
// enable if you want to debug contact jitter
|
||||
//if (stream != NULL) StringFormatter::send(stream, F("JITTER %d %d\n"),
|
||||
// readingSensor->latchdelay, readingSensor->data.snum);
|
||||
readingSensor->latchdelay=0; // reset
|
||||
if (firstSensor == NULL) return; // No sensors to be scanned
|
||||
if (readingSensor == NULL) {
|
||||
// Not currently scanning sensor list
|
||||
unsigned long thisTime = micros();
|
||||
if (thisTime - lastReadCycle >= cycleInterval) {
|
||||
// Required time elapsed since last read cycle started,
|
||||
// so initiate new scan through the sensor list
|
||||
readingSensor = firstSensor;
|
||||
lastReadCycle = thisTime;
|
||||
}
|
||||
} else if (readingSensor->latchdelay < 127) { // byte, max 255, good value unknown yet
|
||||
// change but first increase anti-jitter counter
|
||||
readingSensor->latchdelay++;
|
||||
} else {
|
||||
// make the change
|
||||
readingSensor->active = !sensorstate;
|
||||
readingSensor->latchdelay=0; // reset
|
||||
if (stream != NULL) StringFormatter::send(stream, F("<%c %d>\n"), readingSensor->active ? 'Q' : 'q', readingSensor->data.snum);
|
||||
}
|
||||
|
||||
readingSensor=readingSensor->nextSensor;
|
||||
// Loop until either end of list is encountered or we pause for some reason
|
||||
bool pause = false;
|
||||
while (readingSensor != NULL && !pause) {
|
||||
|
||||
// Where the sensor is attached to a pin, read pin status. For sources such as LCN,
|
||||
// which don't have an input pin to read, the LCN class calls setState() to update inputState when
|
||||
// a message is received. The IODevice::read() call returns 1 for active pins (0v) and 0 for inactive (5v).
|
||||
// Also, on HAL drivers that support change notifications, the driver calls the notification callback
|
||||
// routine when an input signal change is detected, and this updates the inputState directly,
|
||||
// so these inputs don't need to be polled here.
|
||||
VPIN pin = readingSensor->data.pin;
|
||||
if (readingSensor->pollingRequired && pin != VPIN_NONE)
|
||||
readingSensor->inputState = IODevice::read(pin);
|
||||
|
||||
// Check if changed since last time, and process changes.
|
||||
if (readingSensor->inputState == readingSensor->active) {
|
||||
// no change
|
||||
readingSensor->latchDelay = minReadCount; // Reset counter
|
||||
} else if (readingSensor->latchDelay > 0) {
|
||||
// change detected, but first decrement delay
|
||||
readingSensor->latchDelay--;
|
||||
} else {
|
||||
// change validated, act on it.
|
||||
readingSensor->active = readingSensor->inputState;
|
||||
readingSensor->latchDelay = minReadCount; // Reset counter
|
||||
|
||||
if (stream != NULL) {
|
||||
StringFormatter::send(stream, F("<%c %d>\n"), readingSensor->active ? 'Q' : 'q', readingSensor->data.snum);
|
||||
pause = true; // Don't check any more sensors on this entry
|
||||
}
|
||||
}
|
||||
|
||||
// Move to next sensor in list.
|
||||
readingSensor = readingSensor->nextSensor;
|
||||
|
||||
// Currently process max of 16 sensors per entry.
|
||||
// Performance measurements taken during development indicate that, with 128 sensors configured
|
||||
// on 8x 16-pin MCP23017 GPIO expanders with polling (no change notification), all inputs can be read from the devices
|
||||
// within 1.4ms (400Mhz I2C bus speed), and a full cycle of checking 128 sensors for changes takes under a millisecond.
|
||||
sensorCount++;
|
||||
if (sensorCount >= 16) pause = true;
|
||||
}
|
||||
|
||||
} // Sensor::checkAll
|
||||
|
||||
|
||||
#ifdef USE_NOTIFY
|
||||
// Callback from HAL (IODevice class) when a digital input change is recognised.
|
||||
// Updates the inputState field, which is subsequently scanned for changes in the checkAll
|
||||
// method. Ideally the <Q>/<q> message should be sent from here, instead of waiting for
|
||||
// the checkAll method, but the output stream is not available at this point.
|
||||
void Sensor::inputChangeCallback(VPIN vpin, int state) {
|
||||
Sensor *tt;
|
||||
// This bit is not ideal since it has, potentially, to look through the entire list of
|
||||
// sensors to find the one that has changed. Ideally this should be improved somehow.
|
||||
for (tt=firstSensor; tt!=NULL ; tt=tt->nextSensor) {
|
||||
if (tt->data.pin == vpin) break;
|
||||
}
|
||||
if (tt != NULL) { // Sensor found
|
||||
tt->inputState = (state != 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// prints all sensor states to stream
|
||||
|
@ -115,40 +179,62 @@ void Sensor::checkAll(Print *stream){
|
|||
|
||||
void Sensor::printAll(Print *stream){
|
||||
|
||||
for(Sensor * tt=firstSensor;tt!=NULL;tt=tt->nextSensor){
|
||||
if (stream != NULL)
|
||||
if (stream != NULL) {
|
||||
for(Sensor * tt=firstSensor;tt!=NULL;tt=tt->nextSensor){
|
||||
StringFormatter::send(stream, F("<%c %d>\n"), tt->active ? 'Q' : 'q', tt->data.snum);
|
||||
}
|
||||
} // loop over all sensors
|
||||
} // Sensor::printAll
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Static Function to create/find Sensor object.
|
||||
|
||||
Sensor *Sensor::create(int snum, int pin, int pullUp){
|
||||
Sensor *Sensor::create(int snum, VPIN pin, int pullUp){
|
||||
Sensor *tt;
|
||||
|
||||
if(firstSensor==NULL){
|
||||
firstSensor=(Sensor *)calloc(1,sizeof(Sensor));
|
||||
tt=firstSensor;
|
||||
} else if((tt=get(snum))==NULL){
|
||||
tt=firstSensor;
|
||||
while(tt->nextSensor!=NULL)
|
||||
tt=tt->nextSensor;
|
||||
tt->nextSensor=(Sensor *)calloc(1,sizeof(Sensor));
|
||||
tt=tt->nextSensor;
|
||||
}
|
||||
if (pin > VPIN_MAX && pin != VPIN_NONE) return NULL;
|
||||
|
||||
if(tt==NULL) return tt; // problem allocating memory
|
||||
remove(snum); // Unlink and free any existing sensor with the same id, before creating the new one.
|
||||
|
||||
tt->data.snum=snum;
|
||||
tt->data.pin=pin;
|
||||
tt->data.pullUp=(pullUp==0?LOW:HIGH);
|
||||
tt->active=false;
|
||||
tt->latchdelay=0;
|
||||
pinMode(pin,INPUT); // set mode to input
|
||||
digitalWrite(pin,pullUp); // don't use Arduino's internal pull-up resistors for external infrared sensors --- each sensor must have its own 1K external pull-up resistor
|
||||
tt = (Sensor *)calloc(1,sizeof(Sensor));
|
||||
if (!tt) return tt; // memory allocation failure
|
||||
|
||||
if (pin == VPIN_NONE)
|
||||
tt->pollingRequired = false;
|
||||
#ifdef USE_NOTIFY
|
||||
else if (IODevice::hasCallback(pin))
|
||||
tt->pollingRequired = false;
|
||||
#endif
|
||||
else
|
||||
tt->pollingRequired = true;
|
||||
|
||||
// Add to the start of the list
|
||||
tt->nextSensor = firstSensor;
|
||||
firstSensor = tt;
|
||||
|
||||
tt->data.snum = snum;
|
||||
tt->data.pin = pin;
|
||||
tt->data.pullUp = pullUp;
|
||||
tt->active = 0;
|
||||
tt->inputState = 0;
|
||||
tt->latchDelay = minReadCount;
|
||||
|
||||
if (pin != VPIN_NONE)
|
||||
IODevice::configureInput(pin, pullUp);
|
||||
// Generally, internal pull-up resistors are not, on their own, sufficient
|
||||
// for external infrared sensors --- each sensor must have its own 1K external pull-up resistor
|
||||
|
||||
return tt;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Object method to directly change the input state, for sensors such as LCN which are updated
|
||||
// by means other than by polling an input.
|
||||
|
||||
void Sensor::setState(int value) {
|
||||
// Trigger sensor change to be reported on next checkAll loop.
|
||||
inputState = (value != 0);
|
||||
latchDelay = 0; // Don't wait for anti-jitter logic
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -166,13 +252,23 @@ bool Sensor::remove(int n){
|
|||
for(tt=firstSensor;tt!=NULL && tt->data.snum!=n;pp=tt,tt=tt->nextSensor);
|
||||
|
||||
if (tt==NULL) return false;
|
||||
|
||||
if(tt==firstSensor)
|
||||
firstSensor=tt->nextSensor;
|
||||
else
|
||||
pp->nextSensor=tt->nextSensor;
|
||||
|
||||
// Unlink the sensor from the list
|
||||
if(tt==firstSensor)
|
||||
firstSensor=tt->nextSensor;
|
||||
else
|
||||
pp->nextSensor=tt->nextSensor;
|
||||
#ifdef USE_NOTIFY
|
||||
if (tt==lastSensor)
|
||||
lastSensor = pp;
|
||||
if (tt==firstPollSensor)
|
||||
firstPollSensor = tt->nextSensor;
|
||||
#endif
|
||||
|
||||
// Check if the sensor being deleted is the next one to be read. If so,
|
||||
// make the following one the next one to be read.
|
||||
if (readingSensor==tt) readingSensor=tt->nextSensor;
|
||||
|
||||
free(tt);
|
||||
|
||||
return true;
|
||||
|
@ -184,9 +280,10 @@ void Sensor::load(){
|
|||
struct SensorData data;
|
||||
Sensor *tt;
|
||||
|
||||
for(uint16_t i=0;i<EEStore::eeStore->data.nSensors;i++){
|
||||
uint16_t i=EEStore::eeStore->data.nSensors;
|
||||
while(i--){
|
||||
EEPROM.get(EEStore::pointer(),data);
|
||||
tt=create(data.snum,data.pin,data.pullUp);
|
||||
tt=create(data.snum, data.pin, data.pullUp);
|
||||
EEStore::advance(sizeof(tt->data));
|
||||
}
|
||||
}
|
||||
|
@ -211,3 +308,10 @@ void Sensor::store(){
|
|||
|
||||
Sensor *Sensor::firstSensor=NULL;
|
||||
Sensor *Sensor::readingSensor=NULL;
|
||||
unsigned long Sensor::lastReadCycle=0;
|
||||
|
||||
#ifdef USE_NOTIFY
|
||||
Sensor *Sensor::firstPollSensor = NULL;
|
||||
Sensor *Sensor::lastSensor = NULL;
|
||||
bool Sensor::inputChangeCallbackRegistered = false;
|
||||
#endif
|
69
Sensors.h
69
Sensors.h
|
@ -20,29 +20,74 @@
|
|||
#define Sensor_h
|
||||
|
||||
#include "Arduino.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
#define SENSOR_DECAY 0.03
|
||||
// Uncomment the following #define statement to use callback notification
|
||||
// where the driver supports it.
