1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-28 10:36:14 +01:00

Compare commits

..

1 Commits

Author SHA1 Message Date
Kcsmith0708
858e28586f
Merge 2afb5f3d6c into f2ff1ba22a 2023-11-07 19:09:39 -08:00
15 changed files with 530 additions and 736 deletions

View File

@ -248,11 +248,6 @@ void CommandDistributor::broadcastLoco(byte slot) {
} }
void CommandDistributor::broadcastPower() { void CommandDistributor::broadcastPower() {
char pstr[] = "? x";
for(byte t=0; t<TrackManager::MAX_TRACKS; t++)
if (TrackManager::getPower(t, pstr))
broadcastReply(COMMAND_TYPE, F("<p%s>\n"),pstr);
bool main=TrackManager::getMainPower()==POWERMODE::ON; bool main=TrackManager::getMainPower()==POWERMODE::ON;
bool prog=TrackManager::getProgPower()==POWERMODE::ON; bool prog=TrackManager::getProgPower()==POWERMODE::ON;
bool join=TrackManager::isJoined(); bool join=TrackManager::isJoined();
@ -275,13 +270,5 @@ void CommandDistributor::broadcastRaw(clientType type, char * msg) {
} }
void CommandDistributor::broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr) { void CommandDistributor::broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format, trackLetter, dcAddr); broadcastReply(COMMAND_TYPE, format,trackLetter, dcAddr);
}
void CommandDistributor::broadcastRouteState(uint16_t routeId, byte state ) {
broadcastReply(COMMAND_TYPE, F("<jB %d %d>\n"),routeId,state);
}
void CommandDistributor::broadcastRouteCaption(uint16_t routeId, const FSH* caption ) {
broadcastReply(COMMAND_TYPE, F("<jB %d \"%S\">\n"),routeId,caption);
} }

View File

@ -58,9 +58,6 @@ public :
static void broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr); static void broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr);
template<typename... Targs> static void broadcastReply(clientType type, Targs... msg); template<typename... Targs> static void broadcastReply(clientType type, Targs... msg);
static void forget(byte clientId); static void forget(byte clientId);
static void broadcastRouteState(uint16_t routeId,byte state);
static void broadcastRouteCaption(uint16_t routeId,const FSH * caption);
}; };

View File

@ -553,66 +553,131 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
case '1': // POWERON <1 [MAIN|PROG|JOIN]> case '1': // POWERON <1 [MAIN|PROG|JOIN]>
{ {
if (params > 1) break; bool main=false;
if (params==0) { // All bool prog=false;
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON); bool join=false;
} bool singletrack=false;
if (params==1) { //byte t=0;
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN> if (params > 1) break;
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON); if (params==0) { // All
main=true;
prog=true;
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN>
main=true;
} }
#ifndef DISABLE_PROG #ifndef DISABLE_PROG
else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN> else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN>
TrackManager::setJoin(true); main=true;
TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON); prog=true;
join=true;
} }
else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG> else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG>
TrackManager::setJoin(false); prog=true;
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON);
} }
#endif #endif
//else if (p[0] >= 'A' && p[0] <= 'H') { // <1 A-H>
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H> else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
byte t = (p[0] - 'A'); byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::ON, t); //DIAG(F("Processing track - %d "), t);
//StringFormatter::send(stream, F("<p1 %c>\n"), t+'A'); if (TrackManager::isProg(t)) {
} main = false;
else break; // will reply <X> prog = true;
} }
CommandDistributor::broadcastPower(); else
//TrackManager::streamTrackState(NULL,t); {
main=true;
prog=false;
}
singletrack=true;
if (main) TrackManager::setTrackPower(false, false, POWERMODE::ON, t);
if (prog) TrackManager::setTrackPower(true, false, POWERMODE::ON, t);
return; StringFormatter::send(stream, F("<1 %c>\n"), t+'A');
} //CommandDistributor::broadcastPower();
//TrackManager::streamTrackState(NULL,t);
return;
}
else break; // will reply <X>
}
if (!singletrack) {
TrackManager::setJoin(join);
if (join) TrackManager::setJoinPower(POWERMODE::ON);
else {
if (main) TrackManager::setMainPower(POWERMODE::ON);
if (prog) TrackManager::setProgPower(POWERMODE::ON);
}
CommandDistributor::broadcastPower();
return;
}
}
case '0': // POWEROFF <0 [MAIN | PROG] > case '0': // POWEROFF <0 [MAIN | PROG] >
{ {
if (params > 1) break; bool main=false;
if (params==0) { // All bool prog=false;
TrackManager::setJoin(false); bool singletrack=false;
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF); //byte t=0;
} if (params > 1) break;
if (params==1) { if (params==0) { // All
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN> main=true;
TrackManager::setJoin(false); prog=true;
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF); }
} if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN>
main=true;
}
#ifndef DISABLE_PROG #ifndef DISABLE_PROG
else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG> else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG>
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off prog=true;
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF);
} }
#endif #endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H> //else if (p[0] >= 'A' && p[0] <= 'H') { // <1 A-H>
byte t = (p[0] - 'A'); else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
TrackManager::setJoin(false); byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::OFF, t); //DIAG(F("Processing track - %d "), t);
//StringFormatter::send(stream, F("<p0 %c>\n"), t+'A'); if (TrackManager::isProg(t)) {
} main = false;
prog = true;
}
else
{
main=true;
prog=false;
}
singletrack=true;
TrackManager::setJoin(false);
if (main) TrackManager::setTrackPower(false, false, POWERMODE::OFF, t);
if (prog) {
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setTrackPower(true, false, POWERMODE::OFF, t);
}
StringFormatter::send(stream, F("<0 %c>\n"), t+'A');
//CommandDistributor::broadcastPower();
//TrackManager::streamTrackState(NULL, t);
return;
}
else break; // will reply <X> else break; // will reply <X>
} }
CommandDistributor::broadcastPower();
return; if (!singletrack) {
} TrackManager::setJoin(false);
if (main) TrackManager::setMainPower(POWERMODE::OFF);
if (prog) {
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setProgPower(POWERMODE::OFF);
}
CommandDistributor::broadcastPower();
return;
}
}
case '!': // ESTOP ALL <!> case '!': // ESTOP ALL <!>
DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1. DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
@ -716,11 +781,27 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::reportCurrent(stream); // <g limit...limit> TrackManager::reportCurrent(stream); // <g limit...limit>
return; return;
case HASH_KEYWORD_A: // <JA> intercepted by EXRAIL// <JA> returns automations/routes case HASH_KEYWORD_A: // <JA> returns automations/routes
if (params!=1) break; // <JA> StringFormatter::send(stream, F("<jA"));
StringFormatter::send(stream, F("<jA>\n")); if (params==1) {// <JA>
#ifdef EXRAIL_ACTIVE
SENDFLASHLIST(stream,RMFT2::routeIdList)
SENDFLASHLIST(stream,RMFT2::automationIdList)
#endif
}
else { // <JA id>
StringFormatter::send(stream,F(" %d %c \"%S\""),
id,
#ifdef EXRAIL_ACTIVE
RMFT2::getRouteType(id), // A/R
RMFT2::getRouteDescription(id)
#else
'X',F("")
#endif
);
}
StringFormatter::send(stream, F(">\n"));
return; return;
case HASH_KEYWORD_R: // <JR> returns rosters case HASH_KEYWORD_R: // <JR> returns rosters
StringFormatter::send(stream, F("<jR")); StringFormatter::send(stream, F("<jR"));
#ifdef EXRAIL_ACTIVE #ifdef EXRAIL_ACTIVE
@ -1040,6 +1121,7 @@ bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[])
bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) { bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
if (params == 0) if (params == 0)
return false; return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
switch (p[0]) switch (p[0])
{ {
#ifndef DISABLE_PROG #ifndef DISABLE_PROG
@ -1077,8 +1159,6 @@ bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2> LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
} }
} else { } else {
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
DIAG(F("Ack diag %S"), onOff ? F("on") : F("off")); DIAG(F("Ack diag %S"), onOff ? F("on") : F("off"));
Diag::ACK = onOff; Diag::ACK = onOff;
} }

