1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00

Compare commits

..

No commits in common. "5bc677e56613266577043113bfe68fb4100e5414" and "d46a6f092a9a9fb991af22ccabe849fa9cf50c78" have entirely different histories.

13 changed files with 287 additions and 287 deletions

View File

@ -272,50 +272,3 @@ void CommandDistributor::broadcastRaw(clientType type, char * msg) {
void CommandDistributor::broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format,trackLetter, dcAddr);
}
Print * CommandDistributor::getVirtualLCDSerial(byte screen, byte row) {
Print * stream=virtualLCDSerial;
#ifdef CD_HANDLE_RING
rememberVLCDClient=RingStream::NO_CLIENT;
if (!stream && virtualLCDClient!=RingStream::NO_CLIENT) {
// If we are broadcasting from a wifi/eth process we need to complete its output
// before merging broadcasts in the ring, then reinstate it in case
// the process continues to output to its client.
if ((rememberVLCDClient = ring->peekTargetMark()) != RingStream::NO_CLIENT) {
ring->commit();
}
ring->mark(virtualLCDClient);
stream=ring;
}
#endif
if (stream) StringFormatter::send(stream,F("<@ %d %d \""), screen,row);
return stream;
}
void CommandDistributor::commitVirtualLCDSerial() {
#ifdef CD_HANDLE_RING
if (virtualLCDClient!=RingStream::NO_CLIENT) {
StringFormatter::send(ring,F("\">\n"));
ring->commit();
if (rememberVLCDClient!=RingStream::NO_CLIENT) ring->mark(rememberVLCDClient);
return;
}
#endif
StringFormatter::send(virtualLCDSerial,F("\">\n"));
}
void CommandDistributor::setVirtualLCDSerial(Print * stream) {
#ifdef CD_HANDLE_RING
virtualLCDClient=RingStream::NO_CLIENT;
if (stream && stream->availableForWrite()==RingStream::THIS_IS_A_RINGSTREAM) {
virtualLCDClient=((RingStream *) stream)->peekTargetMark();
virtualLCDSerial=nullptr;
return;
}
#endif
virtualLCDSerial=stream;
}
Print* CommandDistributor::virtualLCDSerial=nullptr;
byte CommandDistributor::virtualLCDClient=0xFF;
byte CommandDistributor::rememberVLCDClient=0;

View File

@ -59,14 +59,6 @@ public :
template<typename... Targs> static void broadcastReply(clientType type, Targs... msg);
static void forget(byte clientId);
// Handling code for virtual LCD receiver.
static Print * getVirtualLCDSerial(byte screen, byte row);
static void commitVirtualLCDSerial();
static void setVirtualLCDSerial(Print * stream);
private:
static Print * virtualLCDSerial;
static byte virtualLCDClient;
static byte rememberVLCDClient;
};
#endif

4
DCC.h
View File

@ -43,11 +43,7 @@ const uint16_t LONG_ADDR_MARKER = 0x4000;
// Allocations with memory implications..!
// Base system takes approx 900 bytes + 8 per loco. Turnouts, Sensors etc are dynamically created
#if defined(HAS_ENOUGH_MEMORY)
#if defined(ARDUINO_GIGA) // yes giga
const byte MAX_LOCOS = 100;
#else // no giga
const byte MAX_LOCOS = 50;
#endif // giga
#else
const byte MAX_LOCOS = 30;
#endif

View File

@ -913,13 +913,6 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
case 'L': // LCC interface implemented in EXRAIL parser
break; // Will <X> if not intercepted by EXRAIL
case '@': // JMRI saying "give me virtual LCD msgs"
CommandDistributor::setVirtualLCDSerial(stream);
StringFormatter::send(stream,
F("<@ 0 0 \"DCC-EX v" VERSION "\">\n"
"<@ 0 1 \"Lic GPLv3\">\n"));
return;
default: //anything else will diagnose and drop out to <X>
DIAG(F("Opcode=%c params=%d"), opcode, params);
for (int i = 0; i < params; i++)

View File

@ -92,7 +92,6 @@ private:
#if defined(ARDUINO_ARCH_STM32) // TODO: PMA temporary hack - assumes 100Mhz F_CPU as STM32 can change frequency
static const long CLOCK_CYCLES=(100000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#elif defined(ARDUINO_GIGA)
///TJF: we could get F_CPU from SystemCoreClock, but it will not allow as it is a non-constant value
static const long CLOCK_CYCLES=(480000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#else
static const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1;