|
||||
// The principle of callback notification is to avoid the Sensor class
|
||||
// having to poll the device driver cyclically for input values, and then scan
|
||||
// for changes. Instead, when the driver scans the inputs, if it detects
|
||||
// a change it invokes a callback function in the Sensor class. In the current
|
||||
// implementation, the advantages are limited because (a) the Sensor class
|
||||
// performs debounce checks, and (b) the Sensor class does not have a
|
||||
// static reference to the output stream for sending <Q>/<q> messages
|
||||
// when a change is detected. These restrictions mean that the checkAll()
|
||||
// method still has to iterate through all of the Sensor objects looking
|
||||
// for changes.
|
||||
#define USE_NOTIFY
|
||||
|
||||
struct SensorData {
|
||||
int snum;
|
||||
uint8_t pin;
|
||||
VPIN pin;
|
||||
uint8_t pullUp;
|
||||
};
|
||||
|
||||
struct Sensor{
|
||||
static Sensor *firstSensor;
|
||||
static Sensor *readingSensor;
|
||||
class Sensor{
|
||||
// The sensor list is a linked list where each sensor's 'nextSensor' field points to the next.
|
||||
// The pointer is null in the last on the list.
|
||||
|
||||
public:
|
||||
SensorData data;
|
||||
boolean active;
|
||||
byte latchdelay;
|
||||
struct {
|
||||
uint8_t active:1;
|
||||
uint8_t inputState:1;
|
||||
uint8_t latchDelay:6;
|
||||
}; // bit 7=active; bit 6=input state; bits 5-0=latchDelay
|
||||
|
||||
static Sensor *firstSensor;
|
||||
#ifdef USE_NOTIFY
|
||||
static Sensor *firstPollSensor;
|
||||
static Sensor *lastSensor;
|
||||
#endif
|
||||
// readingSensor points to the next sensor to be polled, or null if the poll cycle is completed for
|
||||
// the period.
|
||||
static Sensor *readingSensor;
|
||||
|
||||
// Constructor
|
||||
Sensor();
|
||||
Sensor *nextSensor;
|
||||
|
||||
void setState(int state);
|
||||
static void load();
|
||||
static void store();
|
||||
static Sensor *create(int, int, int);
|
||||
static Sensor* get(int);
|
||||
static bool remove(int);
|
||||
static void checkAll(Print *);
|
||||
static void printAll(Print *);
|
||||
static Sensor *create(int id, VPIN vpin, int pullUp);
|
||||
static Sensor* get(int id);
|
||||
static bool remove(int id);
|
||||
static void checkAll(Print *stream);
|
||||
static void printAll(Print *stream);
|
||||
static unsigned long lastReadCycle; // value of micros at start of last read cycle
|
||||
static const unsigned int cycleInterval = 10000; // min time between consecutive reads of each sensor in microsecs.
|
||||
// should not be less than device scan cycle time.
|
||||
static const unsigned int minReadCount = 1; // number of additional scans before acting on change
|
||||
// E.g. 1 means that a change is ignored for one scan and actioned on the next.
|
||||
// Max value is 63
|
||||
bool pollingRequired = true;
|
||||
|
||||
#ifdef USE_NOTIFY
|
||||
static void inputChangeCallback(VPIN vpin, int state);
|
||||
static bool inputChangeCallbackRegistered;
|
||||
#endif
|
||||
|
||||
}; // Sensor
|
||||
|
||||
#endif
|
||||
|
|
634
Turnouts.cpp
634
Turnouts.cpp
|
@ -1,4 +1,5 @@
|
|||
/*
|
||||
* © 2021 Restructured Neil McKechnie
|
||||
* © 2013-2016 Gregg E. Berman
|
||||
* © 2020, Chris Harlow. All rights reserved.
|
||||
* © 2020, Harald Barth.
|
||||
|
@ -18,166 +19,507 @@
|
|||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "Turnouts.h"
|
||||
|
||||
|
||||
#include "defines.h" // includes config.h
|
||||
#include "EEStore.h"
|
||||
#include "PWMServoDriver.h"
|
||||
#include "StringFormatter.h"
|
||||
#include "RMFT2.h"
|
||||
#include "Turnouts.h"
|
||||
#include "DCC.h"
|
||||
#include "LCN.h"
|
||||
#ifdef EESTOREDEBUG
|
||||
#include "DIAG.h"
|
||||
#endif
|
||||
|
||||
// print all turnout states to stream
|
||||
void Turnout::printAll(Print *stream){
|
||||
for (Turnout *tt = Turnout::firstTurnout; tt != NULL; tt = tt->nextTurnout)
|
||||
StringFormatter::send(stream, F("<H %d %d>\n"), tt->data.id, (tt->data.tStatus & STATUS_ACTIVE)!=0);
|
||||
} // Turnout::printAll
|
||||
/*
|
||||
* Protected static data
|
||||
*/
|
||||
|
||||
bool Turnout::activate(int n,bool state){
|
||||
#ifdef EESTOREDEBUG
|
||||
DIAG(F("Turnout::activate(%d,%d)"),n,state);
|
||||
#endif
|
||||
Turnout * tt=get(n);
|
||||
if (tt==NULL) return false;
|
||||
tt->activate(state);
|
||||
turnoutlistHash++;
|
||||
return true;
|
||||
}
|
||||
/* static */ Turnout *Turnout::_firstTurnout = 0;
|
||||
|
||||
bool Turnout::isActive(int n){
|
||||
Turnout * tt=get(n);
|
||||
if (tt==NULL) return false;
|
||||
return tt->data.tStatus & STATUS_ACTIVE;
|
||||
}
|
||||
/*
|
||||
* Public static data
|
||||
*/
|
||||
/* static */ int Turnout::turnoutlistHash = 0;
|
||||
|
||||
/*
|
||||
* Protected static functions
|
||||
*/
|
||||
|
||||
// activate is virtual here so that it can be overridden by a non-DCC turnout mechanism
|
||||
void Turnout::activate(bool state) {
|
||||
#ifdef EESTOREDEBUG
|
||||
DIAG(F("Turnout::activate(%d)"),state);
|
||||
#endif
|
||||
if (data.address==LCN_TURNOUT_ADDRESS) {
|
||||
// A LCN turnout is transmitted to the LCN master.
|
||||
LCN::send('T',data.id,state);
|
||||
return; // The tStatus will be updated by a message from the LCN master, later.
|
||||
}
|
||||
if (state)
|
||||
data.tStatus|=STATUS_ACTIVE;
|
||||
else
|
||||
data.tStatus &= ~STATUS_ACTIVE;
|
||||
if (data.tStatus & STATUS_PWM)
|
||||
PWMServoDriver::setServo(data.tStatus & STATUS_PWMPIN, (data.inactiveAngle+(state?data.moveAngle:0)));
|
||||
else
|
||||
DCC::setAccessory(data.address,data.subAddress, state);
|
||||
// Save state if stored in EEPROM
|
||||
if (EEStore::eeStore->data.nTurnouts > 0 && num > 0)
|
||||
EEPROM.put(num, data.tStatus);
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Turnout* Turnout::get(int n){
|
||||
Turnout *tt;
|
||||
for(tt=firstTurnout;tt!=NULL && tt->data.id!=n;tt=tt->nextTurnout);
|
||||
return(tt);
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
bool Turnout::remove(int n){
|
||||
Turnout *tt,*pp=NULL;
|
||||
|
||||
for(tt=firstTurnout;tt!=NULL && tt->data.id!=n;pp=tt,tt=tt->nextTurnout);
|
||||
|
||||
if(tt==NULL) return false;
|
||||
|
||||
if(tt==firstTurnout)
|
||||
firstTurnout=tt->nextTurnout;
|
||||
else
|
||||
pp->nextTurnout=tt->nextTurnout;
|
||||
|
||||
free(tt);
|
||||
turnoutlistHash++;
|
||||
return true;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void Turnout::load(){
|
||||
struct TurnoutData data;
|
||||
Turnout *tt;
|
||||
|
||||
for(uint16_t i=0;i<EEStore::eeStore->data.nTurnouts;i++){
|
||||
EEPROM.get(EEStore::pointer(),data);
|
||||
if (data.tStatus & STATUS_PWM) tt=create(data.id,data.tStatus & STATUS_PWMPIN, data.inactiveAngle,data.moveAngle);
|
||||
else tt=create(data.id,data.address,data.subAddress);
|
||||
tt->data.tStatus=data.tStatus;
|
||||
tt->num=EEStore::pointer()+offsetof(TurnoutData,tStatus); // Save pointer to status byte within EEPROM
|
||||
EEStore::advance(sizeof(tt->data));
|
||||
#ifdef EESTOREDEBUG
|
||||
tt->print(tt);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void Turnout::store(){
|
||||
Turnout *tt;
|
||||
|
||||
tt=firstTurnout;
|
||||
EEStore::eeStore->data.nTurnouts=0;
|
||||
|
||||
while(tt!=NULL){
|
||||
#ifdef EESTOREDEBUG
|
||||
tt->print(tt);
|
||||
#endif
|
||||
tt->num=EEStore::pointer()+offsetof(TurnoutData,tStatus); // Save pointer to tstatus byte within EEPROM
|
||||
EEPROM.put(EEStore::pointer(),tt->data);
|
||||
EEStore::advance(sizeof(tt->data));
|
||||
tt=tt->nextTurnout;
|
||||
EEStore::eeStore->data.nTurnouts++;
|
||||
/* static */ Turnout *Turnout::get(uint16_t id) {
|
||||
// Find turnout object from list.
|
||||
for (Turnout *tt = _firstTurnout; tt != NULL; tt = tt->_nextTurnout)
|
||||
if (tt->_turnoutData.id == id) return tt;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Turnout *Turnout::create(int id, int add, int subAdd){
|
||||
Turnout *tt=create(id);
|
||||
tt->data.address=add;
|
||||
tt->data.subAddress=subAdd;
|
||||
tt->data.tStatus=0;
|
||||
return(tt);
|
||||
}
|
||||
|
||||
Turnout *Turnout::create(int id, byte pin, int activeAngle, int inactiveAngle){
|
||||
Turnout *tt=create(id);
|
||||
tt->data.tStatus= STATUS_PWM | (pin & STATUS_PWMPIN);
|
||||
tt->data.inactiveAngle=inactiveAngle;
|
||||
tt->data.moveAngle=activeAngle-inactiveAngle;
|
||||
return(tt);
|
||||
}
|
||||
|
||||
Turnout *Turnout::create(int id){
|
||||
Turnout *tt=get(id);
|
||||
if (tt==NULL) {
|
||||
tt=(Turnout *)calloc(1,sizeof(Turnout));
|
||||
tt->nextTurnout=firstTurnout;
|
||||
firstTurnout=tt;
|
||||
tt->data.id=id;
|
||||
// Add new turnout to end of chain
|
||||
/* static */ void Turnout::add(Turnout *tt) {
|
||||
if (!_firstTurnout)
|
||||
_firstTurnout = tt;
|
||||
else {
|
||||
// Find last object on chain
|
||||
Turnout *ptr = _firstTurnout;
|
||||
for ( ; ptr->_nextTurnout!=0; ptr=ptr->_nextTurnout) {}
|
||||
// Line new object to last object.