View File

@ -55,6 +55,22 @@
#include "Turntables.h" #include "Turntables.h"
#include "IODevice.h" #include "IODevice.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
// One instance of RMFT clas is used for each "thread" in the automation. // One instance of RMFT clas is used for each "thread" in the automation.
// Each thread manages a loco on a journey through the layout, and/or may manage a scenery automation. // Each thread manages a loco on a journey through the layout, and/or may manage a scenery automation.
@ -70,7 +86,7 @@ RMFT2 * RMFT2::pausingTask=NULL; // Task causing a PAUSE.
// and all others will have their locos stopped, then resumed after the pausing task resumes. // and all others will have their locos stopped, then resumed after the pausing task resumes.
byte RMFT2::flags[MAX_FLAGS]; byte RMFT2::flags[MAX_FLAGS];
Print * RMFT2::LCCSerial=0; Print * RMFT2::LCCSerial=0;
LookList * RMFT2::routeLookup=NULL; LookList * RMFT2::sequenceLookup=NULL;
LookList * RMFT2::onThrowLookup=NULL; LookList * RMFT2::onThrowLookup=NULL;
LookList * RMFT2::onCloseLookup=NULL; LookList * RMFT2::onCloseLookup=NULL;
LookList * RMFT2::onActivateLookup=NULL; LookList * RMFT2::onActivateLookup=NULL;
@ -84,8 +100,9 @@ LookList * RMFT2::onClockLookup=NULL;
LookList * RMFT2::onRotateLookup=NULL; LookList * RMFT2::onRotateLookup=NULL;
#endif #endif
LookList * RMFT2::onOverloadLookup=NULL; LookList * RMFT2::onOverloadLookup=NULL;
byte * RMFT2::routeStateArray=nullptr;
const FSH * * RMFT2::routeCaptionArray=nullptr; #define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
// getOperand instance version, uses progCounter from instance. // getOperand instance version, uses progCounter from instance.
uint16_t RMFT2::getOperand(byte n) { uint16_t RMFT2::getOperand(byte n) {
@ -103,7 +120,6 @@ uint16_t RMFT2::getOperand(int progCounter,byte n) {
LookList::LookList(int16_t size) { LookList::LookList(int16_t size) {
m_size=size; m_size=size;
m_loaded=0; m_loaded=0;
m_chain=nullptr;
if (size) { if (size) {
m_lookupArray=new int16_t[size]; m_lookupArray=new int16_t[size];
m_resultArray=new int16_t[size]; m_resultArray=new int16_t[size];
@ -121,35 +137,8 @@ int16_t LookList::find(int16_t value) {
for (int16_t i=0;i<m_size;i++) { for (int16_t i=0;i<m_size;i++) {
if (m_lookupArray[i]==value) return m_resultArray[i]; if (m_lookupArray[i]==value) return m_resultArray[i];
} }
return m_chain ? m_chain->find(value) :-1;
}
void LookList::chain(LookList * chain) {
m_chain=chain;
}
void LookList::handleEvent(const FSH* reason,int16_t id) {
// New feature... create multiple ONhandlers
for (int i=0;i<m_size;i++)
if (m_lookupArray[i]==id)
RMFT2::startNonRecursiveTask(reason,id,m_resultArray[i]);
}
void LookList::stream(Print * _stream) {
for (int16_t i=0;i<m_size;i++) {
_stream->print(" ");
_stream->print(m_lookupArray[i]);
}
}
int16_t LookList::findPosition(int16_t value) {
for (int16_t i=0;i<m_size;i++) {
if (m_lookupArray[i]==value) return i;
}
return -1; return -1;
} }
int16_t LookList::size() {
return m_size;
}
LookList* RMFT2::LookListLoader(OPCODE op1, OPCODE op2, OPCODE op3) { LookList* RMFT2::LookListLoader(OPCODE op1, OPCODE op2, OPCODE op3) {
int progCounter; int progCounter;
@ -182,12 +171,7 @@ LookList* RMFT2::LookListLoader(OPCODE op1, OPCODE op2, OPCODE op3) {
for (int f=0;f<MAX_FLAGS;f++) flags[f]=0; for (int f=0;f<MAX_FLAGS;f++) flags[f]=0;
// create lookups // create lookups
routeLookup=LookListLoader(OPCODE_ROUTE, OPCODE_AUTOMATION); sequenceLookup=LookListLoader(OPCODE_ROUTE, OPCODE_AUTOMATION,OPCODE_SEQUENCE);
routeLookup->chain(LookListLoader(OPCODE_SEQUENCE));
if (compileFeatures && FEATURE_ROUTESTATE) {
routeStateArray=(byte *)calloc(routeLookup->size(),sizeof(byte));
routeCaptionArray=(const FSH * *)calloc(routeLookup->size(),sizeof(const FSH *));
}
onThrowLookup=LookListLoader(OPCODE_ONTHROW); onThrowLookup=LookListLoader(OPCODE_ONTHROW);
onCloseLookup=LookListLoader(OPCODE_ONCLOSE); onCloseLookup=LookListLoader(OPCODE_ONCLOSE);
onActivateLookup=LookListLoader(OPCODE_ONACTIVATE); onActivateLookup=LookListLoader(OPCODE_ONACTIVATE);
@ -330,15 +314,238 @@ void RMFT2::setTurntableHiddenState(Turntable * tto) {
#endif #endif
char RMFT2::getRouteType(int16_t id) { char RMFT2::getRouteType(int16_t id) {
int16_t progCounter=routeLookup->find(id); for (int16_t i=0;;i+=2) {
if (progCounter>=0) { int16_t rid= GETHIGHFLASHW(routeIdList,i);
byte type=GET_OPCODE; if (rid==INT16_MAX) break;
if (type==OPCODE_ROUTE) return 'R'; if (rid==id) return 'R';
if (type==OPCODE_AUTOMATION) return 'A'; }
for (int16_t i=0;;i+=2) {
int16_t rid= GETHIGHFLASHW(automationIdList,i);
if (rid==INT16_MAX) break;
if (rid==id) return 'A';
} }
return 'X'; return 'X';
} }
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
// - Reject/modify JMRI commands that would interfere with RMFT processing
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
bool reject=false;
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
opcode=0;
}
break;
case '/': // New EXRAIL command
reject=!parseSlash(stream,paramCount,p);
opcode=0;
break;
case 'L':
if (compileFeatures & FEATURE_LCC) {
// This entire code block is compiled out if LLC macros not used
if (paramCount==0) { //<L> LCC adapter introducing self
LCCSerial=stream; // now we know where to send events we raise
// loop through all possible sent events
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_LCC) StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
if (opcode==OPCODE_LCCX) { // long form LCC
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
}}
// we stream the hex events we wish to listen to
// and at the same time build the event index looku.
int eventIndex=0;
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_ONLCC) {
onLCCLookup[eventIndex]=progCounter; // TODO skip...
StringFormatter::send(stream,F("<LL %d x%h%h%h:%h>\n"),
eventIndex,
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
eventIndex++;
}
}
StringFormatter::send(stream,F("<LR>\n")); // Ready to rumble
opcode=0;
break;
}
if (paramCount==1) { // <L eventid> LCC event arrived from adapter
int16_t eventid=p[0];
reject=eventid<0 || eventid>=countLCCLookup;
if (!reject) startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
opcode=0;
}
}
break;
default: // other commands pass through
break;
}
if (reject) {
opcode=0;
StringFormatter::send(stream,F("<X>\n"));
}
}
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount==0) { // STATUS
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
RMFT2 * task=loopTask;
while(task) {
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
(int)(task->taskId),task->progCounter,task->loco,
task->invert?'I':' ',
task->speedo,
task->forward?'F':'R'
);
task=task->next;
if (task==loopTask) break;
}
// Now stream the flags
for (int id=0;id<MAX_FLAGS; id++) {
byte flag=flags[id];
if (flag & ~TASK_FLAG & ~SIGNAL_MASK) { // not interested in TASK_FLAG only. Already shown above
StringFormatter::send(stream,F("\nflags[%d] "),id);
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
}
}
if (compileFeatures & FEATURE_SIGNAL) {
// do the signals
// flags[n] represents the state of the nth signal in the table
for (int sigslot=0;;sigslot++) {
VPIN sigid=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigslot*8);
if (sigid==0) break; // end of signal list
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this id
StringFormatter::send(stream,F("\n%S[%d]"),
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
sigid & SIGNAL_ID_MASK);
}
}
StringFormatter::send(stream,F(" *>\n"));
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
RMFT2 * task=loopTask;
while(task) {
if (task->loco) task->driveLoco(task->speedo);
task=task->next;
if (task==loopTask) break;
}
}
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
uint16_t cab=(paramCount==2)? 0 : p[1];
int pc=sequenceLookup->find(route);
if (pc<0) return false;
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
return true;
default:
break;
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
// all other / commands take 1 parameter
if (paramCount!=2 ) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
while(task) {
if (task->taskId==p[1]) {
task->kill(F("KILL"));
return true;
}
task=task->next;
if (task==loopTask) break;
}
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case HASH_KEYWORD_FREE: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case HASH_KEYWORD_LATCH:
return setFlag(p[1], LATCH_FLAG);
case HASH_KEYWORD_UNLATCH:
return setFlag(p[1], 0, LATCH_FLAG);
case HASH_KEYWORD_RED:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
doSignal(p[1],SIGNAL_GREEN);
return true;
default:
return false;
}
}
// This emits Routes and Automations to Withrottle
// Automations are given a state to set the button to "handoff" which implies
// handing over the loco to the automation.
// Routes are given "Set" buttons and do not cause the loco to be handed over.
RMFT2::RMFT2(int progCtr) { RMFT2::RMFT2(int progCtr) {
progCounter=progCtr; progCounter=progCtr;
@ -387,7 +594,7 @@ RMFT2::~RMFT2() {
} }
void RMFT2::createNewTask(int route, uint16_t cab) { void RMFT2::createNewTask(int route, uint16_t cab) {
int pc=routeLookup->find(route); int pc=sequenceLookup->find(route);
if (pc<0) return; if (pc<0) return;
RMFT2* task=new RMFT2(pc); RMFT2* task=new RMFT2(pc);
task->loco=cab; task->loco=cab;
@ -636,10 +843,10 @@ void RMFT2::loop2() {
//byte thistrack=getOperand(1); //byte thistrack=getOperand(1);
switch (operand) { switch (operand) {
case TRACK_POWER_0: case TRACK_POWER_0:
TrackManager::setTrackPower(POWERMODE::OFF, getOperand(1)); TrackManager::setTrackPower(TrackManager::isProg(getOperand(1)), false, POWERMODE::OFF, getOperand(1));
break; break;
case TRACK_POWER_1: case TRACK_POWER_1:
TrackManager::setTrackPower(POWERMODE::ON, getOperand(1)); TrackManager::setTrackPower(TrackManager::isProg(getOperand(1)), false, POWERMODE::ON, getOperand(1));
break; break;
} }
@ -650,7 +857,7 @@ void RMFT2::loop2() {
// If DC/DCX use my loco for DC address // If DC/DCX use my loco for DC address
{ {
TRACK_MODE mode = (TRACK_MODE)(operand>>8); TRACK_MODE mode = (TRACK_MODE)(operand>>8);
int16_t cab=(mode & TRACK_MODE_DC) ? loco : 0; int16_t cab=(mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) ? loco : 0;
TrackManager::setTrackMode(operand & 0x0F, mode, cab); TrackManager::setTrackMode(operand & 0x0F, mode, cab);
} }
break; break;
@ -788,7 +995,7 @@ void RMFT2::loop2() {
} }
case OPCODE_FOLLOW: case OPCODE_FOLLOW:
progCounter=routeLookup->find(operand); progCounter=sequenceLookup->find(operand);
if (progCounter<0) kill(F("FOLLOW unknown"), operand); if (progCounter<0) kill(F("FOLLOW unknown"), operand);
return; return;
@ -798,7 +1005,7 @@ void RMFT2::loop2() {
return; return;
} }
callStack[stackDepth++]=progCounter+3; callStack[stackDepth++]=progCounter+3;
progCounter=routeLookup->find(operand); progCounter=sequenceLookup->find(operand);
if (progCounter<0) kill(F("CALL unknown"),operand); if (progCounter<0) kill(F("CALL unknown"),operand);
return; return;
@ -861,7 +1068,7 @@ void RMFT2::loop2() {
case OPCODE_START: case OPCODE_START:
{ {
int newPc=routeLookup->find(operand); int newPc=sequenceLookup->find(operand);
if (newPc<0) break; if (newPc<0) break;
new RMFT2(newPc); new RMFT2(newPc);
} }
@ -869,7 +1076,7 @@ void RMFT2::loop2() {
case OPCODE_SENDLOCO: // cab, route case OPCODE_SENDLOCO: // cab, route
{ {
int newPc=routeLookup->find(getOperand(1)); int newPc=sequenceLookup->find(getOperand(1));
if (newPc<0) break; if (newPc<0) break;
RMFT2* newtask=new RMFT2(newPc); // create new task RMFT2* newtask=new RMFT2(newPc); // create new task
newtask->loco=operand; newtask->loco=operand;
@ -923,15 +1130,6 @@ void RMFT2::loop2() {
case OPCODE_PRINT: case OPCODE_PRINT:
printMessage(operand); printMessage(operand);
break; break;
case OPCODE_ROUTE_HIDDEN:
manageRouteState(operand,2);
break;
case OPCODE_ROUTE_INACTIVE:
manageRouteState(operand,0);
break;
case OPCODE_ROUTE_ACTIVE:
manageRouteState(operand,1);
break;
case OPCODE_ROUTE: case OPCODE_ROUTE:
case OPCODE_AUTOMATION: case OPCODE_AUTOMATION:
@ -1020,9 +1218,9 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
// Schedule any event handler for this signal change. // Schedule any event handler for this signal change.
// Thjis will work even without a signal definition. // Thjis will work even without a signal definition.
if (rag==SIGNAL_RED) onRedLookup->handleEvent(F("RED"),id); if (rag==SIGNAL_RED) handleEvent(F("RED"),onRedLookup,id);
else if (rag==SIGNAL_GREEN) onGreenLookup->handleEvent(F("GREEN"),id); else if (rag==SIGNAL_GREEN) handleEvent(F("GREEN"), onGreenLookup,id);
else onAmberLookup->handleEvent(F("AMBER"),id); else handleEvent(F("AMBER"), onAmberLookup,id);
int16_t sigslot=getSignalSlot(id); int16_t sigslot=getSignalSlot(id);
if (sigslot<0) return; if (sigslot<0) return;
@ -1091,26 +1289,26 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
void RMFT2::turnoutEvent(int16_t turnoutId, bool closed) { void RMFT2::turnoutEvent(int16_t turnoutId, bool closed) {
// Hunt for an ONTHROW/ONCLOSE for this turnout // Hunt for an ONTHROW/ONCLOSE for this turnout
if (closed) onCloseLookup->handleEvent(F("CLOSE"),turnoutId); if (closed) handleEvent(F("CLOSE"),onCloseLookup,turnoutId);
else onThrowLookup->handleEvent(F("THROW"),turnoutId); else handleEvent(F("THROW"),onThrowLookup,turnoutId);
} }
void RMFT2::activateEvent(int16_t addr, bool activate) { void RMFT2::activateEvent(int16_t addr, bool activate) {
// Hunt for an ONACTIVATE/ONDEACTIVATE for this accessory // Hunt for an ONACTIVATE/ONDEACTIVATE for this accessory
if (activate) onActivateLookup->handleEvent(F("ACTIVATE"),addr); if (activate) handleEvent(F("ACTIVATE"),onActivateLookup,addr);
else onDeactivateLookup->handleEvent(F("DEACTIVATE"),addr); else handleEvent(F("DEACTIVATE"),onDeactivateLookup,addr);
} }
void RMFT2::changeEvent(int16_t vpin, bool change) { void RMFT2::changeEvent(int16_t vpin, bool change) {
// Hunt for an ONCHANGE for this sensor // Hunt for an ONCHANGE for this sensor
if (change) onChangeLookup->handleEvent(F("CHANGE"),vpin); if (change) handleEvent(F("CHANGE"),onChangeLookup,vpin);
} }
#ifndef IO_NO_HAL #ifndef IO_NO_HAL
void RMFT2::rotateEvent(int16_t turntableId, bool change) { void RMFT2::rotateEvent(int16_t turntableId, bool change) {
// Hunt or an ONROTATE for this turntable // Hunt or an ONROTATE for this turntable
if (change) onRotateLookup->handleEvent(F("ROTATE"),turntableId); if (change) handleEvent(F("ROTATE"),onRotateLookup,turntableId);
} }
#endif #endif
@ -1119,8 +1317,8 @@ void RMFT2::clockEvent(int16_t clocktime, bool change) {
if (Diag::CMD) if (Diag::CMD)
DIAG(F("Looking for clock event at : %d"), clocktime); DIAG(F("Looking for clock event at : %d"), clocktime);
if (change) { if (change) {
onClockLookup->handleEvent(F("CLOCK"),clocktime); handleEvent(F("CLOCK"),onClockLookup,clocktime);
onClockLookup->handleEvent(F("CLOCK"),25*60+clocktime%60); handleEvent(F("CLOCK"),onClockLookup,25*60+clocktime%60);
} }
} }
@ -1129,10 +1327,16 @@ void RMFT2::powerEvent(int16_t track, bool overload) {
if (Diag::CMD) if (Diag::CMD)
DIAG(F("Looking for Power event on track : %c"), track); DIAG(F("Looking for Power event on track : %c"), track);
if (overload) { if (overload) {
onOverloadLookup->handleEvent(F("POWER"),track); handleEvent(F("POWER"),onOverloadLookup,track);
} }
} }
void RMFT2::handleEvent(const FSH* reason,LookList* handlers, int16_t id) {
int pc= handlers->find(id);
if (pc>=0) startNonRecursiveTask(reason,id,pc);
}
void RMFT2::startNonRecursiveTask(const FSH* reason, int16_t id,int pc) { void RMFT2::startNonRecursiveTask(const FSH* reason, int16_t id,int pc) {
// Check we dont already have a task running this handler // Check we dont already have a task running this handler
RMFT2 * task=loopTask; RMFT2 * task=loopTask;
@ -1249,29 +1453,3 @@ void RMFT2::thrungeString(uint32_t strfar, thrunger mode, byte id) {
break; break;
} }
} }
void RMFT2::manageRouteState(uint16_t id, byte state) {
if (compileFeatures && FEATURE_ROUTESTATE) {
// Route state must be maintained for when new throttles connect.
// locate route id in the Routes lookup
int16_t position=routeLookup->findPosition(id);
if (position<0) return;
// set state beside it
if (routeStateArray[position]==state) return;
routeStateArray[position]=state;
CommandDistributor::broadcastRouteState(id,state);
}
}
void RMFT2::manageRouteCaption(uint16_t id,const FSH* caption) {
if (compileFeatures && FEATURE_ROUTESTATE) {
// Route state must be maintained for when new throttles connect.
// locate route id in the Routes lookup
int16_t position=routeLookup->findPosition(id);
if (position<0) return;
// set state beside it
if (routeCaptionArray[position]==caption) return;
routeCaptionArray[position]=caption;
CommandDistributor::broadcastRouteCaption(id,caption);
}
}