View File

@ -43,19 +43,14 @@
INTERRUPT_CALLBACK interruptHandler=0;
#ifndef DCC_EX_TIMER
#if defined(TIM6)
#define DCC_EX_TIMER TIM6
#elif defined(TIM7)
#define DCC_EX_TIMER TIM7
#elif defined(TIM12)
#define DCC_EX_TIMER TIM12
#else
#warning This Giga variant does not have Timers 1,8 or 11!!
#endif
#endif // ifndef DCC_EX_TIMER
//HardwareTimer* timer = NULL;
//HardwareTimer* timerAux = NULL;
HardwareTimer timer(TIM2);
HardwareTimer timerAux(TIM3);
static bool tim2ModeHA = false;
static bool tim3ModeHA = false;
HardwareTimer dcctimer(TIM8);
void DCCTimer_Handler() __attribute__((interrupt));
void DCCTimer_Handler() {
@ -66,36 +61,64 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
dcctimer.pause();
dcctimer.setPrescaleFactor(1);
// timer.setOverflow(CLOCK_CYCLES * 2);
dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// dcctimer.attachInterrupt(Timer11_Handler);
dcctimer.attachInterrupt(DCCTimer_Handler);
dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority!
dcctimer.refresh();
dcctimer.resume();
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
timer.pause();
timerAux.pause();
timer.setPrescaleFactor(1);
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timer.attachInterrupt(DCCTimer_Handler);
timer.refresh();
timerAux.setPrescaleFactor(1);
timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timerAux.refresh();
timer.resume();
timerAux.resume();
interrupts();
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
// return digitalPinHasPWM(pin);
(void) pin;
switch (pin) {
case 12:
return true;
case 13:
return true;
default:
return false;
}
}
void DCCTimer::setPWM(byte pin, bool high) {
// TODO: High Accuracy mode is not supported as yet, and may never need to be
(void) pin;
(void) high;
return;
switch (pin) {
case 12:
if (!tim3ModeHA) {
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 12);
tim3ModeHA = true;
}
if (high)
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
case 13:
if (!tim2ModeHA) {
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 13);
tim2ModeHA = true;
}
if (high)
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
}
}
void DCCTimer::clearPWM() {
return;
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
tim2ModeHA = false;
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
tim3ModeHA = false;
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
@ -138,25 +161,18 @@ void DCCTimer::reset() {
//Watchdog::start(500);
//while(true) {};
return;
}
int * ADCee::analogvals = NULL;
int16_t ADCee::ADCmax()
{
return 4095;
return 1023;
}
AdvancedADC adc;
pin_size_t active_pins[] = {A0, A1, A2, A3};
pin_size_t active_pinsB[] = {A4, A5, A6, A7};
int num_active_pins = 4;
const int samples_per_round = 512;
AdvancedADC adc(A0, A1);
int ADCee::init(uint8_t pin) {
adc.stop();
if (pin >= A0 && pin <= A3) adc.begin(AN_RESOLUTION_12, 16000, 1, samples_per_round, num_active_pins, active_pins);
else if (pin >= A4 && pin <= A7) adc.begin(AN_RESOLUTION_12, 16000, 1, samples_per_round, num_active_pins, active_pinsB);
adc.begin(AN_RESOLUTION_10, 16000, 1, 512);
return 123;
}
@ -164,16 +180,13 @@ int ADCee::init(uint8_t pin) {
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
int tmpPin = 0;
if (pin >= A0 && pin <= A3) tmpPin = (pin - A0);
else if (pin >= A4 && pin <= A7) tmpPin = ((pin - A0) - 4);
static SampleBuffer buf = adc.read();
int retVal = -123;
if (adc.available()) {
buf.release();
buf = adc.read();
}
return (buf[tmpPin]);
return (buf[pin - A0]);
}
/*