|
||||
ptr->_nextTurnout = tt;
|
||||
}
|
||||
turnoutlistHash++;
|
||||
return tt;
|
||||
turnoutlistHash++;
|
||||
}
|
||||
|
||||
// For DCC++ classic compatibility, state reported to JMRI is 1 for thrown and 0 for closed;
|
||||
void Turnout::printState(Print *stream) {
|
||||
StringFormatter::send(stream, F("<H %d %d>\n"),
|
||||
_turnoutData.id, !_turnoutData.closed);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// print debug info about the state of a turnout
|
||||
//
|
||||
#ifdef EESTOREDEBUG
|
||||
void Turnout::print(Turnout *tt) {
|
||||
if (tt->data.tStatus & STATUS_PWM )
|
||||
DIAG(F("Turnout %d ZeroAngle %d MoveAngle %d Status %d"),tt->data.id, tt->data.inactiveAngle, tt->data.moveAngle,tt->data.tStatus & STATUS_ACTIVE);
|
||||
// Remove nominated turnout from turnout linked list and delete the object.
|
||||
/* static */ bool Turnout::remove(uint16_t id) {
|
||||
Turnout *tt,*pp=NULL;
|
||||
|
||||
for(tt=_firstTurnout; tt!=NULL && tt->_turnoutData.id!=id; pp=tt, tt=tt->_nextTurnout) {}
|
||||
if (tt == NULL) return false;
|
||||
|
||||
if (tt == _firstTurnout)
|
||||
_firstTurnout = tt->_nextTurnout;
|
||||
else
|
||||
DIAG(F("Turnout %d Addr %d Subaddr %d Status %d"),tt->data.id, tt->data.address, tt->data.subAddress,tt->data.tStatus & STATUS_ACTIVE);
|
||||
}
|
||||
pp->_nextTurnout = tt->_nextTurnout;
|
||||
|
||||
delete (ServoTurnout *)tt;
|
||||
|
||||
turnoutlistHash++;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Public static functions
|
||||
*/
|
||||
|
||||
/* static */ bool Turnout::isClosed(uint16_t id) {
|
||||
Turnout *tt = get(id);
|
||||
if (tt)
|
||||
return tt->isClosed();
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
/* static */ bool Turnout::setClosedStateOnly(uint16_t id, bool closeFlag) {
|
||||
Turnout *tt = get(id);
|
||||
if (!tt) return false;
|
||||
tt->_turnoutData.closed = closeFlag;
|
||||
|
||||
// I know it says setClosedStateOnly, but we need to tell others
|
||||
// that the state has changed too.
|
||||
#if defined(RMFT_ACTIVE)
|
||||
RMFT2::turnoutEvent(id, closeFlag);
|
||||
#endif
|
||||
|
||||
// Send message to JMRI etc. over Serial USB. This is done here
|
||||
// to ensure that the message is sent when the turnout operation
|
||||
// is not initiated by a Serial command.
|
||||
tt->printState(&Serial);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Static setClosed function is invoked from close(), throw() etc. to perform the
|
||||
// common parts of the turnout operation. Code which is specific to a turnout
|
||||
// type should be placed in the virtual function setClosedInternal(bool) which is
|
||||
// called from here.
|
||||
/* static */ bool Turnout::setClosed(uint16_t id, bool closeFlag) {
|
||||
#if defined(DIAG_IO)
|
||||
if (closeFlag)
|
||||
DIAG(F("Turnout::close(%d)"), id);
|
||||
else
|
||||
DIAG(F("Turnout::throw(%d)"), id);
|
||||
#endif
|
||||
Turnout *tt = Turnout::get(id);
|
||||
if (!tt) return false;
|
||||
bool ok = tt->setClosedInternal(closeFlag);
|
||||
|
||||
if (ok) {
|
||||
turnoutlistHash++; // let withrottle know something changed
|
||||
|
||||
// Write byte containing new closed/thrown state to EEPROM if required. Note that eepromAddress
|
||||
// is always zero for LCN turnouts.
|
||||
if (EEStore::eeStore->data.nTurnouts > 0 && tt->_eepromAddress > 0)
|
||||
EEPROM.put(tt->_eepromAddress, tt->_turnoutData.flags);
|
||||
|
||||
#if defined(RMFT_ACTIVE)
|
||||
RMFT2::turnoutEvent(id, closeFlag);
|
||||
#endif
|
||||
|
||||
// Send message to JMRI etc. over Serial USB. This is done here
|
||||
// to ensure that the message is sent when the turnout operation
|
||||
// is not initiated by a Serial command.
|
||||
tt->printState(&Serial);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Load all turnout objects
|
||||
/* static */ void Turnout::load() {
|
||||
for (uint16_t i=0; i<EEStore::eeStore->data.nTurnouts; i++) {
|
||||
Turnout::loadTurnout();
|
||||
}
|
||||
}
|
||||
|
||||
// Save all turnout objects
|
||||
/* static */ void Turnout::store() {
|
||||
EEStore::eeStore->data.nTurnouts=0;
|
||||
for (Turnout *tt = _firstTurnout; tt != 0; tt = tt->_nextTurnout) {
|
||||
tt->save();
|
||||
EEStore::eeStore->data.nTurnouts++;
|
||||
}
|
||||
}
|
||||
|
||||
// Load one turnout from EEPROM
|
||||
/* static */ Turnout *Turnout::loadTurnout () {
|
||||
Turnout *tt = 0;
|
||||
// Read turnout type from EEPROM
|
||||
struct TurnoutData turnoutData;
|
||||
int eepromAddress = EEStore::pointer() + offsetof(struct TurnoutData, flags); // Address of byte containing the closed flag.
|
||||
EEPROM.get(EEStore::pointer(), turnoutData);
|
||||
EEStore::advance(sizeof(turnoutData));
|
||||
|
||||
switch (turnoutData.turnoutType) {
|
||||
case TURNOUT_SERVO:
|
||||
// Servo turnout
|
||||
tt = ServoTurnout::load(&turnoutData);
|
||||
break;
|
||||
case TURNOUT_DCC:
|
||||
// DCC Accessory turnout
|
||||
tt = DCCTurnout::load(&turnoutData);
|
||||
break;
|
||||
case TURNOUT_VPIN:
|
||||
// VPIN turnout
|
||||
tt = VpinTurnout::load(&turnoutData);
|
||||
break;
|
||||
default:
|
||||
// If we find anything else, then we don't know what it is or how long it is,
|
||||
// so we can't go any further through the EEPROM!
|
||||
return NULL;
|
||||
}
|
||||
if (tt) {
|
||||
// Save EEPROM address in object. Note that LCN turnouts always have eepromAddress of zero.
|
||||
tt->_eepromAddress = eepromAddress + offsetof(struct TurnoutData, flags);
|
||||
}
|
||||
|
||||
#ifdef EESTOREDEBUG
|
||||
printAll(&Serial);
|
||||
#endif
|
||||
return tt;
|
||||
}
|
||||
|
||||
// Display, on the specified stream, the current state of the turnout (1=thrown or 0=closed).
|
||||
/* static */ void Turnout::printState(uint16_t id, Print *stream) {
|
||||
Turnout *tt = get(id);
|
||||
if (tt) tt->printState(stream);
|
||||
}
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* ServoTurnout - Turnout controlled by servo device.
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
// Private Constructor
|
||||
ServoTurnout::ServoTurnout(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed) :
|
||||
Turnout(id, TURNOUT_SERVO, closed)
|
||||
{
|
||||
_servoTurnoutData.vpin = vpin;
|
||||
_servoTurnoutData.thrownPosition = thrownPosition;
|
||||
_servoTurnoutData.closedPosition = closedPosition;
|
||||
_servoTurnoutData.profile = profile;
|
||||
}
|
||||
|
||||
// Create function
|
||||
/* static */ Turnout *ServoTurnout::create(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed) {
|
||||
#ifndef IO_NO_HAL
|
||||
Turnout *tt = get(id);
|
||||
if (tt) {
|
||||
// Object already exists, check if it is usable
|
||||
if (tt->isType(TURNOUT_SERVO)) {
|
||||
// Yes, so set parameters
|
||||
ServoTurnout *st = (ServoTurnout *)tt;
|
||||
st->_servoTurnoutData.vpin = vpin;
|
||||
st->_servoTurnoutData.thrownPosition = thrownPosition;
|
||||
st->_servoTurnoutData.closedPosition = closedPosition;
|
||||
st->_servoTurnoutData.profile = profile;
|
||||
// Don't touch the _closed parameter, retain the original value.
|
||||
|
||||
// We don't really need to do the following, since a call to IODevice::_writeAnalogue
|
||||
// will provide all the data that is required! However, if someone has configured
|
||||
// a Turnout, we should ensure that the SET() RESET() and other commands that use write()
|
||||
// behave consistently with the turnout commands.
|
||||
IODevice::configureServo(vpin, thrownPosition, closedPosition, profile, 0, closed);
|
||||
|
||||
// Set position directly to specified position - we don't know where it is moving from.
|
||||
IODevice::writeAnalogue(vpin, closed ? closedPosition : thrownPosition, PCA9685::Instant);
|
||||
|
||||
return tt;
|
||||
} else {
|
||||
// Incompatible object, delete and recreate
|
||||
remove(id);
|
||||
}
|
||||
}
|
||||
tt = (Turnout *)new ServoTurnout(id, vpin, thrownPosition, closedPosition, profile, closed);
|
||||
IODevice::writeAnalogue(vpin, closed ? closedPosition : thrownPosition, PCA9685::Instant);
|
||||
return tt;
|
||||
#else
|
||||
(void)id; (void)vpin; (void)thrownPosition; (void)closedPosition;
|
||||
(void)profile; (void)closed; // avoid compiler warnings.