View File

@ -68,7 +68,6 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_ONROTATE,OPCODE_ROTATE,OPCODE_WAITFORTT, OPCODE_ONROTATE,OPCODE_ROTATE,OPCODE_WAITFORTT,
OPCODE_LCC,OPCODE_LCCX,OPCODE_ONLCC, OPCODE_LCC,OPCODE_LCCX,OPCODE_ONLCC,
OPCODE_ONOVERLOAD, OPCODE_ONOVERLOAD,
OPCODE_ROUTE_ACTIVE,OPCODE_ROUTE_INACTIVE,OPCODE_ROUTE_HIDDEN,
// OPcodes below this point are skip-nesting IF operations // OPcodes below this point are skip-nesting IF operations
// placed here so that they may be skipped as a group // placed here so that they may be skipped as a group
@ -100,7 +99,6 @@ enum thrunger: byte {
static const byte FEATURE_SIGNAL= 0x80; static const byte FEATURE_SIGNAL= 0x80;
static const byte FEATURE_LCC = 0x40; static const byte FEATURE_LCC = 0x40;
static const byte FEATURE_ROSTER= 0x20; static const byte FEATURE_ROSTER= 0x20;
static const byte FEATURE_ROUTESTATE= 0x10;
// Flag bits for status of hardware and TPL // Flag bits for status of hardware and TPL
@ -121,20 +119,13 @@ enum thrunger: byte {
class LookList { class LookList {
public: public:
LookList(int16_t size); LookList(int16_t size);
void chain(LookList* chainTo);
void add(int16_t lookup, int16_t result); void add(int16_t lookup, int16_t result);
int16_t find(int16_t value); // finds result value int16_t find(int16_t value);
int16_t findPosition(int16_t value); // finds index
int16_t size();
void stream(Print * _stream);
void handleEvent(const FSH* reason,int16_t id);
private: private:
int16_t m_size; int16_t m_size;
int16_t m_loaded; int16_t m_loaded;
int16_t * m_lookupArray; int16_t * m_lookupArray;
int16_t * m_resultArray; int16_t * m_resultArray;
LookList* m_chain;
}; };
class RMFT2 { class RMFT2 {
@ -168,7 +159,6 @@ class LookList {
static const FSH * getRosterFunctions(int16_t id); static const FSH * getRosterFunctions(int16_t id);
static const FSH * getTurntableDescription(int16_t id); static const FSH * getTurntableDescription(int16_t id);
static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId); static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
private: private:
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]); static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
@ -186,7 +176,9 @@ private:
#endif #endif
static LookList* LookListLoader(OPCODE op1, static LookList* LookListLoader(OPCODE op1,
OPCODE op2=OPCODE_ENDEXRAIL,OPCODE op3=OPCODE_ENDEXRAIL); OPCODE op2=OPCODE_ENDEXRAIL,OPCODE op3=OPCODE_ENDEXRAIL);
static void handleEvent(const FSH* reason,LookList* handlers, int16_t id);
static uint16_t getOperand(int progCounter,byte n); static uint16_t getOperand(int progCounter,byte n);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
static RMFT2 * loopTask; static RMFT2 * loopTask;
static RMFT2 * pausingTask; static RMFT2 * pausingTask;
void delayMe(long millisecs); void delayMe(long millisecs);
@ -206,7 +198,7 @@ private:
static const HIGHFLASH int16_t SignalDefinitions[]; static const HIGHFLASH int16_t SignalDefinitions[];
static byte flags[MAX_FLAGS]; static byte flags[MAX_FLAGS];
static Print * LCCSerial; static Print * LCCSerial;
static LookList * routeLookup; static LookList * sequenceLookup;
static LookList * onThrowLookup; static LookList * onThrowLookup;
static LookList * onCloseLookup; static LookList * onCloseLookup;
static LookList * onActivateLookup; static LookList * onActivateLookup;
@ -224,10 +216,6 @@ private:
static const int countLCCLookup; static const int countLCCLookup;
static int onLCCLookup[]; static int onLCCLookup[];
static const byte compileFeatures; static const byte compileFeatures;
static void manageRouteState(uint16_t id, byte state);
static void manageRouteCaption(uint16_t id, const FSH* caption);
static byte * routeStateArray;
static const FSH ** routeCaptionArray;
// Local variables - exist for each instance/task // Local variables - exist for each instance/task
RMFT2 *next; // loop chain RMFT2 *next; // loop chain
@ -249,8 +237,4 @@ private:
byte stackDepth; byte stackDepth;
int callStack[MAX_STACK_DEPTH]; int callStack[MAX_STACK_DEPTH];
}; };
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
#endif #endif

View File

@ -126,10 +126,6 @@
#undef ROTATE #undef ROTATE
#undef ROTATE_DCC #undef ROTATE_DCC
#undef ROUTE #undef ROUTE
#undef ROUTE_ACTIVE
#undef ROUTE_INACTIVE
#undef ROUTE_HIDDEN
#undef ROUTE_CAPTION
#undef SENDLOCO #undef SENDLOCO
#undef SEQUENCE #undef SEQUENCE
#undef SERIAL #undef SERIAL
@ -271,10 +267,6 @@
#define ROTATE_DCC(turntable_id,position) #define ROTATE_DCC(turntable_id,position)
#define ROSTER(cab,name,funcmap...) #define ROSTER(cab,name,funcmap...)
#define ROUTE(id,description) #define ROUTE(id,description)
#define ROUTE_ACTIVE(id)
#define ROUTE_INACTIVE(id)
#define ROUTE_HIDDEN(id)
#define ROUTE_CAPTION(id,caption)
#define SENDLOCO(cab,route) #define SENDLOCO(cab,route)
#define SEQUENCE(id) #define SEQUENCE(id)
#define SERIAL(msg) #define SERIAL(msg)

