mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-23 02:58:52 +01:00
Merge pull request #190 from DCC-EX/EX-RAIL-neil-HALDRIVERS
Additional and enhanced HAL drivers
This commit is contained in:
commit
f947c5bae5
17
IODevice.cpp
17
IODevice.cpp
@ -53,7 +53,9 @@ void IODevice::begin() {
|
||||
MCP23017::create(180, 16, 0x21);
|
||||
|
||||
// Call the begin() methods of each configured device in turn
|
||||
unsigned long currentMicros = micros();
|
||||
for (IODevice *dev=_firstDevice; dev!=NULL; dev = dev->_nextDevice) {
|
||||
dev->_nextEntryTime = currentMicros;
|
||||
dev->_begin();
|
||||
}
|
||||
_initPhase = false;
|
||||
@ -69,8 +71,14 @@ void IODevice::loop() {
|
||||
unsigned long currentMicros = micros();
|
||||
// Call every device's loop function in turn, one per entry.
|
||||
if (!_nextLoopDevice) _nextLoopDevice = _firstDevice;
|
||||
if (_nextLoopDevice) {
|
||||
// Check if device exists, and is due to run
|
||||
if (_nextLoopDevice /* && ((long)(currentMicros-_nextLoopDevice->_nextEntryTime) >= 0) */ ) {
|
||||
// Move _nextEntryTime on, so that we can guarantee that the device will continue to
|
||||
// be serviced if it doesn't update _nextEntryTime.
|
||||
_nextLoopDevice->_nextEntryTime = currentMicros;
|
||||
// Invoke device's _loop function
|
||||
_nextLoopDevice->_loop(currentMicros);
|
||||
// Move to next device.
|
||||
_nextLoopDevice = _nextLoopDevice->_nextDevice;
|
||||
}
|
||||
|
||||
@ -157,12 +165,13 @@ void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t dur
|
||||
#endif
|
||||
}
|
||||
|
||||
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
|
||||
// the output over a period of time.
|
||||
// isBusy, when called for a device pin is always a digital output or analogue output,
|
||||
// returns input feedback state of the pin, i.e. whether the pin is busy performing
|
||||
// an animation or fade over a period of time.
|
||||
bool IODevice::isBusy(VPIN vpin) {
|
||||
IODevice *dev = findDevice(vpin);
|
||||
if (dev)
|
||||
return dev->_isBusy(vpin);
|
||||
return dev->_read(vpin);
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
19
IODevice.h
19
IODevice.h
@ -129,7 +129,7 @@ public:
|
||||
static void write(VPIN vpin, int value);
|
||||
|
||||
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
|
||||
static void writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration=0);
|
||||
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
|
||||
|
||||
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
|
||||
// the output over a period of time.
|
||||
@ -178,7 +178,7 @@ protected:
|
||||
};
|
||||
|
||||
// Method to write an 'analogue' value (optionally implemented within device class)
|
||||
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
|
||||
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
|
||||
(void)vpin; (void)value; (void) profile; (void)duration;
|
||||
};
|
||||
|
||||
@ -203,13 +203,6 @@ protected:
|
||||
return 0;
|
||||
};
|
||||
|
||||
// _isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
|
||||
// the output over a period of time. Returns false unless overridden in sub class.
|
||||
virtual bool _isBusy(VPIN vpin) {
|
||||
(void)vpin;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Method to perform updates on an ongoing basis (optionally implemented within device class)
|
||||
virtual void _loop(unsigned long currentMicros) {
|
||||
(void)currentMicros; // Suppress compiler warning.
|
||||
@ -220,6 +213,11 @@ protected:
|
||||
|
||||
// Destructor
|
||||
virtual ~IODevice() {};
|
||||
|
||||
// Non-virtual function
|
||||
void delayUntil(unsigned long futureMicrosCount) {
|
||||
_nextEntryTime = futureMicrosCount;
|
||||
}
|
||||
|
||||
// Common object fields.
|
||||
VPIN _firstVpin;
|
||||
@ -242,6 +240,7 @@ private:
|
||||
static IODevice *findDevice(VPIN vpin);
|
||||
|
||||
IODevice *_nextDevice = 0;
|
||||
unsigned long _nextEntryTime;
|
||||
static IODevice *_firstDevice;
|
||||
|
||||
static IODevice *_nextLoopDevice;
|
||||
@ -276,7 +275,7 @@ private:
|
||||
// Device-specific write functions.
|
||||
void _write(VPIN vpin, int value) override;
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override;
|
||||
bool _isBusy(VPIN vpin) override;
|
||||
int _read(VPIN vpin) override; // returns the busy status of the device
|
||||
void _loop(unsigned long currentMicros) override;
|
||||
void updatePosition(uint8_t pin);
|
||||
void writeDevice(uint8_t pin, int value);
|
||||
|
@ -42,12 +42,18 @@
|
||||
*
|
||||
* The ADS111x is set up as follows:
|
||||
* Single-shot scan
|
||||
* Data rate 128 samples/sec (7.8ms/sample)
|
||||
* Data rate 128 samples/sec (7.8ms/sample, but scanned every 10ms)
|
||||
* Comparator off
|
||||
* Gain FSR=6.144V
|
||||
* The gain means that the maximum input voltage of 5V (when Vss=5V) gives a reading
|
||||
* of 32767*(5.0/6.144) = 26666.