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Load a Servo turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
Turnout *ServoTurnout::load(struct TurnoutData *turnoutData) {
|
||||
ServoTurnoutData servoTurnoutData;
|
||||
// Read class-specific data from EEPROM
|
||||
EEPROM.get(EEStore::pointer(), servoTurnoutData);
|
||||
EEStore::advance(sizeof(servoTurnoutData));
|
||||
|
||||
// Create new object
|
||||
Turnout *tt = ServoTurnout::create(turnoutData->id, servoTurnoutData.vpin, servoTurnoutData.thrownPosition,
|
||||
servoTurnoutData.closedPosition, servoTurnoutData.profile, turnoutData->closed);
|
||||
return tt;
|
||||
}
|
||||
|
||||
// For DCC++ classic compatibility, state reported to JMRI is 1 for thrown and 0 for closed
|
||||
void ServoTurnout::print(Print *stream) {
|
||||
StringFormatter::send(stream, F("<H %d SERVO %d %d %d %d %d>\n"), _turnoutData.id, _servoTurnoutData.vpin,
|
||||
_servoTurnoutData.thrownPosition, _servoTurnoutData.closedPosition, _servoTurnoutData.profile,
|
||||
!_turnoutData.closed);
|
||||
}
|
||||
|
||||
// ServoTurnout-specific code for throwing or closing a servo turnout.
|
||||
bool ServoTurnout::setClosedInternal(bool close) {
|
||||
#ifndef IO_NO_HAL
|
||||
IODevice::writeAnalogue(_servoTurnoutData.vpin,
|
||||
close ? _servoTurnoutData.closedPosition : _servoTurnoutData.thrownPosition, _servoTurnoutData.profile);
|
||||
_turnoutData.closed = close;
|
||||
#else
|
||||
(void)close; // avoid compiler warnings
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
void ServoTurnout::save() {
|
||||
// Write turnout definition and current position to EEPROM
|
||||
// First write common servo data, then
|
||||
// write the servo-specific data
|
||||
EEPROM.put(EEStore::pointer(), _turnoutData);
|
||||
EEStore::advance(sizeof(_turnoutData));
|
||||
EEPROM.put(EEStore::pointer(), _servoTurnoutData);
|
||||
EEStore::advance(sizeof(_servoTurnoutData));
|
||||
}
|
||||
|
||||
/*************************************************************************************
|
||||
* DCCTurnout - Turnout controlled by DCC Accessory Controller.
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
#if defined(DCC_TURNOUTS_RCN_213)
|
||||
const bool DCCTurnout::rcn213Compliant = true;
|
||||
#else
|
||||
const bool DCCTurnout::rcn213Compliant = false;
|
||||
#endif
|
||||
|
||||
Turnout *Turnout::firstTurnout=NULL;
|
||||
int Turnout::turnoutlistHash=0; //bump on every change so clients know when to refresh their lists
|
||||
// DCCTurnoutData contains data specific to this subclass that is
|
||||
// written to EEPROM when the turnout is saved.
|
||||
struct DCCTurnoutData {
|
||||
// DCC address (Address in bits 15-2, subaddress in bits 1-0
|
||||
uint16_t address; // CS currently supports linear address 1-2048
|
||||
// That's DCC accessory address 1-512 and subaddress 0-3.
|
||||
} _dccTurnoutData; // 2 bytes
|
||||
|
||||
// Constructor
|
||||
DCCTurnout::DCCTurnout(uint16_t id, uint16_t address, uint8_t subAdd) :
|
||||
Turnout(id, TURNOUT_DCC, false)
|
||||
{
|
||||
_dccTurnoutData.address = address;
|
||||
_dccTurnoutData.subAddress = subAdd;
|
||||
}
|
||||
|
||||
// Create function
|
||||
/* static */ Turnout *DCCTurnout::create(uint16_t id, uint16_t add, uint8_t subAdd) {
|
||||
Turnout *tt = get(id);
|
||||
if (tt) {
|
||||
// Object already exists, check if it is usable
|
||||
if (tt->isType(TURNOUT_DCC)) {
|
||||
// Yes, so set parameters<T>
|
||||
DCCTurnout *dt = (DCCTurnout *)tt;
|
||||
dt->_dccTurnoutData.address = add;
|
||||
dt->_dccTurnoutData.subAddress = subAdd;
|
||||
// Don't touch the _closed parameter, retain the original value.
|
||||
return tt;
|
||||
} else {
|
||||
// Incompatible object, delete and recreate
|
||||
remove(id);
|
||||
}
|
||||
}
|
||||
tt = (Turnout *)new DCCTurnout(id, add, subAdd);
|
||||
return tt;
|
||||
}
|
||||
|
||||
// Load a DCC turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
/* static */ Turnout *DCCTurnout::load(struct TurnoutData *turnoutData) {
|
||||
DCCTurnoutData dccTurnoutData;
|
||||
// Read class-specific data from EEPROM
|
||||
EEPROM.get(EEStore::pointer(), dccTurnoutData);
|
||||
EEStore::advance(sizeof(dccTurnoutData));
|
||||
|
||||
// Create new object
|
||||
DCCTurnout *tt = new DCCTurnout(turnoutData->id, dccTurnoutData.address, dccTurnoutData.subAddress);
|
||||
|
||||
return tt;
|
||||
}
|
||||
|
||||
void DCCTurnout::print(Print *stream) {
|
||||
StringFormatter::send(stream, F("<H %d DCC %d %d %d>\n"), _turnoutData.id,
|
||||
_dccTurnoutData.address, _dccTurnoutData.subAddress, !_turnoutData.closed);
|
||||
// Also report using classic DCC++ syntax for DCC accessory turnouts, since JMRI expects this.
|
||||
StringFormatter::send(stream, F("<H %d %d %d %d>\n"), _turnoutData.id,
|
||||
_dccTurnoutData.address, _dccTurnoutData.subAddress, !_turnoutData.closed);
|
||||
}
|
||||
|
||||
bool DCCTurnout::setClosedInternal(bool close) {
|
||||
// DCC++ Classic behaviour is that Throw writes a 1 in the packet,
|
||||
// and Close writes a 0.
|
||||
// RCN-213 specifies that Throw is 0 and Close is 1.
|
||||
DCC::setAccessory(_dccTurnoutData.address, _dccTurnoutData.subAddress, close ^ !rcn213Compliant);
|
||||
_turnoutData.closed = close;
|
||||
return true;
|
||||
}
|
||||
|
||||
void DCCTurnout::save() {
|
||||
// Write turnout definition and current position to EEPROM
|
||||
// First write common servo data, then
|
||||
// write the servo-specific data
|
||||
EEPROM.put(EEStore::pointer(), _turnoutData);
|
||||
EEStore::advance(sizeof(_turnoutData));
|
||||
EEPROM.put(EEStore::pointer(), _dccTurnoutData);
|
||||
EEStore::advance(sizeof(_dccTurnoutData));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* VpinTurnout - Turnout controlled through a HAL vpin.
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
// Constructor
|
||||
VpinTurnout::VpinTurnout(uint16_t id, VPIN vpin, bool closed) :
|
||||
Turnout(id, TURNOUT_VPIN, closed)
|
||||
{
|
||||
_vpinTurnoutData.vpin = vpin;
|
||||
}
|
||||
|
||||
// Create function
|
||||
/* static */ Turnout *VpinTurnout::create(uint16_t id, VPIN vpin, bool closed) {
|
||||
Turnout *tt = get(id);
|
||||
if (tt) {
|
||||
// Object already exists, check if it is usable
|
||||
if (tt->isType(TURNOUT_VPIN)) {
|
||||
// Yes, so set parameters
|
||||
VpinTurnout *vt = (VpinTurnout *)tt;
|
||||
vt->_vpinTurnoutData.vpin = vpin;
|
||||
// Don't touch the _closed parameter, retain the original value.
|
||||
return tt;
|
||||
} else {
|
||||
// Incompatible object, delete and recreate
|
||||
remove(id);
|
||||
}
|
||||
}
|
||||
tt = (Turnout *)new VpinTurnout(id, vpin, closed);
|
||||
return tt;
|
||||
}
|
||||
|
||||
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
/* static */ Turnout *VpinTurnout::load(struct TurnoutData *turnoutData) {
|
||||
VpinTurnoutData vpinTurnoutData;
|
||||
// Read class-specific data from EEPROM
|
||||
EEPROM.get(EEStore::pointer(), vpinTurnoutData);
|
||||
EEStore::advance(sizeof(vpinTurnoutData));
|
||||
|
||||
// Create new object
|
||||
VpinTurnout *tt = new VpinTurnout(turnoutData->id, vpinTurnoutData.vpin, turnoutData->closed);
|
||||
|
||||
return tt;
|
||||
}
|
||||
|
||||
// Report 1 for thrown, 0 for closed.
|
||||
void VpinTurnout::print(Print *stream) {
|
||||
StringFormatter::send(stream, F("<H %d VPIN %d %d>\n"), _turnoutData.id, _vpinTurnoutData.vpin,
|
||||
!_turnoutData.closed);
|
||||
}
|
||||
|
||||
bool VpinTurnout::setClosedInternal(bool close) {
|
||||
IODevice::write(_vpinTurnoutData.vpin, close);
|
||||
_turnoutData.closed = close;
|
||||
return true;
|
||||
}
|
||||
|
||||
void VpinTurnout::save() {
|
||||
// Write turnout definition and current position to EEPROM
|
||||
// First write common servo data, then
|
||||
// write the servo-specific data
|
||||
EEPROM.put(EEStore::pointer(), _turnoutData);
|
||||
EEStore::advance(sizeof(_turnoutData));
|
||||
EEPROM.put(EEStore::pointer(), _vpinTurnoutData);
|
||||
EEStore::advance(sizeof(_vpinTurnoutData));
|
||||
}
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* LCNTurnout - Turnout controlled by Loconet
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
// LCNTurnout has no specific data, and in any case is not written to EEPROM!
|
||||
// struct LCNTurnoutData {
|
||||
// } _lcnTurnoutData; // 0 bytes
|
||||
|
||||
// Constructor
|
||||
LCNTurnout::LCNTurnout(uint16_t id, bool closed) :
|
||||
Turnout(id, TURNOUT_LCN, closed)
|
||||
{ }
|
||||
|
||||
// Create function
|
||||
/* static */ Turnout *LCNTurnout::create(uint16_t id, bool closed) {
|
||||
Turnout *tt = get(id);
|
||||
if (tt) {
|
||||
// Object already exists, check if it is usable
|
||||
if (tt->isType(TURNOUT_LCN)) {
|
||||
// Yes, so return this object
|
||||
return tt;
|
||||
} else {
|
||||
// Incompatible object, delete and recreate
|
||||
remove(id);
|
||||
}
|
||||
}
|
||||
tt = (Turnout *)new LCNTurnout(id, closed);
|
||||
return tt;
|
||||
}
|
||||
|
||||
bool LCNTurnout::setClosedInternal(bool close) {
|
||||
// Assume that the LCN command still uses 1 for throw and 0 for close...
|
||||
LCN::send('T', _turnoutData.id, !close);
|
||||
// The _turnoutData.closed flag should be updated by a message from the LCN master, later.
|
||||
return true;
|
||||
}
|
||||
|
||||
// LCN turnouts not saved to EEPROM.
|
||||
//void save() override { }
|
||||
//static Turnout *load(struct TurnoutData *turnoutData) {
|
||||
|
||||
// Report 1 for thrown, 0 for closed.