View File

@ -35,7 +35,11 @@
#define WIRE_HAS_TIMEOUT
#endif
#if defined(GIGA_I2C_1)
#define DCCEX_WIRE Wire1
#else
#define DCCEX_WIRE Wire
#endif
@ -43,9 +47,9 @@
* Initialise I2C interface software
***************************************************************************/
void I2CManagerClass::_initialise() {
Wire.begin();
DCCEX_WIRE.begin();
#if defined(WIRE_HAS_TIMEOUT)
Wire.setWireTimeout(_timeout, true);
DCCEX_WIRE.setWireTimeout(_timeout, true);
#endif
}
@ -54,7 +58,7 @@ void I2CManagerClass::_initialise() {
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
***************************************************************************/
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
Wire.setClock(i2cClockSpeed);
DCCEX_WIRE.setClock(i2cClockSpeed);
}
/***************************************************************************
@ -65,7 +69,7 @@ void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
void I2CManagerClass::setTimeout(unsigned long value) {
_timeout = value;
#if defined(WIRE_HAS_TIMEOUT)
Wire.setWireTimeout(value, true);
DCCEX_WIRE.setWireTimeout(value, true);
#endif
}
@ -78,7 +82,7 @@ static uint8_t muxSelect(I2CAddress address) {
I2CMux muxNo = address.muxNumber();
I2CSubBus subBus = address.subBus();
if (muxNo != I2CMux_None) {
Wire.beginTransmission(I2C_MUX_BASE_ADDRESS+muxNo);
DCCEX_WIRE.beginTransmission(I2C_MUX_BASE_ADDRESS+muxNo);
uint8_t data = (subBus == SubBus_All) ? 0xff :
(subBus == SubBus_None) ? 0x00 :
#if defined(I2CMUX_PCA9547)
@ -90,8 +94,8 @@ static uint8_t muxSelect(I2CAddress address) {
// with a bit set for the subBus to be enabled
1 << subBus;
#endif
Wire.write(&data, 1);
return Wire.endTransmission(true); // have to release I2C bus for it to work
DCCEX_WIRE.write(&data, 1);
return DCCEX_WIRE.endTransmission(true); // have to release I2C bus for it to work
}
return I2C_STATUS_OK;
}
@ -114,9 +118,9 @@ uint8_t I2CManagerClass::write(I2CAddress address, const uint8_t buffer[], uint8
#endif
// Only send new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) {
Wire.beginTransmission(address);
if (size > 0) Wire.write(buffer, size);
status = Wire.endTransmission();
DCCEX_WIRE.beginTransmission(address);
if (size > 0) DCCEX_WIRE.write(buffer, size);
status = DCCEX_WIRE.endTransmission();
}
#ifdef I2C_EXTENDED_ADDRESS
// Deselect MUX if there's more than one MUX present, to avoid having multiple ones selected
@ -165,25 +169,25 @@ uint8_t I2CManagerClass::read(I2CAddress address, uint8_t readBuffer[], uint8_t
// Only start new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) {
if (writeSize > 0) {
Wire.beginTransmission(address);
Wire.write(writeBuffer, writeSize);
status = Wire.endTransmission(false); // Don't free bus yet
DCCEX_WIRE.beginTransmission(address);
DCCEX_WIRE.write(writeBuffer, writeSize);
status = DCCEX_WIRE.endTransmission(false); // Don't free bus yet
}
if (status == I2C_STATUS_OK) {
#ifdef WIRE_HAS_TIMEOUT
Wire.clearWireTimeoutFlag();
Wire.requestFrom(address, (size_t)readSize);
if (!Wire.getWireTimeoutFlag()) {
while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = Wire.read();
DCCEX_WIRE.clearWireTimeoutFlag();
DCCEX_WIRE.requestFrom(address, (size_t)readSize);
if (!DCCEX_WIRE.getWireTimeoutFlag()) {
while (DCCEX_WIRE.available() && nBytes < readSize)
readBuffer[nBytes++] = DCCEX_WIRE.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
} else {
status = I2C_STATUS_TIMEOUT;
}
#else
Wire.requestFrom(address, (size_t)readSize);
while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = Wire.read();
DCCEX_WIRE.requestFrom(address, (size_t)readSize);
while (DCCEX_WIRE.available() && nBytes < readSize)
readBuffer[nBytes++] = DCCEX_WIRE.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
#endif
}