|
||||
*
|
||||
* A device is configured by the following:
|
||||
* ADS111x::create(firstVpin, nPins, i2cAddress);
|
||||
* for example
|
||||
* ADS111x::create(300, 1, 0x48); // single-input ADS1113
|
||||
* ADS111x::create(300, 4, 0x48); // four-input ADS1115
|
||||
*
|
||||
* Note: The device is simple and does not need initial configuration, so it should recover from
|
||||
* temporary loss of communications or power.
|
||||
**********************************************************************************************/
|
||||
@ -63,6 +69,7 @@ public:
|
||||
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
|
||||
new ADS111x(firstVpin, nPins, i2cAddress);
|
||||
}
|
||||
private:
|
||||
void _begin() {
|
||||
// Initialise ADS device
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
@ -73,22 +80,25 @@ public:
|
||||
DIAG(F("ADS111x device not found, I2C:%x"), _i2cAddress);
|
||||
}
|
||||
}
|
||||
void _loop(unsigned long currentMicros) {
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
|
||||
if (currentMicros - _lastMicros >= scanInterval) {
|
||||
// Check that previous non-blocking write has completed, if not then wait
|
||||
_i2crb.wait();
|
||||
|
||||
// If _currentPin is in the valid range, continue reading the pin values
|
||||
if (_currentPin < _nPins) {
|
||||
_outBuffer[0] = 0x00; // Conversion register address
|
||||
uint8_t status = I2CManager.read(_i2cAddress, _inBuffer, 2, 1, _outBuffer); // Read register
|
||||
if (status == I2C_STATUS_OK) {
|
||||
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
|
||||
#ifdef IO_ANALOGUE_SLOW
|
||||
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
|
||||
#endif
|
||||
uint8_t status = _i2crb.wait();
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// If _currentPin is in the valid range, continue reading the pin values
|
||||
if (_currentPin < _nPins) {
|
||||
_outBuffer[0] = 0x00; // Conversion register address
|
||||
uint8_t status = I2CManager.read(_i2cAddress, _inBuffer, 2, _outBuffer, 1); // Read register
|
||||
if (status == I2C_STATUS_OK) {
|
||||
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
|
||||
#ifdef IO_ANALOGUE_SLOW
|
||||
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if (status != I2C_STATUS_OK)
|
||||
DIAG(F("ADS111x I2C:x%d Error:%d"), _i2cAddress, status);
|
||||
}
|
||||
// Move to next pin
|
||||
if (++_currentPin >= _nPins) _currentPin = 0;
|
||||
@ -97,23 +107,23 @@ public:
|
||||
// of configuration register settings.
|
||||
_outBuffer[0] = 0x01; // Config register address
|
||||
_outBuffer[1] = 0xC0 + (_currentPin << 4); // Trigger single-shot, channel n
|
||||
_outBuffer[2] = 0x83; // 128 samples/sec, comparator off
|
||||
_outBuffer[2] = 0xA3; // 250 samples/sec, comparator off
|
||||
// Write command, without waiting for completion.
|
||||
I2CManager.write(_i2cAddress, _outBuffer, 3, &_i2crb);
|
||||
|
||||
_lastMicros = currentMicros;
|
||||
}
|
||||
}
|
||||
int _readAnalogue(VPIN vpin) {
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
return _value[pin];
|
||||
}
|
||||
void _display() {
|
||||
void _display() override {
|
||||
DIAG(F("ADS111x I2C:x%x Configured on Vpins:%d-%d"), _i2cAddress, _firstVpin, _firstVpin+_nPins-1);
|
||||
}
|
||||
|
||||
protected:
|
||||
// With ADC set to 128 samples/sec, that's 7.8ms/sample. So set the period between updates to 10ms
|
||||
// ADC conversion rate is 250SPS, or 4ms per conversion. Set the period between updates to 10ms.
|
||||
// This is enough to allow the conversion to reliably complete in time.
|
||||
#ifndef IO_ANALOGUE_SLOW
|
||||
const unsigned long scanInterval = 10000UL; // Period between successive ADC scans in microseconds.
|
||||
#else
|
||||
|
229
IO_DFPlayer.h
Normal file
229
IO_DFPlayer.h
Normal file
@ -0,0 +1,229 @@
|
||||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
|
||||
* amplifier, so it only needs a power supply and a speaker.
|
||||
*
|
||||
* This driver allows the device to be controlled through IODevice::write() and
|
||||
* IODevice::writeAnalogue() calls.
|
||||
*
|
||||
* The driver is configured as follows:
|
||||
*
|
||||
* DFPlayer::create(firstVpin, nPins, Serialn);
|
||||
*
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is the number of pins to be allocated (max 5)
|
||||
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
|
||||
*
|
||||
* Example:
|
||||
* In mySetup function within mySetup.cpp:
|
||||
* DFPlayer::create(3500, 5, Serial1);
|
||||
*
|
||||
* Writing an analogue value 0-2999 to the first pin will select a numbered file from the SD card;
|
||||
* Writing an analogue value 0-30 to the second pin will set the volume of the output;
|
||||
* Writing a digital value to the first pin will play or stop the file;
|
||||
* Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise.
|
||||
*
|
||||
* From EX-RAIL, the following commands may be used:
|
||||
* SET(3500) -- starts playing the first file on the SD card
|
||||
* SET(3501) -- starts playing the second file on the SD card
|
||||
* etc.
|
||||
* RESET(3500) -- stops all playing on the player
|
||||
* WAITFOR(3500) -- wait for the file currently being played by the player to complete
|
||||
* SERVO(3500,23,0) -- plays file 23 at current volume
|
||||
* SERVO(3500,23,30) -- plays file 23 at volume 30 (maximum)
|
||||
* SERVO(3501,20,0) -- Sets the volume to 20
|
||||
*
|
||||
* NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly
|
||||
* to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse.