|
||||
void LCNTurnout::print(Print *stream) {
|
||||
StringFormatter::send(stream, F("<H %d LCN %d>\n"), _turnoutData.id,
|
||||
!_turnoutData.closed);
|
||||
}
|
||||
|
||||
|
|
311
Turnouts.h
311
Turnouts.h
|
@ -1,4 +1,6 @@
|
|||
/*
|
||||
* © 2021 Restructured Neil McKechnie
|
||||
* © 2013-2016 Gregg E. Berman
|
||||
* © 2020, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of Asbelos DCC API
|
||||
|
@ -16,46 +18,283 @@
|
|||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef Turnouts_h
|
||||
#define Turnouts_h
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "DCC.h"
|
||||
#include "LCN.h"
|
||||
#ifndef TURNOUTS_H
|
||||
#define TURNOUTS_H
|
||||
|
||||
const byte STATUS_ACTIVE=0x80; // Flag as activated
|
||||
const byte STATUS_PWM=0x40; // Flag as a PWM turnout
|
||||
const byte STATUS_PWMPIN=0x3F; // PWM pin 0-63
|
||||
const int LCN_TURNOUT_ADDRESS=-1; // spoof dcc address -1 indicates a LCN turnout
|
||||
struct TurnoutData {
|
||||
int id;
|
||||
uint8_t tStatus; // has STATUS_ACTIVE, STATUS_PWM, STATUS_PWMPIN
|
||||
union {uint8_t subAddress; char moveAngle;}; //DCC sub addrerss or PWM difference from inactiveAngle
|
||||
union {int address; int inactiveAngle;}; // DCC address or PWM servo angle
|
||||
//#define EESTOREDEBUG
|
||||
#include "Arduino.h"
|
||||
#include "IODevice.h"
|
||||
|
||||
|
||||
// Turnout type definitions
|
||||
enum {
|
||||
TURNOUT_DCC = 1,
|
||||
TURNOUT_SERVO = 2,
|
||||
TURNOUT_VPIN = 3,
|
||||
TURNOUT_LCN = 4,
|
||||
};
|
||||
|
||||
/*************************************************************************************
|
||||
* Turnout - Base class for turnouts.
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
class Turnout {
|
||||
public:
|
||||
static Turnout *firstTurnout;
|
||||
static int turnoutlistHash;
|
||||
TurnoutData data;
|
||||
Turnout *nextTurnout;
|
||||
static bool activate(int n, bool state);
|
||||
static Turnout* get(int);
|
||||
static bool remove(int);
|
||||
static bool isActive(int);
|
||||
static void load();
|
||||
static void store();
|
||||
static Turnout *create(int id , int address , int subAddress);
|
||||
static Turnout *create(int id , byte pin , int activeAngle, int inactiveAngle);
|
||||
static Turnout *create(int id);
|
||||
void activate(bool state);
|
||||
static void printAll(Print *);
|
||||
#ifdef EESTOREDEBUG
|
||||
void print(Turnout *tt);
|
||||
#endif
|
||||
private:
|
||||
int num; // EEPROM address of tStatus in TurnoutData struct, or zero if not stored.
|
||||
}; // Turnout
|
||||
protected:
|
||||
/*
|
||||
* Object data
|
||||
*/
|
||||
|
||||
// The TurnoutData struct contains data common to all turnout types, that
|
||||
// is written to EEPROM when the turnout is saved.
|
||||
// The first byte of this struct contains the 'closed' flag which is
|
||||
// updated whenever the turnout changes from thrown to closed and
|
||||
// vice versa. If the turnout has been saved, then this byte is rewritten
|
||||
// when changed in RAM. The 'closed' flag must be located in the first byte.
|
||||
struct TurnoutData {
|
||||
union {
|
||||
struct {
|
||||
bool closed : 1;
|
||||
bool _rfu: 2;
|
||||
uint8_t turnoutType : 5;
|
||||
};
|
||||
uint8_t flags;
|
||||
};
|
||||
uint16_t id;
|
||||
} _turnoutData; // 3 bytes
|
||||
|
||||
// Address in eeprom of first byte of the _turnoutData struct (containing the closed flag).
|
||||
// Set to zero if the object has not been saved in EEPROM, e.g. for newly created Turnouts, and
|
||||
// for all LCN turnouts.
|
||||
uint16_t _eepromAddress = 0;
|
||||
|
||||
// Pointer to next turnout on linked list.
|
||||
Turnout *_nextTurnout = 0;
|
||||
|
||||
/*
|
||||
* Constructor
|
||||
*/
|
||||
Turnout(uint16_t id, uint8_t turnoutType, bool closed) {
|
||||
_turnoutData.id = id;
|
||||
_turnoutData.turnoutType = turnoutType;
|
||||
_turnoutData.closed = closed;
|
||||
add(this);
|
||||
}
|
||||
|
||||
/*
|
||||
* Static data
|
||||
*/
|
||||
|
||||
static Turnout *_firstTurnout;
|
||||
static int _turnoutlistHash;
|
||||
|
||||
/*
|
||||
* Virtual functions
|
||||
*/
|
||||
|
||||
virtual bool setClosedInternal(bool close) = 0; // Mandatory in subclass
|
||||
virtual void save() {}
|
||||
|
||||
/*
|
||||
* Static functions
|
||||
*/
|
||||
|
||||
static Turnout *get(uint16_t id);
|
||||
|
||||
static void add(Turnout *tt);
|
||||
|
||||
public:
|
||||
/*
|
||||
* Static data
|
||||
*/
|
||||
static int turnoutlistHash;
|
||||
static const bool useClassicTurnoutCommands;
|
||||
|
||||
/*
|
||||
* Public base class functions
|
||||
*/
|
||||
inline bool isClosed() { return _turnoutData.closed; };
|
||||
inline bool isThrown() { return !_turnoutData.closed; }
|
||||
inline bool isType(uint8_t type) { return _turnoutData.turnoutType == type; }
|
||||
inline uint16_t getId() { return _turnoutData.id; }
|
||||
inline Turnout *next() { return _nextTurnout; }
|
||||
void printState(Print *stream);
|
||||
/*
|
||||
* Virtual functions
|
||||
*/
|
||||
virtual void print(Print *stream) {
|
||||
(void)stream; // avoid compiler warnings.
|
||||
}
|
||||
virtual ~Turnout() {} // Destructor
|
||||
|
||||
/*
|
||||
* Public static functions
|
||||
*/
|
||||
inline static bool exists(uint16_t id) { return get(id) != 0; }
|
||||
|
||||
static bool remove(uint16_t id);
|
||||
|
||||
static bool isClosed(uint16_t id);
|
||||
|
||||
inline static bool isThrown(uint16_t id) {
|
||||
return !isClosed(id);
|
||||
}
|
||||
|
||||
static bool setClosed(uint16_t id, bool closeFlag);
|
||||
|
||||
inline static bool setClosed(uint16_t id) {
|
||||
return setClosed(id, true);
|
||||
}
|
||||
|
||||
inline static bool setThrown(uint16_t id) {
|
||||
return setClosed(id, false);
|
||||
}
|
||||
|
||||
static bool setClosedStateOnly(uint16_t id, bool close);
|
||||
|
||||
inline static Turnout *first() { return _firstTurnout; }
|
||||
|
||||
// Load all turnout definitions.
|
||||
static void load();
|
||||
// Load one turnout definition
|
||||
static Turnout *loadTurnout();
|
||||
// Save all turnout definitions
|
||||
static void store();
|
||||
|
||||
static void printAll(Print *stream) {
|
||||
for (Turnout *tt = _firstTurnout; tt != 0; tt = tt->_nextTurnout)
|
||||
tt->printState(stream);
|
||||
}
|
||||
|
||||
static void printState(uint16_t id, Print *stream);
|
||||
};
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* ServoTurnout - Turnout controlled by servo device.
|
||||
*
|
||||
*************************************************************************************/
|
||||
class ServoTurnout : public Turnout {
|
||||
private:
|
||||
// ServoTurnoutData contains data specific to this subclass that is
|
||||
// written to EEPROM when the turnout is saved.
|
||||
struct ServoTurnoutData {
|
||||
VPIN vpin;
|
||||
uint16_t closedPosition : 12;
|
||||
uint16_t thrownPosition : 12;
|
||||
uint8_t profile;
|
||||
} _servoTurnoutData; // 6 bytes
|
||||
|
||||
// Constructor
|
||||
ServoTurnout(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed);
|
||||
|
||||
public:
|
||||
// Create function
|
||||
static Turnout *create(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed=true);
|
||||
|
||||
// Load a Servo turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
static Turnout *load(struct TurnoutData *turnoutData);
|
||||
void print(Print *stream) override;
|
||||
|
||||
protected:
|
||||
// ServoTurnout-specific code for throwing or closing a servo turnout.
|
||||
bool setClosedInternal(bool close) override;
|
||||
void save() override;
|
||||
|
||||
};
|
||||
|
||||
/*************************************************************************************
|
||||
* DCCTurnout - Turnout controlled by DCC Accessory Controller.
|
||||
*
|
||||
*************************************************************************************/
|
||||
class DCCTurnout : public Turnout {
|
||||
private:
|
||||
// DCCTurnoutData contains data specific to this subclass that is
|
||||
// written to EEPROM when the turnout is saved.
|
||||
struct DCCTurnoutData {
|
||||
// DCC address (Address in bits 15-2, subaddress in bits 1-0)
|
||||
struct {
|
||||
uint16_t address : 14;
|
||||
uint8_t subAddress : 2;
|
||||
};
|
||||
} _dccTurnoutData; // 2 bytes
|
||||
|
||||
// Constructor
|
||||
DCCTurnout(uint16_t id, uint16_t address, uint8_t subAdd);
|
||||
|
||||
public:
|
||||
// Create function
|
||||
static Turnout *create(uint16_t id, uint16_t add, uint8_t subAdd);
|
||||
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
static Turnout *load(struct TurnoutData *turnoutData);
|
||||
void print(Print *stream) override;
|
||||
// Flag whether DCC Accessory packets are to contain 1=close/0=throw(RCN-213) or 1=throw/0-close (DCC++ Classic)
|
||||
static const bool rcn213Compliant;
|
||||
|
||||
protected:
|
||||
bool setClosedInternal(bool close) override;
|
||||
void save() override;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* VpinTurnout - Turnout controlled through a HAL vpin.
|
||||
*
|
||||
*************************************************************************************/
|
||||
class VpinTurnout : public Turnout {
|
||||
private:
|
||||
// VpinTurnoutData contains data specific to this subclass that is
|
||||
// written to EEPROM when the turnout is saved.
|
||||
struct VpinTurnoutData {
|
||||
VPIN vpin;
|
||||
} _vpinTurnoutData; // 2 bytes
|
||||
|
||||
// Constructor
|
||||
VpinTurnout(uint16_t id, VPIN vpin, bool closed);
|
||||
|
||||
public:
|
||||
// Create function
|
||||
static Turnout *create(uint16_t id, VPIN vpin, bool closed=true);
|
||||
|
||||
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
static Turnout *load(struct TurnoutData *turnoutData);
|
||||
void print(Print *stream) override;
|
||||
|
||||
protected:
|
||||
bool setClosedInternal(bool close) override;
|
||||
void save() override;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*************************************************************************************
|
||||
* LCNTurnout - Turnout controlled by Loconet
|
||||
*
|
||||
*************************************************************************************/
|
||||
class LCNTurnout : public Turnout {
|
||||
private:
|
||||
// LCNTurnout has no specific data, and in any case is not written to EEPROM!