View File

@ -1,291 +0,0 @@
/*
* © 2021 Neil McKechnie
* © 2021-2023 Harald Barth
* © 2020-2023 Chris Harlow
* © 2022-2023 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// THIS file is an extension of the RMFT2 class
// normally found in EXRAIL2.cpp
#include <Arduino.h>
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
const int16_t HASH_KEYWORD_A='A';
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
// - Reject/modify JMRI commands that would interfere with RMFT processing
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
bool reject=false;
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
opcode=0;
}
break;
case '/': // New EXRAIL command
reject=!parseSlash(stream,paramCount,p);
opcode=0;
break;
case 'L':
// This entire code block is compiled out if LLC macros not used
if (!(compileFeatures & FEATURE_LCC)) return;
if (paramCount==0) { //<L> LCC adapter introducing self
LCCSerial=stream; // now we know where to send events we raise
// loop through all possible sent events
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_LCC) StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
if (opcode==OPCODE_LCCX) { // long form LCC
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
}}
// we stream the hex events we wish to listen to
// and at the same time build the event index looku.
int eventIndex=0;
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_ONLCC) {
onLCCLookup[eventIndex]=progCounter; // TODO skip...
StringFormatter::send(stream,F("<LL %d x%h%h%h:%h>\n"),
eventIndex,
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
eventIndex++;
}
}
StringFormatter::send(stream,F("<LR>\n")); // Ready to rumble
opcode=0;
break;
}
if (paramCount==1) { // <L eventid> LCC event arrived from adapter
int16_t eventid=p[0];
reject=eventid<0 || eventid>=countLCCLookup;
if (!reject) startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
opcode=0;
}
break;
case 'J': // throttle info commands
if (paramCount<1) return;
switch(p[0]) {
case HASH_KEYWORD_A: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
StringFormatter::send(stream, F(">\n"));
opcode=0;
return;
}
if (paramCount==2) { // <JA id>
uint16_t id=p[1];
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
id, getRouteType(id), getRouteDescription(id));
if (compileFeatures & FEATURE_ROUTESTATE) {
// Send any non-default button states or captions
int16_t statePos=routeLookup->findPosition(id);
if (statePos>=0) {
if (routeStateArray[statePos])
StringFormatter::send(stream,F("<jB %d %d>\n"), id, routeStateArray[statePos]);
if (routeCaptionArray[statePos])
StringFormatter::send(stream,F("<jB %d \"%S\">\n"), id,routeCaptionArray[statePos]);
}
}
opcode=0;
return;
}
break;
default:
break;
}
default: // other commands pass through
break;
}
}
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount==0) { // STATUS
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
RMFT2 * task=loopTask;
while(task) {
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
(int)(task->taskId),task->progCounter,task->loco,
task->invert?'I':' ',
task->speedo,
task->forward?'F':'R'
);
task=task->next;
if (task==loopTask) break;
}
// Now stream the flags
for (int id=0;id<MAX_FLAGS; id++) {
byte flag=flags[id];
if (flag & ~TASK_FLAG & ~SIGNAL_MASK) { // not interested in TASK_FLAG only. Already shown above
StringFormatter::send(stream,F("\nflags[%d] "),id);
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
}
}
if (compileFeatures & FEATURE_SIGNAL) {
// do the signals
// flags[n] represents the state of the nth signal in the table
for (int sigslot=0;;sigslot++) {
VPIN sigid=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigslot*8);
if (sigid==0) break; // end of signal list
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this id
StringFormatter::send(stream,F("\n%S[%d]"),
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
sigid & SIGNAL_ID_MASK);
}
}
StringFormatter::send(stream,F(" *>\n"));
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
RMFT2 * task=loopTask;
while(task) {
if (task->loco) task->driveLoco(task->speedo);
task=task->next;
if (task==loopTask) break;
}
}
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
uint16_t cab=(paramCount==2)? 0 : p[1];
int pc=routeLookup->find(route);
if (pc<0) return false;
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
return true;
default:
break;
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
// all other / commands take 1 parameter
if (paramCount!=2 ) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
while(task) {
if (task->taskId==p[1]) {
task->kill(F("KILL"));
return true;
}
task=task->next;
if (task==loopTask) break;
}
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case HASH_KEYWORD_FREE: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case HASH_KEYWORD_LATCH:
return setFlag(p[1], LATCH_FLAG);
case HASH_KEYWORD_UNLATCH:
return setFlag(p[1], 0, LATCH_FLAG);
case HASH_KEYWORD_RED:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
doSignal(p[1],SIGNAL_GREEN);
return true;
default:
return false;
}
}

View File

@ -102,14 +102,6 @@ void exrailHalSetup() {
#define LCCX(senderid,eventid) | FEATURE_LCC #define LCCX(senderid,eventid) | FEATURE_LCC
#undef ONLCC #undef ONLCC
#define ONLCC(senderid,eventid) | FEATURE_LCC #define ONLCC(senderid,eventid) | FEATURE_LCC
#undef ROUTE_ACTIVE
#define ROUTE_ACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_INACTIVE
#define ROUTE_INACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_HIDDEN
#define ROUTE_HIDDEN(id) | FEATURE_ROUTESTATE
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) | FEATURE_ROUTESTATE
const byte RMFT2::compileFeatures = 0 const byte RMFT2::compileFeatures = 0
#include "myAutomation.h" #include "myAutomation.h"
@ -161,12 +153,6 @@ const int StringMacroTracker1=__COUNTER__;
#define PRINT(msg) THRUNGE(msg,thrunge_print) #define PRINT(msg) THRUNGE(msg,thrunge_print)
#undef LCN #undef LCN
#define LCN(msg) THRUNGE(msg,thrunge_lcn) #define LCN(msg) THRUNGE(msg,thrunge_lcn)
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) \
case (__COUNTER__ - StringMacroTracker1) : {\
manageRouteCaption(id,F(caption));\
return;\
}
#undef SERIAL #undef SERIAL
#define SERIAL(msg) THRUNGE(msg,thrunge_serial) #define SERIAL(msg) THRUNGE(msg,thrunge_serial)
#undef SERIAL1 #undef SERIAL1
@ -454,10 +440,6 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ROTATE_DCC(id,position) OPCODE_ROTATE,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(0), #define ROTATE_DCC(id,position) OPCODE_ROTATE,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(0),
#endif #endif
#define ROUTE(id, description) OPCODE_ROUTE, V(id), #define ROUTE(id, description) OPCODE_ROUTE, V(id),
#define ROUTE_ACTIVE(id) OPCODE_ROUTE_ACTIVE,V(id),
#define ROUTE_INACTIVE(id) OPCODE_ROUTE_INACTIVE,V(id),
#define ROUTE_HIDDEN(id) OPCODE_ROUTE_HIDDEN,V(id),
#define ROUTE_CAPTION(id,caption) PRINT(caption)
#define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route), #define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route),
#define SEQUENCE(id) OPCODE_SEQUENCE, V(id), #define SEQUENCE(id) OPCODE_SEQUENCE, V(id),
#define SERIAL(msg) PRINT(msg) #define SERIAL(msg) PRINT(msg)

View File

@ -1 +1 @@
#define GITHUB_SHA "devel-202311141013Z" #define GITHUB_SHA "devel-202310230944Z"

View File

@ -605,10 +605,6 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A'); DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A');
} }
setPower(POWERMODE::ALERT); setPower(POWERMODE::ALERT);
if ((trackMode & TRACK_MODE_AUTOINV) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){
DIAG(F("TRACK %c INVERT"), trackno + 'A');
invertOutput();
}
break; break;
} }
// all well // all well
@ -680,10 +676,8 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
power_sample_overload_wait *= 2; power_sample_overload_wait *= 2;
if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX) if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX)
power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX; power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX;
#ifdef EXRAIL_ACTIVE
DIAG(F("Calling EXRAIL")); DIAG(F("Calling EXRAIL"));
RMFT2::powerEvent(trackno, true); // Tell EXRAIL we have an overload RMFT2::powerEvent(trackno, true); // Tell EXRAIL we have an overload
#endif
// power on test // power on test
DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc); DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc);
setPower(POWERMODE::ALERT); setPower(POWERMODE::ALERT);

View File

@ -3,7 +3,7 @@
* © 2021 Mike S * © 2021 Mike S
* © 2021 Fred Decker * © 2021 Fred Decker
* © 2020 Chris Harlow * © 2020 Chris Harlow
* © 2022,2023 Harald Barth * © 2022 Harald Barth
* All rights reserved. * All rights reserved.
* *
* This file is part of CommandStation-EX * This file is part of CommandStation-EX
@ -28,15 +28,8 @@
#include "DCCTimer.h" #include "DCCTimer.h"
// use powers of two so we can do logical and/or on the track modes in if clauses. // use powers of two so we can do logical and/or on the track modes in if clauses.
// RACK_MODE_DCX is (TRACK_MODE_DC|TRACK_MODE_INV)
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4, enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16, TRACK_MODE_BOOST = 32, TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32};
TRACK_MODE_ALL = 62, // only to operate all tracks
TRACK_MODE_INV = 64, TRACK_MODE_DCX = 72 /*DC + INV*/, TRACK_MODE_AUTOINV = 128};
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
@ -155,9 +148,7 @@ class MotorDriver {
// otherwise the call from interrupt context can undo whatever we do // otherwise the call from interrupt context can undo whatever we do
// from outside interrupt // from outside interrupt
void setBrake( bool on, bool interruptContext=false); void setBrake( bool on, bool interruptContext=false);
__attribute__((always_inline)) inline void setSignal( bool high) { __attribute__((always_inline)) inline void setSignal( bool high) {
if (invertPhase)
high = !high;
if (trackPWM) { if (trackPWM) {
DCCTimer::setPWM(signalPin,high); DCCTimer::setPWM(signalPin,high);
} }
@ -177,12 +168,6 @@ class MotorDriver {
pinMode(signalPin, OUTPUT); pinMode(signalPin, OUTPUT);
else else
pinMode(signalPin, INPUT); pinMode(signalPin, INPUT);
if (signalPin2 != UNUSED_PIN) {
if (on)
pinMode(signalPin2, OUTPUT);
else
pinMode(signalPin2, INPUT);
}
}; };
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); }; inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
void setDCSignal(byte speedByte); void setDCSignal(byte speedByte);
@ -247,32 +232,6 @@ class MotorDriver {
#endif #endif
inline void setMode(TRACK_MODE m) { inline void setMode(TRACK_MODE m) {
trackMode = m; trackMode = m;
invertOutput(trackMode & TRACK_MODE_INV);
};
inline void invertOutput() { // toggles output inversion
invertPhase = !invertPhase;
invertOutput(invertPhase);
};
inline void invertOutput(bool b) { // sets output inverted or not
if (b)
invertPhase = 1;
else
invertPhase = 0;
#if defined(ARDUINO_ARCH_ESP32)
pinpair p = getSignalPin();
uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin);
if (invertPhase) // set or clear the invert bit in the gpio out register
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
if (p.invpin != UNUSED_PIN) {
outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin);
if (invertPhase) // clear or set the invert bit in the gpio out register
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
}
#endif
}; };
inline TRACK_MODE getMode() { inline TRACK_MODE getMode() {
return trackMode; return trackMode;
@ -304,7 +263,7 @@ class MotorDriver {
bool invertBrake; // brake pin passed as negative means pin is inverted bool invertBrake; // brake pin passed as negative means pin is inverted
bool invertPower; // power pin passed as negative means pin is inverted bool invertPower; // power pin passed as negative means pin is inverted
bool invertFault; // fault pin passed as negative means pin is inverted bool invertFault; // fault pin passed as negative means pin is inverted
bool invertPhase = 0; // phase of out pin is inverted
// Raw to milliamp conversion factors avoiding float data types. // Raw to milliamp conversion factors avoiding float data types.
// Milliamps=rawADCreading * sensefactorInternal / senseScale // Milliamps=rawADCreading * sensefactorInternal / senseScale
// //