|
||||
* A 1k resistor in series with the module's RX terminal will alleviate this.
|
||||
*/
|
||||
|
||||
#ifndef IO_DFPlayer_h
|
||||
#define IO_DFPlayer_h
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class DFPlayer : public IODevice {
|
||||
private:
|
||||
HardwareSerial *_serial;
|
||||
bool _playing = false;
|
||||
uint8_t _inputIndex = 0;
|
||||
|
||||
public:
|
||||
DFPlayer(VPIN firstVpin, int nPins, HardwareSerial &serial) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_serial = &serial;
|
||||
addDevice(this);
|
||||
}
|
||||
static void create(VPIN firstVpin, int nPins, HardwareSerial &serial) {
|
||||
new DFPlayer(firstVpin, nPins, serial);
|
||||
}
|
||||
|
||||
protected:
|
||||
void _begin() override {
|
||||
_serial->begin(9600);
|
||||
_display();
|
||||
}
|
||||
|
||||
void _loop(unsigned long) override {
|
||||
// Check for incoming data on _serial, and update busy flag accordingly.
|
||||
// Expected message is in the form "7F FF 06 3D xx xx xx xx xx EF"
|
||||
while (_serial->available()) {
|
||||
int c = _serial->read();
|
||||
// DIAG(F("Received: %x"), c);
|
||||
if (c == 0x7E)
|
||||
_inputIndex = 1;
|
||||
else if ((c==0xFF && _inputIndex==1) || (c==0x06 && _inputIndex==2)
|
||||
|| (c==0x3D && _inputIndex==3) || (_inputIndex >=4 && _inputIndex <= 8))
|
||||
_inputIndex++;
|
||||
else if (c==0xEF && _inputIndex==9) {
|
||||
// End of play
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Finished"));
|
||||
#endif
|
||||
_playing = false;
|
||||
_inputIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write with value 1 starts playing a song. The relative pin number is the file number.
|
||||
// Write with value 0 stops playing.
|
||||
void _write(VPIN vpin, int value) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
if (value) {
|
||||
// Value 1, start playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Play %d"), pin+1);
|
||||
#endif
|
||||
sendPacket(0x03, pin+1);
|
||||
_playing = true;
|
||||
} else {
|
||||
// Value 0, stop playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Stop"));
|
||||
#endif
|
||||
sendPacket(0x16);
|
||||
_playing = false;
|
||||
}
|
||||
}
|
||||
|
||||
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
|
||||
// Volume may be specified as second parameter to writeAnalogue.
|
||||
// If value is zero, the player stops playing.
|
||||
// WriteAnalogue on second pin sets the output volume.
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
|
||||
uint8_t pin = vpin - _firstVpin;
|
||||
|
||||
// Validate parameter.
|
||||
volume = min(30,volume);
|
||||
|
||||
if (pin == 0) {
|
||||
// Play track
|
||||
if (value > 0) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Play %d"), value);
|
||||
#endif
|
||||
sendPacket(0x03, value); // Play track
|
||||
_playing = true;
|
||||
if (volume > 0) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Volume %d"), volume);
|
||||
#endif
|
||||
sendPacket(0x06, volume); // Set volume
|
||||
}
|
||||
} else {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Stop"));
|
||||
#endif
|
||||
sendPacket(0x16); // Stop play
|
||||
_playing = false;
|
||||
}
|
||||
} else if (pin == 1) {
|
||||
// Set volume (0-30)
|
||||
if (value > 30) value = 30;
|
||||
else if (value < 0) value = 0;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("DFPlayer: Volume %d"), value);
|
||||
#endif
|
||||
sendPacket(0x06, value);
|
||||
}
|
||||
}
|
||||
|
||||
// A read on any pin indicates whether the player is still playing.
|
||||
int _read(VPIN) override {
|
||||
return _playing;
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("DFPlayer Configured on Vpins:%d-%d"), _firstVpin, _firstVpin+_nPins-1);
|
||||
}
|
||||
|
||||
private:
|
||||
// 7E FF 06 0F 00 01 01 xx xx EF
|
||||
// 0 -> 7E is start code
|
||||
// 1 -> FF is version
|
||||
// 2 -> 06 is length
|
||||
// 3 -> 0F is command
|
||||
// 4 -> 00 is no receive
|
||||
// 5~6 -> 01 01 is argument
|
||||
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
|
||||
// 9 -> EF is end code
|
||||
|
||||
void sendPacket(uint8_t command, uint16_t arg = 0)
|
||||
{
|
||||
uint8_t out[] = { 0x7E,
|
||||
0xFF,
|
||||
06,
|
||||
command,
|
||||
00,
|
||||
static_cast<uint8_t>(arg >> 8),
|
||||
static_cast<uint8_t>(arg & 0x00ff),
|
||||
00,
|
||||
00,
|
||||
0xEF };
|
||||
|
||||
setChecksum(out);
|
||||
|
||||
_serial->write(out, sizeof(out));
|
||||
}
|
||||
|
||||
uint16_t calcChecksum(uint8_t* packet)
|
||||
{
|
||||
uint16_t sum = 0;
|
||||
for (int i = 1; i < 7; i++)
|
||||
{
|
||||
sum += packet[i];
|
||||
}
|
||||
return -sum;
|
||||
}
|
||||
|
||||
void setChecksum(uint8_t* out)
|
||||
{
|
||||
uint16_t sum = calcChecksum(out);
|
||||
|
||||
out[7] = (sum >> 8);
|
||||
out[8] = (sum & 0xff);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // IO_DFPlayer_h
|
100
IO_HCSR04.h
100
IO_HCSR04.h
@ -17,31 +17,37 @@
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
/*
|
||||
* The HC-SR04 module has an ultrasonic transmitter (40kHz) and a receiver.