|
||||
// struct LCNTurnoutData {
|
||||
// } _lcnTurnoutData; // 0 bytes
|
||||
|
||||
// Constructor
|
||||
LCNTurnout(uint16_t id, bool closed);
|
||||
|
||||
public:
|
||||
// Create function
|
||||
static Turnout *create(uint16_t id, bool closed=true);
|
||||
|
||||
|
||||
bool setClosedInternal(bool close) override;
|
||||
|
||||
// LCN turnouts not saved to EEPROM.
|
||||
//void save() override { }
|
||||
//static Turnout *load(struct TurnoutData *turnoutData) {
|
||||
|
||||
void print(Print *stream) override;
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -40,6 +40,7 @@
|
|||
* WiThrottle.h sets the max locos per client at 10, this is ok to increase but requires just an extra 3 bytes per loco per client.
|
||||
*/
|
||||
#include <Arduino.h>
|
||||
#include "defines.h"
|
||||
#include "WiThrottle.h"
|
||||
#include "DCC.h"
|
||||
#include "DCCWaveform.h"
|
||||
|
@ -48,12 +49,13 @@
|
|||
#include "DIAG.h"
|
||||
#include "GITHUB_SHA.h"
|
||||
#include "version.h"
|
||||
#include "RMFT2.h"
|
||||
|
||||
|
||||
#define LOOPLOCOS(THROTTLECHAR, CAB) for (int loco=0;loco<MAX_MY_LOCO;loco++) \
|
||||
if ((myLocos[loco].throttle==THROTTLECHAR || '*'==THROTTLECHAR) && (CAB<0 || myLocos[loco].cab==CAB))
|
||||
|
||||
WiThrottle * WiThrottle::firstThrottle=NULL;
|
||||
bool WiThrottle::annotateLeftRight=false;
|
||||
|
||||
WiThrottle* WiThrottle::getThrottle( int wifiClient) {
|
||||
for (WiThrottle* wt=firstThrottle; wt!=NULL ; wt=wt->nextThrottle)
|
||||
|
@ -83,6 +85,8 @@ WiThrottle::WiThrottle( int wificlientid) {
|
|||
initSent=false; // prevent sending heartbeats before connection completed
|
||||
heartBeatEnable=false; // until client turns it on
|
||||
turnoutListHash = -1; // make sure turnout list is sent once
|
||||
exRailSent=false;
|
||||
mostRecentCab=0;
|
||||
for (int loco=0;loco<MAX_MY_LOCO; loco++) myLocos[loco].throttle='\0';
|
||||
}
|
||||
|
||||
|
@ -116,12 +120,21 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
|||
// Send turnout list if changed since last sent (will replace list on client)
|
||||
if (turnoutListHash != Turnout::turnoutlistHash) {
|
||||
StringFormatter::send(stream,F("PTL"));
|
||||
for(Turnout *tt=Turnout::firstTurnout;tt!=NULL;tt=tt->nextTurnout){
|
||||
StringFormatter::send(stream,F("]\\[%d}|{%d}|{%c"), tt->data.id, tt->data.id, Turnout::isActive(tt->data.id)?'4':'2');
|
||||
for(Turnout *tt=Turnout::first();tt!=NULL;tt=tt->next()){
|
||||
int id=tt->getId();
|
||||
StringFormatter::send(stream,F("]\\[%d}|{%d}|{%c"), id, id, Turnout::isClosed(id)?'2':'4');
|
||||
}
|
||||
StringFormatter::send(stream,F("\n"));
|
||||
turnoutListHash = Turnout::turnoutlistHash; // keep a copy of hash for later comparison
|
||||
}
|
||||
|
||||
else if (!exRailSent) {
|
||||
// Send ExRail routes list if not already sent (but not at same time as turnouts above)
|
||||
exRailSent=true;
|
||||
#ifdef RMFT_ACTIVE
|
||||
RMFT2::emitWithrottleRouteList(stream);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
while (cmd[0]) {
|
||||
|
@ -138,25 +151,40 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
|||
StringFormatter::send(stream,F("PPA%x\n"),DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON);
|
||||
lastPowerState = (DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON); //remember power state sent for comparison later
|
||||
}
|
||||
#if defined(RMFT_ACTIVE)
|
||||
else if (cmd[1]=='R' && cmd[2]=='A' && cmd[3]=='2' ) { // Route activate
|
||||
// exrail routes are RA2Rn , Animations are RA2An
|
||||
int route=getInt(cmd+5);
|
||||
uint16_t cab=cmd[4]=='A' ? mostRecentCab : 0;
|
||||
RMFT2::createNewTask(route, cab);
|
||||
}
|
||||
#endif
|
||||
else if (cmd[1]=='T' && cmd[2]=='A') { // PTA accessory toggle
|
||||
int id=getInt(cmd+4);
|
||||
bool newstate=false;
|
||||
Turnout * tt=Turnout::get(id);
|
||||
if (!tt) {
|
||||
if (!Turnout::exists(id)) {
|
||||
// If turnout does not exist, create it
|
||||
int addr = ((id - 1) / 4) + 1;
|
||||
int subaddr = (id - 1) % 4;
|
||||
Turnout::create(id,addr,subaddr);
|
||||
DCCTurnout::create(id,addr,subaddr);
|
||||
StringFormatter::send(stream, F("HmTurnout %d created\n"),id);
|
||||
}
|
||||
switch (cmd[3]) {
|
||||
case 'T': newstate=true; break;
|
||||
case 'C': newstate=false; break;
|
||||
case '2': newstate=!Turnout::isActive(id);
|
||||
// T and C according to RCN-213 where 0 is Stop, Red, Thrown, Diverging.
|
||||
case 'T':
|
||||
Turnout::setClosed(id,false);
|
||||
break;
|
||||
case 'C':
|
||||
Turnout::setClosed(id,true);
|
||||
break;
|
||||
case '2':
|
||||
Turnout::setClosed(id,!Turnout::isClosed(id));
|
||||
break;
|
||||
default :
|
||||
Turnout::setClosed(id,true);
|
||||
break;
|
||||
}
|
||||
Turnout::activate(id,newstate);
|
||||
StringFormatter::send(stream, F("PTA%c%d\n"),newstate?'4':'2',id );
|
||||
}
|
||||
StringFormatter::send(stream, F("PTA%c%d\n"),Turnout::isClosed(id)?'2':'4',id );
|
||||
}
|
||||
break;
|
||||
case 'N': // Heartbeat (2), only send if connection completed by 'HU' message
|
||||
if (initSent) {
|
||||
|
@ -170,8 +198,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
|||
if (cmd[1] == 'U') {
|
||||
StringFormatter::send(stream,F("VN2.0\nHTDCC-EX\nRL0\n"));
|
||||
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
|
||||
if (annotateLeftRight) StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[Left}|{2]\\[Right}|{4\n"));
|
||||
else StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[Closed}|{2]\\[Thrown}|{4\n"));
|
||||
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
|
||||
StringFormatter::send(stream,F("PPA%x\n"),DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON);
|
||||
lastPowerState = (DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON); //remember power state sent for comparison later
|
||||
StringFormatter::send(stream,F("*%d\n"),HEARTBEAT_SECONDS);
|
||||
|
@ -244,6 +271,7 @@ void WiThrottle::multithrottle(RingStream * stream, byte * cmd){
|
|||
if (myLocos[loco].throttle=='\0') {
|
||||
myLocos[loco].throttle=throttleChar;
|
||||
myLocos[loco].cab=locoid;
|
||||
mostRecentCab=locoid;
|
||||
StringFormatter::send(stream, F("M%c+%c%d<;>\n"), throttleChar, cmd[3] ,locoid); //tell client to add loco
|
||||
//Get known Fn states from DCC
|
||||
for(int fKey=0; fKey<=28; fKey++) {
|
||||
|
@ -278,6 +306,7 @@ void WiThrottle::locoAction(RingStream * stream, byte* aval, char throttleChar,
|
|||
{
|
||||
int witSpeed=getInt(aval+1);
|
||||
LOOPLOCOS(throttleChar, cab) {
|
||||
mostRecentCab=myLocos[loco].cab;
|
||||
DCC::setThrottle(myLocos[loco].cab, WiTToDCCSpeed(witSpeed), DCC::getThrottleDirection(myLocos[loco].cab));
|
||||
StringFormatter::send(stream,F("M%cA%c%d<;>V%d\n"), throttleChar, LorS(myLocos[loco].cab), myLocos[loco].cab, witSpeed);
|
||||
}
|
||||
|
@ -311,7 +340,8 @@ void WiThrottle::locoAction(RingStream * stream, byte* aval, char throttleChar,
|
|||
case 'R':
|
||||
{
|
||||
bool forward=aval[1]!='0';
|
||||
LOOPLOCOS(throttleChar, cab) {
|
||||
LOOPLOCOS(throttleChar, cab) {
|
||||
mostRecentCab=myLocos[loco].cab;
|
||||
DCC::setThrottle(myLocos[loco].cab, DCC::getThrottleSpeed(myLocos[loco].cab), forward);
|
||||
StringFormatter::send(stream,F("M%cA%c%d<;>R%d\n"), throttleChar, LorS(myLocos[loco].cab), myLocos[loco].cab, forward);
|
||||
}
|
||||
|
@ -327,6 +357,7 @@ void WiThrottle::locoAction(RingStream * stream, byte* aval, char throttleChar,
|
|||
case 'I': // Idle, set speed to 0
|
||||
case 'Q': // Quit, set speed to 0
|
||||
LOOPLOCOS(throttleChar, cab) {
|
||||
mostRecentCab=myLocos[loco].cab;
|
||||
DCC::setThrottle(myLocos[loco].cab, 0, DCC::getThrottleDirection(myLocos[loco].cab));
|
||||
StringFormatter::send(stream,F("M%cA%c%d<;>V%d\n"), throttleChar, LorS(myLocos[loco].cab), myLocos[loco].cab, 0);
|
||||
}
|
||||
|
|
|
@ -31,7 +31,7 @@ class WiThrottle {
|
|||
static void loop(RingStream * stream);
|
||||
void parse(RingStream * stream, byte * cmd);
|
||||
static WiThrottle* getThrottle( int wifiClient);
|
||||
static bool annotateLeftRight;
|
||||
|
||||
private:
|
||||
WiThrottle( int wifiClientId);
|
||||
~WiThrottle();
|
||||
|
@ -53,6 +53,8 @@ class WiThrottle {
|
|||
bool heartBeatEnable;
|
||||
unsigned long heartBeat;
|
||||
bool initSent; // valid connection established
|
||||
bool exRailSent; // valid connection established
|
||||
uint16_t mostRecentCab;
|
||||
int turnoutListHash; // used to check for changes to turnout list
|
||||
bool lastPowerState; // last power state sent to this client
|
||||
int DCCToWiTSpeed(int DCCSpeed);
|
||||
|
|
|
@ -85,7 +85,9 @@ void WifiInboundHandler::loop1() {
|
|||
CommandDistributor::parse(clientId,cmd,outboundRing);
|
||||
// The commit call will either write the lenbgth bytes
|
||||
// OR rollback to the mark because the reply is empty or commend generated more than fits the buffer
|
||||
outboundRing->commit();
|
||||
if (!outboundRing->commit()) {
|
||||
DIAG(F("OUTBOUND FULL processing cmd:%s"),cmd);
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -243,7 +245,7 @@ WifiInboundHandler::INBOUND_STATE WifiInboundHandler::loop2() {
|
|||
|
||||
void WifiInboundHandler::purgeCurrentCIPSEND() {
|
||||
// A CIPSEND was sent but errored... or the client closed just toss it away
|
||||
if (Diag::WIFI) DIAG(F("Wifi: DROPPING CIPSEND=%d,%d"),clientPendingCIPSEND,currentReplySize);
|
||||
DIAG(F("Wifi: DROPPING CIPSEND=%d,%d"),clientPendingCIPSEND,currentReplySize);
|
||||
for (int i=0;i<=currentReplySize;i++) outboundRing->read();
|
||||
pendingCipsend=false;
|
||||
clientPendingCIPSEND=-1;
|
||||
|
|
|
@ -137,18 +137,38 @@ The configuration file for DCC-EX Command Station
|
|||
//
|
||||
// DEFINE LCD SCREEN USAGE BY THE BASE STATION
|
||||
//
|
||||
// Note: This feature requires an I2C enabled LCD screen using a PCF8574 based chipset.