View File

@ -1,6 +1,6 @@
/* /*
* © 2022 Chris Harlow * © 2022 Chris Harlow
* © 2022,2023 Harald Barth * © 2022 Harald Barth
* © 2023 Colin Murdoch * © 2023 Colin Murdoch
* All rights reserved. * All rights reserved.
* *
@ -45,11 +45,6 @@ const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii. const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
const int16_t HASH_KEYWORD_AUTO = -5457;
#ifdef BOOSTER_INPUT
const int16_t HASH_KEYWORD_BOOST = 11269;
#endif
const int16_t HASH_KEYWORD_INV = 11857;
MotorDriver * TrackManager::track[MAX_TRACKS]; MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS]; int16_t TrackManager::trackDCAddr[MAX_TRACKS];
@ -92,7 +87,7 @@ void TrackManager::sampleCurrent() {
if (!waiting) { if (!waiting) {
// look for a valid track to sample or until we are around // look for a valid track to sample or until we are around
while (true) { while (true) {
if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_BOOST|TRACK_MODE_EXT )) { if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_DCX|TRACK_MODE_EXT )) {
track[tr]->startCurrentFromHW(); track[tr]->startCurrentFromHW();
// for scope debug track[1]->setBrake(1); // for scope debug track[1]->setBrake(1);
waiting = true; waiting = true;
@ -202,8 +197,8 @@ void TrackManager::setPROGSignal( bool on) {
void TrackManager::setDCSignal(int16_t cab, byte speedbyte) { void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
FOR_EACH_TRACK(t) { FOR_EACH_TRACK(t) {
if (trackDCAddr[t]!=cab && cab != 0) continue; if (trackDCAddr[t]!=cab && cab != 0) continue;
if (track[t]->getMode() & TRACK_MODE_DC) if (track[t]->getMode()==TRACK_MODE_DC) track[t]->setDCSignal(speedbyte);
track[t]->setDCSignal(speedbyte); else if (track[t]->getMode()==TRACK_MODE_DCX) track[t]->setDCSignal(speedbyte ^ 128);
} }
} }
@ -212,7 +207,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
//DIAG(F("Track=%c Mode=%d"),trackToSet+'A', mode); //DIAG(F("Track=%c Mode=%d"),trackToSet+'A', mode);
// DC tracks require a motorDriver that can set brake! // DC tracks require a motorDriver that can set brake!
if (mode & TRACK_MODE_DC) { if (mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) {
#if defined(ARDUINO_AVR_UNO) #if defined(ARDUINO_AVR_UNO)
DIAG(F("Uno has no PWM timers available for DC")); DIAG(F("Uno has no PWM timers available for DC"));
return false; return false;
@ -228,37 +223,21 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
pinpair p = track[trackToSet]->getSignalPin(); pinpair p = track[trackToSet]->getSignalPin();
//DIAG(F("Track=%c remove pin %d"),trackToSet+'A', p.pin); //DIAG(F("Track=%c remove pin %d"),trackToSet+'A', p.pin);
gpio_reset_pin((gpio_num_t)p.pin); gpio_reset_pin((gpio_num_t)p.pin);
pinMode(p.pin, OUTPUT); // gpio_reset_pin may reset to input
if (p.invpin != UNUSED_PIN) { if (p.invpin != UNUSED_PIN) {
//DIAG(F("Track=%c remove ^pin %d"),trackToSet+'A', p.invpin); //DIAG(F("Track=%c remove ^pin %d"),trackToSet+'A', p.invpin);
gpio_reset_pin((gpio_num_t)p.invpin); gpio_reset_pin((gpio_num_t)p.invpin);
pinMode(p.invpin, OUTPUT); // gpio_reset_pin may reset to input
} }
#ifdef BOOSTER_INPUT
if (mode & TRACK_MODE_BOOST) {
//DIAG(F("Track=%c mode boost pin %d"),trackToSet+'A', p.pin);
pinMode(BOOSTER_INPUT, INPUT);
gpio_matrix_in(26, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback
gpio_matrix_out(p.pin, SIG_IN_FUNC228_IDX, false, false);
if (p.invpin != UNUSED_PIN) {
gpio_matrix_out(p.invpin, SIG_IN_FUNC228_IDX, true /*inverted*/, false);
}
} else // elseif clause continues
#endif
if (mode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_DC)) {
// gpio_reset_pin may reset to input
pinMode(p.pin, OUTPUT);
if (p.invpin != UNUSED_PIN)
pinMode(p.invpin, OUTPUT);
}
#endif #endif
#ifndef DISABLE_PROG #ifndef DISABLE_PROG
if (mode & TRACK_MODE_PROG) { if (mode==TRACK_MODE_PROG) {
#else #else
if (false) { if (false) {
#endif #endif
// only allow 1 track to be prog // only allow 1 track to be prog
FOR_EACH_TRACK(t) FOR_EACH_TRACK(t)
if ( (track[t]->getMode() & TRACK_MODE_PROG) && t != trackToSet) { if (track[t]->getMode()==TRACK_MODE_PROG && t != trackToSet) {
track[t]->setPower(POWERMODE::OFF); track[t]->setPower(POWERMODE::OFF);
track[t]->setMode(TRACK_MODE_NONE); track[t]->setMode(TRACK_MODE_NONE);
track[t]->makeProgTrack(false); // revoke prog track special handling track[t]->makeProgTrack(false); // revoke prog track special handling
@ -276,20 +255,16 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
// state, otherwise trains run away or just dont move. // state, otherwise trains run away or just dont move.
// This can be done BEFORE the PWM-Timer evaluation (methinks) // This can be done BEFORE the PWM-Timer evaluation (methinks)
if (!(mode & TRACK_MODE_DC)) { if (!(mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX)) {
// DCC tracks need to have set the PWM to zero or they will not work. // DCC tracks need to have set the PWM to zero or they will not work.
track[trackToSet]->detachDCSignal(); track[trackToSet]->detachDCSignal();
track[trackToSet]->setBrake(false); track[trackToSet]->setBrake(false);
} }
// BOOST: // EXT is a special case where the signal pin is
// Leave it as is // turned off. So unless that is set, the signal
// otherwise: // pin should be turned on
// EXT is a special case where the signal pin is track[trackToSet]->enableSignal(mode != TRACK_MODE_EXT);
// turned off. So unless that is set, the signal
// pin should be turned on
if (!(mode & TRACK_MODE_BOOST))
track[trackToSet]->enableSignal(!(mode & TRACK_MODE_EXT));
#ifndef ARDUINO_ARCH_ESP32 #ifndef ARDUINO_ARCH_ESP32
// re-evaluate HighAccuracy mode // re-evaluate HighAccuracy mode
@ -299,7 +274,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
// DC tracks must not have the DCC PWM switched on // DC tracks must not have the DCC PWM switched on
// so we globally turn it off if one of the PWM // so we globally turn it off if one of the PWM
// capable tracks is now DC or DCX. // capable tracks is now DC or DCX.
if (track[t]->getMode() & TRACK_MODE_DC) { if (track[t]->getMode()==TRACK_MODE_DC || track[t]->getMode()==TRACK_MODE_DCX) {
if (track[t]->isPWMCapable()) { if (track[t]->isPWMCapable()) {
canDo=false; // this track is capable but can not run PWM canDo=false; // this track is capable but can not run PWM
break; // in this mode, so abort and prevent globally below break; // in this mode, so abort and prevent globally below
@ -307,7 +282,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
track[t]->trackPWM=false; // this track sure can not run with PWM track[t]->trackPWM=false; // this track sure can not run with PWM
//DIAG(F("Track %c trackPWM 0 (not capable)"), t+'A'); //DIAG(F("Track %c trackPWM 0 (not capable)"), t+'A');
} }
} else if (track[t]->getMode() & (TRACK_MODE_MAIN |TRACK_MODE_PROG)) { } else if (track[t]->getMode()==TRACK_MODE_MAIN || track[t]->getMode()==TRACK_MODE_PROG) {
track[t]->trackPWM = track[t]->isPWMCapable(); // trackPWM is still a guess here track[t]->trackPWM = track[t]->isPWMCapable(); // trackPWM is still a guess here
//DIAG(F("Track %c trackPWM %d"), t+'A', track[t]->trackPWM); //DIAG(F("Track %c trackPWM %d"), t+'A', track[t]->trackPWM);
canDo &= track[t]->trackPWM; canDo &= track[t]->trackPWM;
@ -325,12 +300,10 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
#else #else
// For ESP32 we just reinitialize the DCC Waveform // For ESP32 we just reinitialize the DCC Waveform
DCCWaveform::begin(); DCCWaveform::begin();
// setMode() again AFTER Waveform::begin() of ESP32 fixes INVERTED signal
track[trackToSet]->setMode(mode);
#endif #endif
// This block must be AFTER the PWM-Timer modifications // This block must be AFTER the PWM-Timer modifications
if (mode & TRACK_MODE_DC) { if (mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) {
// DC tracks need to be given speed of the throttle for that cab address // DC tracks need to be given speed of the throttle for that cab address
// otherwise will not match other tracks on same cab. // otherwise will not match other tracks on same cab.
// This also needs to allow for inverted DCX // This also needs to allow for inverted DCX
@ -339,7 +312,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
// Normal running tracks are set to the global power state // Normal running tracks are set to the global power state
track[trackToSet]->setPower( track[trackToSet]->setPower(
(mode & (TRACK_MODE_MAIN | TRACK_MODE_DC | TRACK_MODE_EXT | TRACK_MODE_BOOST)) ? (mode==TRACK_MODE_MAIN || mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX || mode==TRACK_MODE_EXT) ?
mainPowerGuess : POWERMODE::OFF); mainPowerGuess : POWERMODE::OFF);
//DIAG(F("TrackMode=%d"),mode); //DIAG(F("TrackMode=%d"),mode);
return true; return true;
@ -347,6 +320,8 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
void TrackManager::applyDCSpeed(byte t) { void TrackManager::applyDCSpeed(byte t) {
uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]); uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]);
if (track[t]->getMode()==TRACK_MODE_DCX)
speedByte = speedByte ^ 128; // reverse direction bit
track[t]->setDCSignal(speedByte); track[t]->setDCSignal(speedByte);