View File

@ -35,21 +35,12 @@ unsigned long MotorDriver::globalOverloadStart = 0;
volatile portreg_t shadowPORTA;
volatile portreg_t shadowPORTB;
volatile portreg_t shadowPORTC;
#if defined(ARDUINO_ARCH_STM32) || (defined(ARDUINO_GIGA) && defined(XGIGA))
#if defined(ARDUINO_ARCH_STM32)
volatile portreg_t shadowPORTD;
volatile portreg_t shadowPORTE;
volatile portreg_t shadowPORTF;
#endif
#if defined(ARDUINO_GIGA) && defined(XGIGA)
#define STM_PORT(X) (((uint32_t)(X) >> 4) & 0xF)
#define STM_PIN(X) ((uint32_t)(X) & 0xF)
#define STM_GPIO_PIN(X) ((uint16_t)(1<<STM_PIN(X)))
#define digitalPinToBitMask(p) (STM_GPIO_PIN(digitalPinToPinName(p)))
#define portOutputRegister(P) (&(P->ODR))
#define portInputRegister(P) (&(P->IDR))
#endif
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) {
const FSH * warnString = F("** WARNING **");
@ -67,7 +58,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT);
#if !defined(ARDUINO_GIGA) || (defined(ARDUINO_GIGA) && defined(XGIGA)) // no giga
#ifndef ARDUINO_GIGA // no giga
fastSignalPin.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin);
@ -106,7 +97,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
#if !defined(ARDUINO_GIGA) || (defined(ARDUINO_GIGA) && defined(XGIGA)) // no giga
#ifndef ARDUINO_GIGA // no giga
fastSignalPin2.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin2);
@ -517,7 +508,7 @@ unsigned int MotorDriver::mA2raw( unsigned int mA) {
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
#if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#if defined(ARDUINO_GIGA) // yes giga
(void)type;
(void)input; // no warnings please
@ -529,9 +520,6 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
PortGroup *port = digitalPinToPort(pin);
#elif defined(ARDUINO_ARCH_STM32)
GPIO_TypeDef *port = digitalPinToPort(pin);
#elif defined(ARDUINO_GIGA)
//auto * port = ((GPIO_TypeDef *)(GPIOA_BASE + (GPIOB_BASE - GPIOA_BASE) * (digitalPinToPinName(pin) >> 4)));
GPIO_TypeDef *port = (GPIO_TypeDef *)digitalPinToPort(pin);
#else
uint8_t port = digitalPinToPort(pin);
#endif

View File

@ -31,7 +31,7 @@
// use powers of two so we can do logical and/or on the track modes in if clauses.
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32};
#if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#if defined(ARDUINO_GIGA) // yes giga
#define setHIGH(fastpin) digitalWrite(fastpin,1)
#define setLOW(fastpin) digitalWrite(fastpin,0)
@ -39,7 +39,7 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
#endif // giga
#if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#if defined(ARDUINO_GIGA) // yes giga
#define isHIGH(fastpin) ((PinStatus)digitalRead(fastpin)==1)
#define isLOW(fastpin) ((PinStatus)digitalRead(fastpin)==0)
#else // no giga
@ -82,25 +82,6 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
#endif
#endif
#if defined(ARDUINO_GIGA) && defined(XGIGA)
#define PORTA GPIOA->ODR
#define HAVE_PORTA(X) X
#define PORTB GPIOB->ODR
#define HAVE_PORTB(X) X
#define PORTC GPIOC->ODR
#define HAVE_PORTC(X) X
#define PORTD GPIOD->ODR
#define HAVE_PORTD(X) X
#if defined(GPIOE)
#define PORTE GPIOE->ODR
#define HAVE_PORTE(X) X
#endif
#if defined(GPIOF)
#define PORTF GPIOF->ODR
#define HAVE_PORTF(X) X
#endif
#endif
// if macros not defined as pass-through we define
// them here as someting that is valid as a
// statement and evaluates to false.
@ -140,13 +121,13 @@ public:
byte invpin = UNUSED_PIN;
};
#if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32) || (defined(ARDUINO_GIGA) && defined(XGIGA))
#if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
typedef uint32_t portreg_t;
#else
typedef uint8_t portreg_t;
#endif
#if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#if defined(ARDUINO_GIGA) // yes giga
typedef int FASTPIN;
@ -184,7 +165,7 @@ class MotorDriver {
// otherwise the call from interrupt context can undo whatever we do
// from outside interrupt
void setBrake( bool on, bool interruptContext=false);
#if defined(ARDUINO_GIGA) && !defined(XGIGA) // yes giga
#if defined(ARDUINO_GIGA) // yes giga
__attribute__((always_inline)) inline void setSignal( bool high) {
digitalWrite(signalPin, high);
if (dualSignal) digitalWrite(signalPin2, !high);