|
||||
* It is operated through two signal pins. When the transmit pin is set to 1 for
|
||||
* 10us, on the falling edge the transmitter sends a short transmission of
|
||||
* It is operated through two signal pins. When the transmit pin is set to 1
|
||||
* for 10us, on the falling edge the transmitter sends a short transmission of
|
||||
* 8 pulses (like a sonar 'ping'). This is reflected off objects and received
|
||||
* by the receiver. A pulse is sent on the receive pin whose length is equal
|
||||
* to the delay between the transmission of the pulse and the detection of
|
||||
* its echo. The distance of the reflecting object is calculated by halving
|
||||
* the time (to allow for the out and back distance), then multiplying by the
|
||||
* speed of sound (assumed to be constant).
|
||||
*
|
||||
*
|
||||
* This driver polls the HC-SR04 by sending the trigger pulse and then measuring
|
||||
* the length of the received pulse. If the calculated distance is less than the
|
||||
* threshold, the output changes to 1. If it is greater than the threshold plus
|
||||
* a hysteresis margin, the output changes to 0.
|
||||
*
|
||||
* The measurement would be more reliable if interrupts were disabled while the
|
||||
* pulse is being timed. However, this would affect other functions in the CS
|
||||
* so the measurement is being performed with interrupts enabled. Also, we could
|
||||
* use an interrupt pin in the Arduino for the timing, but the same consideration
|
||||
* applies.
|
||||
*
|
||||
* Note: The timing accuracy required by this means that the pins have to be
|
||||
* direct Arduino pins; GPIO pins on an IO Extender cannot provide the required
|
||||
* accuracy.
|
||||
* the length of the received pulse. If the calculated distance is less than
|
||||
* the threshold, the output state returned by a read() call changes to 1. If
|
||||
* the distance is greater than the threshold plus a hysteresis margin, the
|
||||
* output changes to 0. The device also supports readAnalogue(), which returns
|
||||
* the measured distance in cm, or 32767 if the distance exceeds the
|
||||
* offThreshold.
|
||||
*
|
||||
* It might be thought that the measurement would be more reliable if interrupts
|
||||
* were disabled while the pulse is being timed. However, this would affect
|
||||
* other functions in the CS so the measurement is being performed with
|
||||
* interrupts enabled. Also, we could use an interrupt pin in the Arduino for
|
||||
* the timing, but the same consideration applies. In any case, the DCC
|
||||
* interrupt occurs once every 58us, so any IRC code is much faster than that.
|
||||
* And 58us corresponds to 1cm in the calculation, so the effect of
|
||||
* interrupts is negligible.
|
||||
*
|
||||
* Note: The timing accuracy required for measuring the pulse length means that
|
||||
* the pins have to be direct Arduino pins; GPIO pins on an IO Extender cannot
|
||||
* provide the required accuracy.
|
||||
*/
|
||||
|
||||
#ifndef IO_HCSR04_H
|
||||
@ -53,11 +59,13 @@ class HCSR04 : public IODevice {
|
||||
|
||||
private:
|
||||
// pins must be arduino GPIO pins, not extender pins or HAL pins.
|
||||
int _transmitPin = -1;
|
||||
int _receivePin = -1;
|
||||
int _trigPin = -1;
|
||||
int _echoPin = -1;
|
||||
// Thresholds for setting active state in cm.
|
||||
uint8_t _onThreshold; // cm
|
||||
uint8_t _offThreshold; // cm
|
||||
// Last measured distance in cm.
|
||||
uint16_t _distance;
|
||||
// Active=1/inactive=0 state
|
||||
uint8_t _value = 0;
|
||||
// Time of last loop execution
|
||||
@ -68,27 +76,27 @@ private:
|
||||
|
||||
public:
|
||||
// Constructor perfroms static initialisation of the device object
|
||||
HCSR04 (VPIN vpin, int transmitPin, int receivePin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
HCSR04 (VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
_firstVpin = vpin;
|
||||
_nPins = 1;
|
||||
_transmitPin = transmitPin;
|
||||
_receivePin = receivePin;
|
||||
_trigPin = trigPin;
|
||||
_echoPin = echoPin;
|
||||
_onThreshold = onThreshold;
|
||||
_offThreshold = offThreshold;
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
// Static create function provides alternative way to create object
|
||||
static void create(VPIN vpin, int transmitPin, int receivePin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
new HCSR04(vpin, transmitPin, receivePin, onThreshold, offThreshold);
|
||||
static void create(VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
|
||||
new HCSR04(vpin, trigPin, echoPin, onThreshold, offThreshold);
|
||||
}
|
||||
|
||||
protected:
|
||||
// _begin function called to perform dynamic initialisation of the device
|
||||
void _begin() override {
|
||||
pinMode(_transmitPin, OUTPUT);
|
||||
pinMode(_receivePin, INPUT);
|
||||
ArduinoPins::fastWriteDigital(_transmitPin, 0);
|
||||
pinMode(_trigPin, OUTPUT);
|
||||
pinMode(_echoPin, INPUT);
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 0);
|
||||
_lastExecutionTime = micros();
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
@ -101,18 +109,25 @@ protected:
|
||||
return _value;
|
||||
}
|
||||
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
(void)vpin; // avoid compiler warning
|
||||
return _distance;
|
||||
}
|
||||
|
||||
// _loop function - read HC-SR04 once every 50 milliseconds.