} }
@ -378,21 +353,12 @@ bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT> if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
return setTrackMode(p[0],TRACK_MODE_EXT); return setTrackMode(p[0],TRACK_MODE_EXT);
#ifdef BOOSTER_INPUT
if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST>
return setTrackMode(p[0],TRACK_MODE_BOOST);
#endif
if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV);
if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV);
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab> if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]); return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab> if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]); return setTrackMode(p[0],TRACK_MODE_DCX,p[2]);
return false; return false;
} }
@ -400,43 +366,36 @@ bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
void TrackManager::streamTrackState(Print* stream, byte t) { void TrackManager::streamTrackState(Print* stream, byte t) {
// null stream means send to commandDistributor for broadcast // null stream means send to commandDistributor for broadcast
if (track[t]==NULL) return; if (track[t]==NULL) return;
auto format=F("<= %d XXX>\n"); auto format=F("");
TRACK_MODE tm = track[t]->getMode(); bool pstate = TrackManager::isPowerOn(t);
if (tm & TRACK_MODE_MAIN) {
if(tm & TRACK_MODE_AUTOINV) switch(track[t]->getMode()) {
format=F("<= %c MAIN A>\n"); case TRACK_MODE_MAIN:
else if (tm & TRACK_MODE_INV) if (pstate) {format=F("<= %c MAIN ON>\n");} else {format = F("<= %c MAIN OFF>\n");}
format=F("<= %c MAIN I>\n"); break;
else
format=F("<= %c MAIN>\n");
}
#ifndef DISABLE_PROG #ifndef DISABLE_PROG
else if (tm & TRACK_MODE_PROG) case TRACK_MODE_PROG:
format=F("<= %c PROG>\n"); if (pstate) {format=F("<= %c PROG ON>\n");} else {format=F("<= %c PROG OFF>\n");}
break;
#endif #endif
else if (tm & TRACK_MODE_NONE) case TRACK_MODE_NONE:
format=F("<= %c NONE>\n"); if (pstate) {format=F("<= %c NONE ON>\n");} else {format=F("<= %c NONE OFF>\n");}
else if(tm & TRACK_MODE_EXT) break;
format=F("<= %c EXT>\n"); case TRACK_MODE_EXT:
else if(tm & TRACK_MODE_BOOST) { if (pstate) {format=F("<= %c EXT ON>\n");} else {format=F("<= %c EXT OFF>\n");}
if(tm & TRACK_MODE_AUTOINV) break;
format=F("<= %c B A>\n"); case TRACK_MODE_DC:
else if (tm & TRACK_MODE_INV) if (pstate) {format=F("<= %c DC %d ON>\n");} else {format=F("<= %c DC %d OFF>\n");}
format=F("<= %c B I>\n"); break;
else case TRACK_MODE_DCX:
format=F("<= %c B>\n"); if (pstate) {format=F("<= %c DCX %d ON>\n");} else {format=F("<= %c DCX %d OFF>\n");}
} break;
else if (tm & TRACK_MODE_DC) { default:
if (tm & TRACK_MODE_INV) break; // unknown, dont care
format=F("<= %c DCX %d>\n");
else
format=F("<= %c DC %d>\n");
} }
if (stream) if (stream) StringFormatter::send(stream,format,'A'+t, trackDCAddr[t]);
StringFormatter::send(stream,format,'A'+t, trackDCAddr[t]); else CommandDistributor::broadcastTrackState(format,'A'+t, trackDCAddr[t]);
else
CommandDistributor::broadcastTrackState(format,'A'+t, trackDCAddr[t]);
} }
@ -452,13 +411,13 @@ void TrackManager::loop() {
if (nextCycleTrack>lastTrack) nextCycleTrack=0; if (nextCycleTrack>lastTrack) nextCycleTrack=0;
if (track[nextCycleTrack]==NULL) return; if (track[nextCycleTrack]==NULL) return;
MotorDriver * motorDriver=track[nextCycleTrack]; MotorDriver * motorDriver=track[nextCycleTrack];
bool useProgLimit=dontLimitProg ? false : (bool)(track[nextCycleTrack]->getMode() & TRACK_MODE_PROG); bool useProgLimit=dontLimitProg? false: track[nextCycleTrack]->getMode()==TRACK_MODE_PROG;
motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack); motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack);
} }
MotorDriver * TrackManager::getProgDriver() { MotorDriver * TrackManager::getProgDriver() {
FOR_EACH_TRACK(t) FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_PROG) return track[t]; if (track[t]->getMode()==TRACK_MODE_PROG) return track[t];
return NULL; return NULL;
} }
@ -466,53 +425,63 @@ MotorDriver * TrackManager::getProgDriver() {
std::vector<MotorDriver *>TrackManager::getMainDrivers() { std::vector<MotorDriver *>TrackManager::getMainDrivers() {
std::vector<MotorDriver *> v; std::vector<MotorDriver *> v;
FOR_EACH_TRACK(t) FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_MAIN) v.push_back(track[t]); if (track[t]->getMode()==TRACK_MODE_MAIN) v.push_back(track[t]);
return v; return v;
} }
#endif #endif
// Set track power for all tracks with this mode void TrackManager::setPower2(bool setProg,bool setJoin, POWERMODE mode) {
void TrackManager::setTrackPower(TRACK_MODE trackmode, POWERMODE powermode) { if (!setProg) mainPowerGuess=mode;
FOR_EACH_TRACK(t) { FOR_EACH_TRACK(t) {
MotorDriver *driver=track[t];
if (trackmode & driver->getMode()) { TrackManager::setTrackPower(setProg, setJoin, mode, t);
if (powermode == POWERMODE::ON) {
if (trackmode & TRACK_MODE_DC) {
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(t); // speed match DCC throttles
} else {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
}
}
driver->setPower(powermode);
} }
} return;
} }
// Set track power for this track, inependent of mode void TrackManager::setTrackPower(bool setProg, bool setJoin, POWERMODE mode, byte thistrack) {
void TrackManager::setTrackPower(POWERMODE powermode, byte t) {
MotorDriver *driver=track[t];
TRACK_MODE trackmode = driver->getMode();
if (trackmode & TRACK_MODE_DC) {
if (powermode == POWERMODE::ON) {
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(t); // speed match DCC throttles
}
} else {
if (powermode == POWERMODE::ON) {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
}
}
driver->setPower(powermode);
}
void TrackManager::reportPowerChange(Print* stream, byte thistrack) { //DIAG(F("SetTrackPower Processing Track %d"), thistrack);
MotorDriver * driver=track[thistrack];
if (!driver) return;
switch (track[thistrack]->getMode()) {
case TRACK_MODE_MAIN:
if (setProg) break;
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
// XXX see if we can make this conditional
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
driver->setPower(mode);
break;
case TRACK_MODE_DC:
case TRACK_MODE_DCX:
//DIAG(F("Processing track - %d setProg %d"), thistrack, setProg);
if (setProg || setJoin) break;
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(thistrack); // speed match DCC throttles
driver->setPower(mode);
break;
case TRACK_MODE_PROG:
if (!setProg && !setJoin) break;
driver->setBrake(true);
driver->setBrake(false);
driver->setPower(mode);
break;
case TRACK_MODE_EXT:
driver->setBrake(true);
driver->setBrake(false);
driver->setPower(mode);
break;
case TRACK_MODE_NONE:
break;
}
}
void TrackManager::reportPowerChange(Print* stream, byte thistrack) {
// This function is for backward JMRI compatibility only // This function is for backward JMRI compatibility only
// It reports the first track only, as main, regardless of track settings. // It reports the first track only, as main, regardless of track settings.
// <c MeterName value C/V unit min max res warn> // <c MeterName value C/V unit min max res warn>
@ -521,40 +490,12 @@ void TrackManager::reportPowerChange(Print* stream, byte thistrack) {
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent); track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
} }
// returns state of the one and only prog track
POWERMODE TrackManager::getProgPower() { POWERMODE TrackManager::getProgPower() {
FOR_EACH_TRACK(t) FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_PROG) if (track[t]->getMode()==TRACK_MODE_PROG)
return track[t]->getPower(); // optimize: there is max one prog track return track[t]->getPower();
return POWERMODE::OFF; return POWERMODE::OFF;
}
// returns on if all are on. returns off otherwise
POWERMODE TrackManager::getMainPower() {
POWERMODE result = POWERMODE::OFF;
FOR_EACH_TRACK(t) {
if (track[t]->getMode() & TRACK_MODE_MAIN) {
POWERMODE p = track[t]->getPower();
if (p == POWERMODE::OFF)
return POWERMODE::OFF; // done and out
if (p == POWERMODE::ON)
result = POWERMODE::ON;
}
} }
return result;
}
bool TrackManager::getPower(byte t, char s[]) {
if (t > lastTrack)
return false;
if (track[t]) {
s[0] = track[t]->getPower() == POWERMODE::ON ? '1' : '0';
s[2] = t + 'A';
return true;
}
return false;
}
void TrackManager::reportObsoleteCurrent(Print* stream) { void TrackManager::reportObsoleteCurrent(Print* stream) {
// This function is for backward JMRI compatibility only // This function is for backward JMRI compatibility only
@ -596,7 +537,7 @@ void TrackManager::setJoin(bool joined) {
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
if (joined) { if (joined) {
FOR_EACH_TRACK(t) { FOR_EACH_TRACK(t) {
if (track[t]->getMode() & TRACK_MODE_PROG) { if (track[t]->getMode()==TRACK_MODE_PROG) {
tempProgTrack = t; tempProgTrack = t;
setTrackMode(t, TRACK_MODE_MAIN); setTrackMode(t, TRACK_MODE_MAIN);
break; break;
@ -625,7 +566,7 @@ bool TrackManager::isPowerOn(byte t) {
} }
bool TrackManager::isProg(byte t) { bool TrackManager::isProg(byte t) {
if (track[t]->getMode() & TRACK_MODE_PROG) if (track[t]->getMode()==TRACK_MODE_PROG)
return true; return true;
return false; return false;
} }