View File

@ -39,11 +39,11 @@ void StringFormatter::diag( const FSH* input...) {
void StringFormatter::lcd(byte row, const FSH* input...) {
va_list args;
// Copy to serial client for display 0 <@ display# line# "message">
send(&USB_SERIAL,F("<@ 0 %d \""),row);
// Issue the LCD as a diag first
send(&USB_SERIAL,F("<* LCD%d:"),row);
va_start(args, input);
send2(&USB_SERIAL,input,args);
send(&USB_SERIAL,F("\">\n"));
send(&USB_SERIAL,F(" *>\n"));
DisplayInterface::setRow(row);
va_start(args, input);
@ -53,12 +53,6 @@ void StringFormatter::lcd(byte row, const FSH* input...) {
void StringFormatter::lcd2(uint8_t display, byte row, const FSH* input...) {
va_list args;
// Copy to serial client <@ display# line# "message">
send(&USB_SERIAL,F("<@ %d %d \""),display,row);
va_start(args, input);
send2(&USB_SERIAL,input,args);
send(&USB_SERIAL,F("\">\n"));
DisplayInterface::setRow(display, row);
va_start(args, input);
send2(DisplayInterface::getDisplayHandler(),input,args);

View File

@ -2,8 +2,6 @@
© 2023 Paul M. Antoine
© 2021 Harald Barth
© 2023 Nathan Kellenicki
© 2023 Travis Farmer
© 2023 Chris Harlow
This file is part of CommandStation-EX
@ -22,19 +20,20 @@
*/
#include "defines.h"
#ifdef WIFI_NINA || GIGA_WIFI
//#include <vector>
#ifdef WIFI_NINA
#include <vector>
#include <SPI.h>
#ifndef ARDUINO_GIGA
#include <WifiNINA.h>
#else
#if defined(GIGA_WIFI)
#include <WiFi.h>
#else
#include <WiFiNINA.h>
#endif
#endif
#include "Wifi_NINA.h"
// #include "ESPmDNS.h"
// #include <WiFi.h>
// #include "esp_wifi.h"
// #include "WifiESP32.h"
// #include <SPI.h>
#include "DIAG.h"
#include "RingStream.h"
#include "CommandDistributor.h"
@ -47,22 +46,49 @@
#define ESP32_RESETN PA10 // Reset pin
#define SPIWIFI_ACK PB3 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1
#elif defined(ARDUINO_GIGA)
#define SPIWIFI SPI
#define SPIWIFI_SS 10 // Chip select pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_RESETN 5 // Reset pin
#define ESP32_GPIO0 -1 // Not connected
#else
#warning "WiFiNINA has no SPI port or pin allocations for this archiecture yet!"
#endif
#define MAX_CLIENTS 10
class NetworkClient {
public:
NetworkClient(WiFiClient c) {
wifi = c;
};
bool ok() {
return (inUse && wifi.connected());
};
bool recycle(WiFiClient c) {
if (inUse == true) return false;
// return false here until we have
// implemented a LRU timer
// if (LRU too recent) return false;
return false;
wifi = c;
inUse = true;
return true;
};
WiFiClient wifi;
bool inUse = true;
};
static std::vector<NetworkClient> clients; // a list to hold all clients
static WiFiServer *server = NULL;
static RingStream *outboundRing = new RingStream(10240);
static bool APmode = false;
static IPAddress ip;
// #ifdef WIFI_TASK_ON_CORE0
// void wifiLoop(void *){
// for(;;){
// WifiNINA::loop();
// }
// }
// #endif
char asciitolower(char in) {
if (in <= 'Z' && in >= 'A')
return in - ('Z' - 'z');
@ -81,7 +107,7 @@ bool WifiNINA::setup(const char *SSid,
uint8_t tries = 40;
// Set up the pins!
#if !defined(GIGA_WIFI)
#ifndef ARDUINO_GIGA
WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
#endif
// check for the WiFi module:
@ -95,6 +121,14 @@ bool WifiNINA::setup(const char *SSid,
String fv = WiFi.firmwareVersion();
DIAG(F("WifiNINA Firmware version found:%s"), fv.c_str());
// clean start
// WiFi.mode(WIFI_STA);
// WiFi.disconnect(true);
// differnet settings that did not improve for haba
// WiFi.useStaticBuffers(true);
// WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN);
// WiFi.setSortMethod(WIFI_CONNECT_AP_BY_SECURITY);
const char *yourNetwork = "Your network ";
if (strncmp(yourNetwork, SSid, 13) == 0 || strncmp("", SSid, 13) == 0)
haveSSID = false;
@ -114,16 +148,14 @@ bool WifiNINA::setup(const char *SSid,
delay(500);
}