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
if (currentMicros - _lastExecutionTime > 50000UL) {
|
||||
_lastExecutionTime = currentMicros;
|
||||
|
||||
_value = read_HCSR04device();
|
||||
read_HCSR04device();
|
||||
// Delay next loop entry until 50ms have elapsed.
|
||||
//delayUntil(currentMicros + 50000UL);
|
||||
}
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("HCSR04 Configured on Vpin:%d TrigPin:%d EchoPin:%d On:%dcm Off:%dcm"),
|
||||
_firstVpin, _transmitPin, _receivePin, _onThreshold, _offThreshold);
|
||||
_firstVpin, _trigPin, _echoPin, _onThreshold, _offThreshold);
|
||||
}
|
||||
|
||||
private:
|
||||
@ -127,51 +142,52 @@ private:
|
||||
// measured distance is less than the onThreshold, and is set to 0 if the measured distance is
|
||||
// greater than the offThreshold.
|
||||
//
|
||||
uint8_t read_HCSR04device() {
|
||||
void read_HCSR04device() {
|
||||
// uint16 enough to time up to 65ms
|
||||
uint16_t startTime, waitTime, currentTime, maxTime;
|
||||
|
||||
// If receive pin is still set on from previous call, abort the read.
|
||||
if (ArduinoPins::fastReadDigital(_receivePin)) return _value;
|
||||
if (ArduinoPins::fastReadDigital(_echoPin))
|
||||
return;
|
||||
|
||||
// Send 10us pulse to trigger transmitter
|
||||
ArduinoPins::fastWriteDigital(_transmitPin, 1);
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 1);
|
||||
delayMicroseconds(10);
|
||||
ArduinoPins::fastWriteDigital(_transmitPin, 0);
|
||||
ArduinoPins::fastWriteDigital(_trigPin, 0);
|
||||
|
||||
// Wait for receive pin to be set
|
||||
startTime = currentTime = micros();
|
||||
maxTime = factor * _offThreshold * 2;
|
||||
while (!ArduinoPins::fastReadDigital(_receivePin)) {
|
||||
while (!ArduinoPins::fastReadDigital(_echoPin)) {
|
||||
// lastTime = currentTime;
|
||||
currentTime = micros();
|
||||
waitTime = currentTime - startTime;
|
||||
if (waitTime > maxTime) {
|
||||
// Timeout waiting for pulse start, abort the read
|
||||
return _value;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for receive pin to reset, and measure length of pulse
|
||||
startTime = currentTime = micros();
|
||||
maxTime = factor * _offThreshold;
|
||||
while (ArduinoPins::fastReadDigital(_receivePin)) {
|
||||
while (ArduinoPins::fastReadDigital(_echoPin)) {
|
||||
currentTime = micros();
|
||||
waitTime = currentTime - startTime;
|
||||
// If pulse is too long then set return value to zero,
|
||||
// and finish without waiting for end of pulse.
|
||||
if (waitTime > maxTime) {
|
||||
// Pulse length longer than maxTime, reset value.
|
||||
return 0;
|
||||
_value = 0;
|
||||
_distance = 32767;
|
||||
return;
|
||||
}
|
||||
}
|
||||
// Check if pulse length is below threshold, if so set value.
|
||||
//DIAG(F("HCSR04: Pulse Len=%l Distance=%d"), waitTime, distance);
|
||||
uint16_t distance = waitTime / factor; // in centimetres
|
||||
if (distance < _onThreshold)
|
||||
return 1;
|
||||
|
||||
return _value;
|
||||
_distance = waitTime / factor; // in centimetres
|
||||
if (_distance < _onThreshold)
|
||||
_value = 1;
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -169,9 +169,9 @@ void PCA9685::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t dur
|
||||
s->fromPosition = s->currentPosition;
|
||||
}
|
||||
|
||||
// _isBusy returns true if the device is currently in executing an animation,
|
||||
// _read returns true if the device is currently in executing an animation,
|
||||
// changing the output over a period of time.
|
||||
bool PCA9685::_isBusy(VPIN vpin) {
|
||||
int PCA9685::_read(VPIN vpin) {
|
||||
int pin = vpin - _firstVpin;
|
||||
struct ServoData *s = _servoData[pin];
|
||||
if (s == NULL)
|
||||
|
249
IO_VL53L0X.h
Normal file
249
IO_VL53L0X.h
Normal file
@ -0,0 +1,249 @@
|
||||
/*
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The VL53L0X Time-Of-Flight sensor operates by sending a short laser pulse and detecting
|
||||
* the reflection of the pulse. The time between the pulse and the receipt of reflections
|
||||
* is measured and used to determine the distance to the reflecting object.
|
||||
*
|
||||
* For economy of memory and processing time, this driver includes only part of the code
|
||||
* that ST provide in their API. Also, the API code isn't very clear and it is not easy
|
||||
* to identify what operations are useful and what are not.
|
||||
* The operation shown here doesn't include any calibration, so is probably not as accurate
|
||||
* as using the full driver, but it's probably accurate enough for the purpose.
|
||||
*
|
||||
* The device driver allocates up to 3 vpins to the device. A digital read on any of the pins
|
||||
* will return a value that indicates whether the object is within the threshold range (1)
|
||||
* or not (0). An analogue read on the first pin returns the last measured distance (in mm),
|
||||
* the second pin returns the signal strength, and the third pin returns detected
|
||||
* ambient light level.