View File

@ -62,22 +62,23 @@ class TrackManager {
static void setDCSignal(int16_t cab, byte speedbyte); static void setDCSignal(int16_t cab, byte speedbyte);
static MotorDriver * getProgDriver(); static MotorDriver * getProgDriver();
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
static std::vector<MotorDriver *>getMainDrivers(); static std::vector<MotorDriver *>getMainDrivers();
#endif #endif
static void setPower2(bool progTrack,bool joinTrack,POWERMODE mode);
static void setPower(POWERMODE mode) {setMainPower(mode); setProgPower(mode);} static void setPower(POWERMODE mode) {setMainPower(mode); setProgPower(mode);}
static void setTrackPower(POWERMODE mode, byte t); static void setMainPower(POWERMODE mode) {setPower2(false,false,mode);}
static void setTrackPower(TRACK_MODE trackmode, POWERMODE powermode); static void setProgPower(POWERMODE mode) {setPower2(true,false,mode);}
static void setMainPower(POWERMODE mode) {setTrackPower(TRACK_MODE_MAIN, mode);} static void setJoinPower(POWERMODE mode) {setPower2(false,true,mode);}
static void setProgPower(POWERMODE mode) {setTrackPower(TRACK_MODE_PROG, mode);} static void setTrackPower(bool setProg, bool setJoin, POWERMODE mode, byte thistrack);
static const int16_t MAX_TRACKS=8; static const int16_t MAX_TRACKS=8;
static bool setTrackMode(byte track, TRACK_MODE mode, int16_t DCaddr=0); static bool setTrackMode(byte track, TRACK_MODE mode, int16_t DCaddr=0);
static bool parseJ(Print * stream, int16_t params, int16_t p[]); static bool parseJ(Print * stream, int16_t params, int16_t p[]);
static void loop(); static void loop();
static POWERMODE getMainPower(); static POWERMODE getMainPower() {return mainPowerGuess;}
static POWERMODE getProgPower(); static POWERMODE getProgPower();
static bool getPower(byte t, char s[]);
static void setJoin(bool join); static void setJoin(bool join);
static bool isJoined() { return progTrackSyncMain;} static bool isJoined() { return progTrackSyncMain;}
static void setJoinRelayPin(byte joinRelayPin); static void setJoinRelayPin(byte joinRelayPin);
@ -111,7 +112,7 @@ class TrackManager {
static POWERMODE mainPowerGuess; static POWERMODE mainPowerGuess;
static void applyDCSpeed(byte t); static void applyDCSpeed(byte t);
static int16_t trackDCAddr[MAX_TRACKS]; // dc address if TRACK_MODE_DC static int16_t trackDCAddr[MAX_TRACKS]; // dc address if TRACK_MODE_DC or TRACK_MODE_DCX
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
static byte tempProgTrack; // holds the prog track number during join static byte tempProgTrack; // holds the prog track number during join
#endif #endif

View File

@ -266,12 +266,6 @@ The configuration file for DCC-EX Command Station
// //
//#define SERIAL_BT_COMMANDS //#define SERIAL_BT_COMMANDS
// BOOSTER PIN INPUT ON ESP32
// On ESP32 you have the possibility to define a pin as booster input
// Arduio pin D2 is GPIO 26 on ESPDuino32
//
//#define BOOSTER_INPUT 26
// SABERTOOTH // SABERTOOTH
// //
// This is a very special option and only useful if you happen to have a // This is a very special option and only useful if you happen to have a

View File

@ -3,11 +3,7 @@
#include "StringFormatter.h" #include "StringFormatter.h"
#define VERSION "5.2.1" #define VERSION "5.1.19"
// 5.2.1 - Trackmanager rework for simpler structure
// 5.2.0 - ESP32: Autoreverse and booster mode support
// 5.1.21 - EXRAIL invoke multiple ON handlers for same event
// 5.1.20 - EXRAIL Tidy and ROUTE_STATE, ROUTE_CAPTION
// 5.1.19 - Only flag 2.2.0.0-dev as broken, not 2.2.0.0 // 5.1.19 - Only flag 2.2.0.0-dev as broken, not 2.2.0.0
// 5.1.18 - TURNOUTL bugfix // 5.1.18 - TURNOUTL bugfix
// 5.1.17 - Divide out C for config and D for diag commands // 5.1.17 - Divide out C for config and D for diag commands