|
||||
// or one using a Hitachi HD44780.
|
||||
// OR an I2C Oled screen.
|
||||
// To enable, uncomment one of the lines below
|
||||
// Note: This feature requires an I2C enabled LCD screen using a Hitachi HD44780
|
||||
// controller and a commonly available PCF8574 based I2C 'backpack'.
|
||||
// To enable, uncomment one of the #define lines below
|
||||
|
||||
// define LCD_DRIVER for I2C LCD address 0x3f,16 cols, 2 rows
|
||||
// #define LCD_DRIVER 0x3F,16,2
|
||||
// define LCD_DRIVER for I2C address 0x27, 16 cols, 2 rows
|
||||
// #define LCD_DRIVER 0x27,16,2
|
||||
|
||||
//OR define OLED_DRIVER width,height in pixels (address auto detected)
|
||||
// 128x32 or 128x64 I2C SSD1306-based devices are supported.
|
||||
// Also 132x64 I2C SH1106 devices.
|
||||
// Also 132x64 I2C SH1106 devices
|
||||
// #define OLED_DRIVER 128,32
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Define scroll mode as 0, 1 or 2
|
||||
#define SCROLLMODE 1
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// DEFINE TURNOUTS/ACCESSORIES FOLLOW NORM RCN-213
|
||||
//
|
||||
// According to norm RCN-213 a DCC packet with a 1 is closed/straight
|
||||
// and one with a 0 is thrown/diverging. In DCC++ Classic, and in previous
|
||||
// versions of DCC++EX, a turnout throw command was implemented in the packet as
|
||||
// '1' and a close command as '0'. The #define below makes the states
|
||||
// match with the norm. But we don't want to cause havoc on existent layouts,
|
||||
// so we define this only for new installations. If you don't want this,
|
||||
// don't add it to your config.h.
|
||||
//#define DCC_TURNOUTS_RCN_213
|
||||
|
||||
// The following #define likewise inverts the behaviour of the <a> command
|
||||
// for triggering DCC Accessory Decoders, so that <a addr subaddr 0> generates a
|
||||
// DCC packet with D=1 (close turnout) and <a addr subaddr 1> generates D=0
|
||||
// (throw turnout).
|
||||
//#define DCC_ACCESSORY_RCN_213
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
|
27
defines.h
27
defines.h
|
@ -18,6 +18,19 @@
|
|||
|
||||
*/
|
||||
|
||||
#ifndef DEFINES_H
|
||||
#define DEFINES_H
|
||||
|
||||
// defines.h relies on macros defined in config.h
|
||||
// but it may have already been included (for cosmetic convenence) by the .ino
|
||||
#ifndef MOTOR_SHIELD_TYPE
|
||||
#if __has_include ( "config.h")
|
||||
#include "config.h"
|
||||
#else
|
||||
#include "config.example.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
#if defined(ARDUINO_ARCH_ESP8266)
|
||||
|
@ -42,7 +55,11 @@
|
|||
// WIFI_ON: All prereqs for running with WIFI are met
|
||||
// Note: WIFI_CHANNEL may not exist in early config.h files so is added here if needed.
|
||||
|
||||
#if ENABLE_WIFI && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_SAMD_ZERO) || defined(TEENSYDUINO) || defined(ESP_FAMILY))
|
||||
#if (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_SAMD_ZERO) || defined(TEENSYDUINO) || defined(ESP_FAMILY))
|
||||
#define BIG_RAM
|
||||
#endif
|
||||
|
||||
#if ENABLE_WIFI && defined(BIG_RAM)
|
||||
#define WIFI_ON true
|
||||
#ifndef WIFI_CHANNEL
|
||||
#define WIFI_CHANNEL 1
|
||||
|
@ -51,7 +68,7 @@
|
|||
#define WIFI_ON false
|
||||
#endif
|
||||
|
||||
#if ENABLE_ETHERNET && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_SAMD_ZERO) || defined(TEENSYDUINO))
|
||||
#if ENABLE_ETHERNET && defined(BIG_RAM)
|
||||
#define ETHERNET_ON true
|
||||
#else
|
||||
#define ETHERNET_ON false
|
||||
|
@ -67,3 +84,9 @@
|
|||
// Currently only devices which can communicate at 115200 are supported.
|
||||
//
|
||||
#define WIFI_SERIAL_LINK_SPEED 115200
|
||||
|
||||
#if __has_include ( "myAutomation.h") && defined(BIG_RAM)
|
||||
#define RMFT_ACTIVE
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
84
myAutomation.example.h
Normal file
84
myAutomation.example.h
Normal file
|
@ -0,0 +1,84 @@
|
|||
/* This is an automation example file.
|
||||
* The presence of a file calle "myAutomation.h" brings EX-RAIL code into
|
||||
* the command station.
|
||||
* The auotomation may have multiple concurrent tasks.
|
||||
* A task may
|
||||
* - Act as a ROUTE setup macro for a user to drive over
|
||||
* - drive a loco through an AUTOMATION
|
||||
* - automate some cosmetic part of the layout without any loco.
|
||||
*
|
||||
* At startup, a single task is created to execute the first
|
||||
* instruction after E$XRAIL.
|
||||
* This task may simply follow a route, or may START
|
||||
* further tasks (thats is.. send a loco out along a route).
|
||||
*
|
||||
* Where the loco id is not known at compile time, a new task
|
||||
* can be creatd with the command:
|
||||
* </ START [cab] route>
|
||||
*
|
||||
* A ROUTE, AUTOMATION or SEQUENCE are internally identical in ExRail terms
|
||||
* but are just represented differently to a Withrottle user:
|
||||
* ROUTE(n,"name") - as Route_n .. to setup a route through a layout
|
||||
* AUTOMATION(n,"name") as Auto_n .. to send the current loco off along an automated journey
|
||||
* SEQUENCE(n) is not visible to Withrottle.
|
||||
*
|
||||
*/
|
||||
|
||||
EXRAIL // myAutomation must start with the EXRAIL instruction
|
||||
// This is the default starting route, AKA SEQUENCE(0)
|
||||
SENDLOCO(3,1) // send loco 3 off along route 1
|
||||
SENDLOCO(10,2) // send loco 10 off along route 2
|
||||
DONE // This just ends the startup thread, leaving 2 others running.
|
||||
|
||||
/* SEQUENCE(1) is a simple shuttle between 2 sensors
|
||||
* S20 and S21 are sensors on arduino pins 20 and 21
|
||||
* S20 S21
|
||||
* === START->================
|
||||
*/
|
||||
SEQUENCE(1)
|
||||
DELAY(10000) // wait 10 seconds
|
||||
FON(3) // Set Loco Function 3, Horn on
|
||||
DELAY(1000) // wait 1 second
|
||||
FOFF(3) // Horn off
|
||||
FWD(80) // Move forward at speed 80
|
||||
AT(21) // until we hit sensor id 21
|
||||
STOP // then stop
|
||||
DELAY(5000) // Wait 5 seconds
|
||||
FON(2) // ring bell
|
||||
REV(60) // reverse at speed 60
|
||||
AT(20) // until we get to S20
|
||||
STOP // then stop
|
||||
FOFF(2) // Bell off
|
||||
FOLLOW(1) // and follow sequence 1 again
|
||||
|
||||
/* SEQUENCE(2) is an automation example for a single loco Y shaped journey
|
||||
* S31,S32,S33 are sensors, T4 is a turnout
|
||||
*
|
||||
* S33 T4 S31
|
||||
* ===-START->=============================================
|
||||
* //
|
||||
* S32 //
|
||||
* ======================//
|
||||
*
|
||||
* Train runs from START to S31, back to S32, again to S31, Back to start.
|
||||
*/
|
||||
SEQUENCE(2)
|
||||
FWD(60) // go forward at DCC speed 60
|
||||
AT(31) STOP // when we get to sensor 31
|
||||
DELAY(10000) // wait 10 seconds
|
||||
THROW(4) // throw turnout for route to S32
|
||||
REV(45) // go backwards at speed 45
|
||||
AT(32) STOP // until we arrive at sensor 32
|
||||
DELAY(5000) // wait 5 seconds
|
||||
FWD(50) // go forwards at speed 50
|
||||
AT(31) STOP // and stop at sensor 31
|
||||
DELAY(5000) // wait 5 seconds
|
||||
CLOSE(4) // set turnout closed
|
||||
REV(50) // reverse back to S3
|
||||
AT(33) STOP
|
||||
DELAY(20000) // wait 20 seconds
|
||||
FOLLOW(2) // follow sequence 2... ie repeat the process
|
||||
|
||||
ENDEXRAIL // marks the end of the EXRAIL program.
|
||||
|
||||
|
161
myHal.cpp_example.txt
Normal file
161
myHal.cpp_example.txt
Normal file
|
@ -0,0 +1,161 @@
|
|||
// Sample myHal.cpp file.
|
||||
//
|
||||
// To use this file, copy it to myHal.cpp and uncomment the directives and/or
|
||||
// edit them to satisfy your requirements. If you only want to use up to
|
||||
// two MCP23017 GPIO Expander modules and/or up to two PCA9685 Servo modules,
|
||||
// then you don't need this file as DCC++EX configures these for free!
|
||||
|
||||
// Note that if the file has a .cpp extension it WILL be compiled into the build
|
||||
// and the halSetup() function WILL be invoked.