|
||||
*
|
||||
* The VL53L0X is initially set to respond to I2C address 0x29. If you only have one module,
|
||||
* you can use this address. However, the address can be modified by software. If
|
||||
* you select another address, that address will be written to the device and used until the device is reset.
|
||||
*
|
||||
* If you have more than one module, then you will need to specify a digital VPIN (Arduino
|
||||
* digital output or I/O extender pin) which you connect to the module's XSHUT pin. Now,
|
||||
* when the device driver starts, the XSHUT pin is set LOW to turn the module off. Once
|
||||
* all VL53L0X modules are turned off, the driver works through each module in turn by
|
||||
* setting XSHUT to HIGH to turn the module on,, then writing the module's desired I2C address.
|
||||
* In this way, many VL53L0X modules can be connected to the one I2C bus, each one
|
||||
* using with a distinct I2C address.
|
||||
*
|
||||
* The driver is configured as follows:
|
||||
*
|
||||
* Single VL53L0X module:
|
||||
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold);
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is 1, 2 or 3,
|
||||
* i2cAddress is the address of the device (normally 0x29),
|
||||
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
|
||||
* and highThreshold is the distance at which the digital vpin state is set to 0 (in mm).
|
||||
*
|
||||
* Multiple VL53L0X modules:
|
||||
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold, xshutPin);
|
||||
* ...
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is 1, 2 or 3,
|
||||
* i2cAddress is the address of the device (any valid address except 0x29),
|
||||
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
|
||||
* highThreshold is the distance at which the digital vpin state is set to 0 (in mm),
|
||||
* and xshutPin is the VPIN number corresponding to a digital output that is connected to the
|
||||
* XSHUT terminal on the module.
|
||||
*
|
||||
* Example:
|
||||
* In mySetup function within mySetup.cpp:
|
||||
* VL53L0X::create(4000, 3, 0x29, 200, 250);
|
||||
* Sensor::create(4000, 4000, 0); // Create a sensor
|
||||
*
|
||||
* When an object comes within 200mm of the sensor, a message
|
||||
* <Q 4000>
|
||||
* will be sent over the serial USB, and when the object moves more than 250mm from the sensor,
|
||||
* a message
|
||||
* <q 4000>
|
||||
* will be sent.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef IO_VL53L0X_h
|
||||
#define IO_VL53L0X_h
|
||||
|
||||
#include "IODevice.h"
|
||||
|
||||
class VL53L0X : public IODevice {
|
||||
private:
|
||||
uint8_t _i2cAddress;
|
||||
uint16_t _ambient;
|
||||
uint16_t _distance;
|
||||
uint16_t _signal;
|
||||
uint16_t _onThreshold;
|
||||
uint16_t _offThreshold;
|
||||
VPIN _xshutPin;
|
||||
bool _value;
|
||||
bool _initialising = true;
|
||||
uint8_t _entryCount = 0;
|
||||
unsigned long _lastEntryTime = 0;
|
||||
bool _scanInProgress = false;
|
||||
// Register addresses
|
||||
enum : uint8_t {
|
||||
VL53L0X_REG_SYSRANGE_START=0x00,
|
||||
VL53L0X_REG_RESULT_INTERRUPT_STATUS=0x13,
|
||||
VL53L0X_REG_RESULT_RANGE_STATUS=0x14,
|
||||
VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV=0x89,
|
||||
VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS=0x8A,
|
||||
};
|
||||
const uint8_t VL53L0X_I2C_DEFAULT_ADDRESS=0x29;
|
||||
|
||||
public:
|
||||
VL53L0X(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = min(nPins, 3);
|
||||
_i2cAddress = i2cAddress;
|
||||
_onThreshold = onThreshold;
|
||||
_offThreshold = offThreshold;
|
||||
_xshutPin = xshutPin;
|
||||
_value = 0;
|
||||
addDevice(this);
|
||||
}
|
||||
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
|
||||
new VL53L0X(firstVpin, nPins, i2cAddress, onThreshold, offThreshold, xshutPin);
|
||||
}
|
||||
|
||||
protected:
|
||||
void _begin() override {
|
||||
_initialising = true;
|
||||
// Check if device is already responding on the nominated address.
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
// Yes, it's already on this address, so skip the address initialisation.
|
||||
_entryCount = 3;
|
||||
} else {
|
||||
_entryCount = 0;
|
||||
}
|
||||
}
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
if (_initialising) {
|
||||
switch (_entryCount++) {
|
||||
case 0:
|
||||
// On first entry to loop, reset this module by pulling XSHUT low. All modules
|
||||
// will be reset in turn.
|
||||
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 0);
|
||||
break;
|
||||
case 1:
|
||||
// On second entry, set XSHUT pin high to allow the module to restart.
|
||||
// On the module, there is a diode in series with the XSHUT pin to
|
||||
// protect the low-voltage pin against +5V.
|
||||
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 1);
|
||||
// Allow the module time to restart
|
||||
delay(10);
|
||||
// Then write the desired I2C address to the device, while this is the only
|
||||
// module responding to the default address.