if (WiFi.status() == WL_CONNECTED) {
IPAddress ip = WiFi.localIP();
DIAG(F("Wifi STA IP %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
// String ip_str = sprintf("%xl", WiFi.localIP());
DIAG(F("Wifi STA IP %d.%d.%d.%d"), WiFi.localIP()[0], WiFi.localIP()[1],WiFi.localIP()[2],WiFi.localIP()[3],WiFi.localIP()[4],WiFi.localIP()[5]);
wifiUp = true;
} else {
DIAG(F("Could not connect to Wifi SSID %s"),SSid);
DIAG(F("Forcing one more Wifi restart"));
// esp_wifi_start();
// esp_wifi_connect();
WiFi.end();
WiFi.begin(SSid, password);
tries=40;
while (WiFi.status() != WL_CONNECTED && tries) {
Serial.print('.');
@ -132,7 +164,7 @@ bool WifiNINA::setup(const char *SSid,
}
if (WiFi.status() == WL_CONNECTED) {
ip = WiFi.localIP();
DIAG(F("Wifi STA IP 2nd try %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
DIAG(F("Wifi STA IP 2nd try %s"), ip);
wifiUp = true;
} else {
DIAG(F("Wifi STA mode FAIL. Will revert to AP mode"));
@ -152,13 +184,13 @@ bool WifiNINA::setup(const char *SSid,
strMac += String(mac[i], HEX);
}
DIAG(F("MAC address: %x:%x:%x:%x:%x:%x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
DIAG(F("MAC address: %x:%x:%x:%x:%X;%x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
strMac.remove(0,9);
strMac.replace(":","");
strMac.replace(":","");
// convert mac addr hex chars to lower case to be compatible with AT software
//std::transform(strMac.begin(), strMac.end(), strMac.begin(), asciitolower); ///TJF: why does this fail compile with WiFiNINA, but not giga WiFi???
std::transform(strMac.begin(), strMac.end(), strMac.begin(), asciitolower);
strSSID.concat(strMac);
strPass.concat(strMac);
}
@ -168,7 +200,7 @@ bool WifiNINA::setup(const char *SSid,
channel) == WL_AP_LISTENING) {
DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str());
ip = WiFi.localIP();
DIAG(F("Wifi AP IP %d.%d.%d.%d"),ip[0], ip[1], ip[2], ip[3]);
DIAG(F("Wifi AP IP %s"),ip);
wifiUp = true;
APmode = true;
} else {
@ -195,11 +227,27 @@ bool WifiNINA::setup(const char *SSid,
server = new WiFiServer(port); // start listening on tcp port
server->begin();
// server started here
DIAG(F("Server will be started on port %d"),port);
ip = WiFi.localIP();
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port:%d"), port);
// #ifdef WIFI_TASK_ON_CORE0
// //start loop task
// if (pdPASS != xTaskCreatePinnedToCore(
// wifiLoop, /* Task function. */
// "wifiLoop",/* name of task. */
// 10000, /* Stack size of task */
// NULL, /* parameter of the task */
// 1, /* priority of the task */
// NULL, /* Task handle to keep track of created task */
// 0)) { /* pin task to core 0 */
// DIAG(F("Could not create wifiLoop task"));
// return false;
// }
// // report server started after wifiLoop creation
// // when everything looks good
// DIAG(F("Server starting (core 0) port %d"),port);
// #else
DIAG(F("Server will be started on port %d"),port);
// #endif
return true;
}
@ -213,72 +261,107 @@ const char *wlerror[] = {
"WL_DISCONNECTED"
};
WiFiClient * clients[MAX_CLIENTS]; // nulled in setup
void WifiNINA::loop() {
int clientId; //tmp loop var
void WifiNINA::checkForNewClient() {
auto newClient=server->available();
if (!newClient) return;
for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
if (!clients[clientId]) {
clients[clientId]= new WiFiClient(newClient); // use this slot
//DIAG(F("New client connected to slot %d"),clientId); //TJF: brought in for debugging.
return;
}
}
}
void WifiNINA::checkForLostClients() {
for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
auto c=clients[clientId];
if(c && !c->connected()) {
clients[clientId]->stop();
//DIAG(F("Remove client %d"), clientId);
// really no good way to check for LISTEN especially in AP mode?
wl_status_t wlStatus;
if (APmode || (wlStatus = (wl_status_t)WiFi.status()) == WL_CONNECTED) {