|
||||
//
|
||||
// To prevent this, temporarily rename the file to myHal.txt or similar.
|
||||
//
|
||||
|
||||
// Include devices you need.
|
||||
#include "IODevice.h"
|
||||
#include "IO_HCSR04.h" // Ultrasonic range sensor
|
||||
#include "IO_VL53L0X.h" // Laser time-of-flight sensor
|
||||
#include "IO_DFPlayer.h" // MP3 sound player
|
||||
|
||||
|
||||
//==========================================================================
|
||||
// The function halSetup() is invoked from CS if it exists within the build.
|
||||
// The setup calls are included between the open and close braces "{ ... }".
|
||||
// Comments (lines preceded by "//") are optional.
|
||||
//==========================================================================
|
||||
|
||||
void halSetup() {
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a PCA9685 PWM Servo driver module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=100
|
||||
// Number of VPINs=16 (numbered 100-115)
|
||||
// I2C address of module=0x40
|
||||
|
||||
//PCA9685::create(100, 16, 0x40);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines an MCP23017 16-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=196
|
||||
// Number of VPINs=16 (numbered 196-211)
|
||||
// I2C address of module=0x22
|
||||
|
||||
//MCP23017::create(196, 16, 0x22);
|
||||
|
||||
|
||||
// Alternative form, which allows the INT pin of the module to request a scan
|
||||
// by pulling Arduino pin 40 to ground. Means that the I2C isn't being polled
|
||||
// all the time, only when a change takes place. Multiple modules' INT pins
|
||||
// may be connected to the same Arduino pin.
|
||||
|
||||
//MCP23017::create(196, 16, 0x22, 40);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines an MCP23008 8-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=300
|
||||
// Number of VPINs=8 (numbered 300-307)
|
||||
// I2C address of module=0x22
|
||||
|
||||
//MCP23008::create(300, 8, 0x22);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a PCF8574 8-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=200
|
||||
// Number of VPINs=8 (numbered 200-207)
|
||||
// I2C address of module=0x23
|
||||
|
||||
//PCF8574::create(200, 8, 0x23);
|
||||
|
||||
|
||||
// Alternative form using INT pin (see above)
|
||||
|
||||
//PCF8574::create(200, 8, 0x23, 40);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines an HCSR04 ultrasonic ranging module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// Vpin=2000 (only one VPIN per directive)
|
||||
// Number of VPINs=1
|
||||
// Arduino pin connected to TRIG=30
|
||||
// Arduino pin connected to ECHO=31
|
||||
// Minimum trigger range=20cm (VPIN goes to 1 when <20cm)
|
||||
// Maximum trigger range=25cm (VPIN goes to 0 when >25cm)
|
||||
// Note: Multiple devices can be configured by using a different ECHO pin
|
||||
// for each one. The TRIG pin can be shared between multiple devices.
|
||||
// Be aware that the 'ping' of one device may be received by another
|
||||
// device and position them accordingly!
|
||||
|
||||
//HCSR04::create(2000, 30, 31, 20, 25);
|
||||
//HCSR04::create(2001, 30, 32, 20, 25);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a single VL53L0X Time-of-Flight range sensor.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// VPIN=5000
|
||||
// Number of VPINs=1
|
||||
// I2C address=0x29 (default for this chip)
|
||||
// Minimum trigger range=200mm (VPIN goes to 1 when <20cm)
|
||||
// Maximum trigger range=250mm (VPIN goes to 0 when >25cm)
|
||||
|
||||
//VL53L0X::create(5000, 1, 0x29, 200, 250);
|
||||
|
||||
// For multiple VL53L0X modules, add another parameter which is a VPIN connected to the
|
||||
// module's XSHUT pin. This allows the modules to be configured, at start,
|
||||
// with distinct I2C addresses. In this case, the address 0x29 is only used during
|
||||
// initialisation to configure each device in turn with the desired unique I2C address.
|
||||
// The examples below have the modules' XSHUT pins connected to the first two pins of
|
||||
// the first MCP23017 module (164 and 165), but Arduino pins may be used instead.
|
||||
// The first module here is given I2C address 0x30 and the second is 0x31.
|
||||
|
||||
//VL53L0X::create(5000, 1, 0x30, 200, 250, 164);
|
||||
//VL53L0X::create(5001, 1, 0x31, 200, 250, 165);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module.
|
||||
//=======================================================================
|
||||
// Parameters:
|
||||
// 10000 = first VPIN allocated.
|
||||
// 10 = number of VPINs allocated.
|
||||
// Serial1 = name of serial port (usually Serial1 or Serial2).
|
||||
// With these parameters, up to 10 files may be played on pins 10000-10009.
|
||||
// Play is started from EX-RAIL with SET(10000) for first mp3 file, SET(10001)
|
||||
// for second file, etc. Play may also be initiated by writing an analogue
|
||||
// value to the first pin, e.g. SERVO(10000,23,0) will play the 23rd mp3 file.
|
||||
// SERVO(10000,23,30) will do the same thing, as well as setting the volume to
|
||||
// 30 (maximum value).
|
||||
// Play is stopped by RESET(10000) (or any other allocated VPIN).
|
||||
// Volume may also be set by writing an analogue value to the second pin for the player,
|
||||
// e.g. SERVO(10001,30,0) sets volume to maximum (30).
|
||||
// The EX-RAIL script may check for completion of play by calling WAITFOR(pin), which will only proceed to the
|
||||
// following line when the player is no longer busy.
|
||||
// E.g.
|
||||
// SEQUENCE(1)
|
||||
// AT(164) // Wait for sensor attached to pin 164 to activate
|
||||
// SET(10003) // Play fourth MP3 file
|
||||
// LCD(4, "Playing") // Display message on LCD/OLED
|
||||
// WAITFOR(10003) // Wait for playing to finish
|
||||
// LCD(4, " ") // Clear LCD/OLED line
|
||||
// FOLLOW(1) // Go back to start
|
||||
|
||||
// DFPlayer::create(10000, 10, Serial1);
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -12,9 +12,14 @@
|
|||
default_envs =
|
||||
mega2560
|
||||
uno
|
||||
mega328
|
||||
unowifiR2
|
||||
nano
|
||||
src_dir = .
|
||||
include_dir = .
|
||||
|
||||
[env]
|
||||
build_flags = -Wall -Wextra
|
||||
|
||||
[env:samd21]
|
||||
platform = atmelsam
|
||||
|
@ -27,6 +32,42 @@ lib_deps =
|
|||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
|
||||
[env:mega2560-debug]
|
||||
platform = atmelavr
|
||||
board = megaatmega2560
|
||||
framework = arduino
|
||||
lib_deps =
|
||||
${env.lib_deps}
|
||||
arduino-libraries/Ethernet
|
||||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
build_flags = -DDIAG_IO -DDIAG_LOOPTIMES
|
||||
|
||||
[env:mega2560-no-HAL]
|
||||
platform = atmelavr
|
||||
board = megaatmega2560
|
||||
framework = arduino
|
||||
lib_deps =
|
||||
${env.lib_deps}
|
||||
arduino-libraries/Ethernet
|
||||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
build_flags = -DIO_NO_HAL
|
||||
|
||||
[env:mega2560-I2C-wire]
|
||||
platform = atmelavr
|
||||
board = megaatmega2560
|
||||
framework = arduino
|
||||
lib_deps =
|
||||
${env.lib_deps}
|
||||
arduino-libraries/Ethernet
|
||||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
build_flags = -DI2C_USE_WIRE
|
||||
|
||||
[env:mega2560]
|
||||
platform = atmelavr
|
||||
board = megaatmega2560
|
||||
|
@ -59,7 +100,20 @@ lib_deps =
|
|||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
build_flags = "-DF_CPU=16000000L -DARDUINO=10813 -DARDUINO_AVR_UNO_WIFI_DEV_ED -DARDUINO_ARCH_AVR -DESP_CH_UART -DESP_CH_UART_BR=19200"g
|
||||
build_flags = "-DF_CPU=16000000L -DARDUINO=10813 -DARDUINO_AVR_UNO_WIFI_DEV_ED -DARDUINO_ARCH_AVR -DESP_CH_UART -DESP_CH_UART_BR=19200"
|
||||
|
||||
[env:nanoevery]
|
||||
platform = atmelmegaavr
|
||||
board = nano_every
|
||||
framework = arduino
|
||||
lib_deps =
|
||||
${env.lib_deps}
|
||||
arduino-libraries/Ethernet
|
||||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
upload_speed = 19200
|
||||
build_flags = -DDIAG_IO
|
||||
|
||||
[env:uno]
|
||||
platform = atmelavr
|
||||
|
@ -71,3 +125,13 @@ lib_deps =
|
|||
SPI
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
|
||||
[env:nano]
|
||||
platform = atmelavr
|
||||
board = nanoatmega328new
|
||||
board_upload.maximum_size = 32256
|
||||
framework = arduino
|
||||
lib_deps =
|
||||
${env.lib_deps}
|
||||
monitor_speed = 115200
|
||||
monitor_flags = --echo
|
||||
|
|
22
version.h
22
version.h
|
@ -3,8 +3,26 @@
|
|||
|
||||
#include "StringFormatter.h"
|
||||
|
||||
|
||||
#define VERSION "3.1.90"
|
||||
#define VERSION "3.2.0 ESP32"
|
||||
// 3.2.0 Major functional and non-functional changes.
|
||||
// New HAL added for I/O (digital and analogue inputs and outputs, servos etc).
|
||||
// Support for MCP23008, MCP23017 and PCF9584 I2C GPIO Extender modules.
|
||||
// Support for PCA9685 PWM (servo) control modules.
|
||||
// Support for analogue inputs on Arduino pins and on ADS111x I2C modules.
|
||||
// Support for MP3 sound playback via DFPlayer module.
|
||||
// Support for HC-SR04 Ultrasonic range sensor module.
|
||||
// Support for VL53L0X Laser range sensor module (Time-Of-Flight).
|
||||
// Native non-blocking I2C drivers for AVR and Nano architectures (fallback
|
||||
// to blocking Wire library for other platforms).
|
||||
// EEPROM layout change - deletes EEPROM contents on first start following upgrade.
|
||||
// New EX-RAIL automation capability.
|
||||
// Turnout class revised to expand turnout capabilities, new commands added.
|
||||
// Output class now allows ID > 255.
|
||||
// Configuration options to globally flip polarity of DCC Accessory states when driven
|
||||
// from <a> command and <T> command.
|
||||
// Increased use of display for showing loco decoder programming information.
|
||||
// ...
|
||||
// 3.1.7 Bugfix: Unknown locos should have speed forward
|
||||
// 3.1.6 Make output ID two bytes and guess format/size of registered outputs found in EEPROM
|
||||
// 3.1.5 Fix LCD corruption on power-up
|
||||
// 3.1.4 Refactor OLED and LCD drivers and remove unused code
|
||||
|
|
Loading…
Reference in New Issue
Block a user