|
||||
I2CManager.write(VL53L0X_I2C_DEFAULT_ADDRESS, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _i2cAddress);
|
||||
break;
|
||||
case 3:
|
||||
if (I2CManager.exists(_i2cAddress)) {
|
||||
_display();
|
||||
// Set 2.8V mode
|
||||
write_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
|
||||
read_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
|
||||
}
|
||||
_initialising = false;
|
||||
_entryCount = 0;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else if (_lastEntryTime - currentMicros > 10000UL) {
|
||||
// Service device every 10ms
|
||||
_lastEntryTime = currentMicros;
|
||||
|
||||
if (!_scanInProgress) {
|
||||
// Not scanning, so initiate a scan
|
||||
write_reg(VL53L0X_REG_SYSRANGE_START, 0x01);
|
||||
_scanInProgress = true;
|
||||
|
||||
} else {
|
||||
// Scan in progress, so check for completion.
|
||||
uint8_t status = read_reg(VL53L0X_REG_RESULT_RANGE_STATUS);
|
||||
if (status & 1) {
|
||||
// Completed. Retrieve data
|
||||
uint8_t inBuffer[12];
|
||||
read_registers(VL53L0X_REG_RESULT_RANGE_STATUS, inBuffer, 12);
|
||||
uint8_t deviceRangeStatus = ((inBuffer[0] & 0x78) >> 3);
|
||||
if (deviceRangeStatus == 0x0b) {
|
||||
// Range status OK, so use data
|
||||
_ambient = makeuint16(inBuffer[7], inBuffer[6]);
|
||||
_signal = makeuint16(inBuffer[9], inBuffer[8]);
|
||||
_distance = makeuint16(inBuffer[11], inBuffer[10]);
|
||||
if (_distance <= _onThreshold)
|
||||
_value = true;
|
||||
else if (_distance > _offThreshold)
|
||||
_value = false;
|
||||
}
|
||||
_scanInProgress = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// For analogue read, first pin returns distance, second pin is signal strength, and third is ambient level.
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
int pin = vpin - _firstVpin;
|
||||
switch (pin) {
|
||||
case 0:
|
||||
return _distance;
|
||||
case 1:
|
||||
return _signal;
|
||||
case 2:
|
||||
return _ambient;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
// For digital read, return the same value for all pins.
|
||||
int _read(VPIN) override {
|
||||
return _value;
|
||||
}
|
||||
void _display() override {
|
||||
DIAG(F("VL53L0X I2C:x%x Configured on Vpins:%d-%d On:%dmm Off:%dmm"),
|
||||
_i2cAddress, _firstVpin, _firstVpin+_nPins-1, _onThreshold, _offThreshold);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
inline uint16_t makeuint16(byte lsb, byte msb) {
|
||||
return (((uint16_t)msb) << 8) | lsb;
|
||||
}
|
||||
void write_reg(uint8_t reg, uint8_t data) {
|
||||
// write byte to register
|
||||
uint8_t outBuffer[2];
|
||||
outBuffer[0] = reg;
|
||||
outBuffer[1] = data;
|
||||
I2CManager.write(_i2cAddress, outBuffer, 2);
|
||||
}
|
||||
uint8_t read_reg(uint8_t reg) {
|
||||
// read byte from register register
|
||||
uint8_t inBuffer[1];
|
||||
I2CManager.read(_i2cAddress, inBuffer, 1, ®, 1);
|
||||
return inBuffer[0];
|
||||
}
|
||||
void read_registers(uint8_t reg, uint8_t buffer[], uint8_t size) {
|
||||
I2CManager.read(_i2cAddress, buffer, size, ®, 1);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // IO_VL53L0X_h
|
@ -13,6 +13,7 @@
|
||||
#include "Turnouts.h"
|
||||
#include "Sensors.h"
|
||||
#include "IO_HCSR04.h"
|
||||
#include "IO_VL53L0X.h"
|
||||
|
||||
|
||||
// The #if directive prevent compile errors for Uno and Nano by excluding the
|
||||
@ -23,8 +24,9 @@
|
||||
// Examples of statically defined HAL directives (alternative to the create() call).
|
||||
// These have to be outside of the mySetup() function.
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a PCA9685 PWM Servo driver module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=100
|
||||
// Number of VPINs=16 (numbered 100-115)
|
||||
@ -33,13 +35,15 @@
|
||||
//PCA9685 pwmModule1(100, 16, 0x40);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines an MCP23017 16-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=164
|
||||
// Number of VPINs=16 (numbered 164-179)
|
||||
// I2C address of module=0x20
|
||||
// First Vpin=196
|
||||
// Number of VPINs=16 (numbered 196-211)
|
||||
// I2C address of module=0x22
|
||||
|
||||
//MCP23017 gpioModule2(164, 16, 0x20);
|
||||
//MCP23017 gpioModule2(196, 16, 0x22);
|
||||
|
||||
|
||||
// Alternative form, which allows the INT pin of the module to request a scan
|
||||
@ -47,19 +51,23 @@
|
||||
// all the time, only when a change takes place. Multiple modules' INT pins
|
||||
// may be connected to the same Arduino pin.
|
||||
|
||||
//MCP23017 gpioModule2(164, 16, 0x20, 40);
|
||||
//MCP23017 gpioModule2(196, 16, 0x22, 40);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines an MCP23008 8-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=300
|
||||
// Number of VPINs=8 (numbered 300-307)
|
||||
// I2C address of module=0x22
|
||||
|
||||
//MCP23017 gpioModule3(300, 8, 0x22);
|
||||
//MCP23008 gpioModule3(300, 8, 0x22);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a PCF8574 8-port I2C GPIO Extender module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// First Vpin=200
|
||||
// Number of VPINs=8 (numbered 200-207)
|
||||
@ -73,7 +81,9 @@
|
||||
//PCF8574 gpioModule4(200, 8, 0x23, 40);
|
||||
|
||||
|
||||
// The following directive defines an HCSR04 ultrasonic module.
|
||||
//=======================================================================
|
||||
// The following directive defines an HCSR04 ultrasonic ranging module.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// Vpin=2000 (only one VPIN per directive)
|
||||
// Number of VPINs=1
|
||||
@ -90,20 +100,48 @@
|
||||
//HCSR04 sonarModule2(2001, 30, 32, 20, 25);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The following directive defines a single VL53L0X Time-of-Flight range sensor.
|
||||
//=======================================================================
|
||||
// The parameters are:
|
||||
// VPIN=5000
|
||||
// Number of VPINs=1
|
||||
// I2C address=0x29 (default for this chip)
|
||||
// Minimum trigger range=200mm (VPIN goes to 1 when <20cm)
|
||||
// Maximum trigger range=250mm (VPIN goes to 0 when >25cm)
|
||||
|
||||
//VL53L0X tofModule1(5000, 1, 0x29, 200, 250);
|
||||
|
||||
// For multiple VL53L0X modules, add another parameter which is a VPIN connected to the
|
||||
// module's XSHUT pin. This allows the modules to be configured, at start,
|
||||
// with distinct I2C addresses. In this case, the address 0x29 is only used during
|
||||
// initialisation to configure each device in turn with the desired unique I2C address.
|
||||
// The examples below have the modules' XSHUT pins connected to the first two pins of
|
||||
// the first MCP23017 module (164 and 165), but Arduino pins may be used instead.
|
||||
// The first module here is given I2C address 0x30 and the second is 0x31.
|
||||
|
||||
//VL53L0X tofModule1(5000, 1, 0x30, 200, 250, 164);
|
||||
//VL53L0X tofModule2(5001, 1, 0x31, 200, 250, 165);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// The function mySetup() is invoked from CS if it exists within the build.
|
||||
// It is called just before mysetup.h is executed, so things set up within here can be
|
||||
// referenced by commands in mySetup.h.
|
||||
//=======================================================================
|
||||
|
||||
void mySetup() {
|
||||
|
||||
// Alternative way of creating MCP23017, which has to be within the mySetup() function
|
||||
// Alternative way of creating a module driver, which has to be within the mySetup() function
|
||||
// The other devices can also be created in this way. The parameter lists for the
|
||||
// create() function are identical to the parameter lists for the declarations.
|
||||
|
||||
//MCP23017::create(180, 16, 0x21);
|
||||
//MCP23017::create(196, 16, 0x22);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Creating a Turnout
|
||||
//=======================================================================
|
||||
// Parameters: same as <T> command for Servo turnouts
|
||||
// ID and VPIN are 100, sonar moves between positions 102 and 490 with slow profile.
|
||||
// Profile may be Instant, Fast, Medium, Slow or Bounce.
|
||||
@ -111,7 +149,9 @@ void mySetup() {
|
||||
//ServoTurnout::create(100, 100, 490, 102, PCA9685::Slow);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// DCC Accessory turnout
|
||||
//=======================================================================
|
||||
// Parameters: same as <T> command for DCC Accessory turnouts
|
||||
// ID=3000
|
||||
// Decoder address=23
|
||||
@ -120,7 +160,9 @@ void mySetup() {
|
||||
//DCCTurnout::create(3000, 23, 1);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Creating a Sensor
|
||||
//=======================================================================
|
||||
// Parameters: As for the <S> command,
|
||||
// id = 164,
|
||||
// Vpin = 164 (configured above as pin 0 of an MCP23017)
|
||||
@ -129,11 +171,44 @@ void mySetup() {
|
||||
//Sensor::create(164, 164, 1);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Way of creating lots of identical sensors in a range
|
||||
//=======================================================================
|
||||
|
||||
//for (int i=165; i<180; i++)
|
||||
// Sensor::create(i, i, 1);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module.
|
||||
//=======================================================================
|
||||
// Parameters:
|
||||
// 10000 = first VPIN allocated.
|
||||
// 10 = number of VPINs allocated.
|
||||
// Serial1 = name of serial port (usually Serial1 or Serial2).
|
||||
// With these parameters, up to 10 files may be played on pins 10000-10009.
|
||||
// Play is started from EX-RAIL with SET(10000) for first mp3 file, SET(10001)
|
||||
// for second file, etc. Play may also be initiated by writing an analogue
|
||||
// value to the first pin, e.g. SERVO(10000,23,0) will play the 23rd mp3 file.
|
||||
// SERVO(10000,23,30) will do the same thing, as well as setting the volume to
|
||||
// 30 (maximum value).
|
||||
// Play is stopped by RESET(10000) (or any other allocated VPIN).
|
||||
// Volume may also be set by writing an analogue value to the second pin for the player,
|
||||
// e.g. SERVO(10001,30,0) sets volume to maximum (30).
|
||||
// The EX-RAIL script may check for completion of play by calling WAITFOR(pin), which will only proceed to the
|
||||
// following line when the player is no longer busy.
|
||||
// E.g.
|
||||
// SEQUENCE(1)
|
||||
// AT(164) // Wait for sensor attached to pin 164 to activate
|
||||
// SET(10003) // Play fourth MP3 file
|
||||
// LCD(4, "Playing") // Display message on LCD/OLED
|
||||
// WAITFOR(10003) // Wait for playing to finish
|
||||
// LCD(4, " ") // Clear LCD/OLED line
|
||||
// FOLLOW(1) // Go back to start
|
||||
|
||||
// DFPlayer::create(10000, 10, Serial1);
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user