// loop over all clients and remove inactive
for (clientId=0; clientId<clients.size(); clientId++){
// check if client is there and alive
if(clients[clientId].inUse && !clients[clientId].wifi.connected()) {
DIAG(F("Remove client %d"), clientId);
CommandDistributor::forget(clientId);
clients[clientId]=nullptr;
clients[clientId].wifi.stop();
clients[clientId].inUse = false;
//Do NOT clients.erase(clients.begin()+clientId) as
//that would mix up clientIds for later.
}
}
if (server->available()) {
WiFiClient client;
while (client = server->available()) {
for (clientId=0; clientId<clients.size(); clientId++){
if (clients[clientId].recycle(client)) {
ip = client.remoteIP();
DIAG(F("Recycle client %d %s"), clientId, ip);
break;
}
}
if (clientId>=clients.size()) {
NetworkClient nc(client);
clients.push_back(nc);
ip = client.remoteIP();
DIAG(F("New client %d, %s"), clientId, ip);
}
}
}
void WifiNINA::checkForClientInput() {
// Find a client providing input
for (byte clientId=0; clientId<MAX_CLIENTS; clientId++){
auto c=clients[clientId];
if(c) {
auto len=c->available();
if (len) {
// loop over all connected clients
for (clientId=0; clientId<clients.size(); clientId++){
if(clients[clientId].ok()) {
int len;
if ((len = clients[clientId].wifi.available()) > 0) {
// read data from client
byte cmd[len+1];
for(int i=0; i<len; i++) cmd[i]=c->read();
cmd[len]=0x00;
for(int i=0; i<len; i++) {
cmd[i]=clients[clientId].wifi.read();
}
cmd[len]=0;
CommandDistributor::parse(clientId,cmd,outboundRing);
}
}
}
}
} // all clients
WiThrottle::loop(outboundRing);
void WifiNINA::checkForClientOutput() {
// something to write out?
auto clientId=outboundRing->read();
if (clientId < 0) return;
auto replySize=outboundRing->count();
if (replySize==0) return; // nothing to send
auto c=clients[clientId];
if (!c) {
// client is gone, throw away msg
for (int i=0;i<replySize;i++) outboundRing->read();
//DIAG(F("gone, drop message.")); //TJF: only for diag
return;
clientId=outboundRing->read();
if (clientId >= 0) {
// We have data to send in outboundRing
// and we have a valid clientId.
// First read it out to buffer
// and then look if it can be sent because
// we can not leave it in the ring for ever
int count=outboundRing->count();
{
char buffer[count+1]; // one extra for '\0'
for(int i=0;i<count;i++) {
int c = outboundRing->read();
if (c >= 0) // Panic check, should never be false
buffer[i] = (char)c;
else {
DIAG(F("Ringread fail at %d"),i);
break;
}
}
// buffer filled, end with '\0' so we can use it as C string
buffer[count]='\0';
if((unsigned int)clientId <= clients.size() && clients[clientId].ok()) {
if (Diag::CMD || Diag::WITHROTTLE)
DIAG(F("SEND %d:%s"), clientId, buffer);
clients[clientId].wifi.write(buffer,count);
} else {
DIAG(F("Unsent(%d): %s"), clientId, buffer);
}
}
}
} else if (!APmode) { // in STA mode but not connected any more
// kick it again
if (wlStatus <= 6) {
DIAG(F("Wifi aborted with error %s. Kicking Wifi!"), wlerror[wlStatus]);
// esp_wifi_start();
// esp_wifi_connect();
uint8_t tries=40;
while (WiFi.status() != WL_CONNECTED && tries) {
Serial.print('.');
tries--;
delay(500);
}
} else {
// all well, probably
//DIAG(F("Running BT"));
}
// emit data to the client object
for (int i=0;i<replySize;i++) c->write(outboundRing->read());
}
void WifiNINA::loop() {
checkForLostClients(); // ***
checkForNewClient();
checkForClientInput(); // ***
WiThrottle::loop(outboundRing); // allow withrottle to broadcast if needed
checkForClientOutput();
}
#endif // WIFI_NINA

View File

@ -38,9 +38,5 @@ public:
const bool forceAP);
static void loop();
private:
static void checkForNewClient();
static void checkForLostClients();
static void checkForClientInput();
static void checkForClientOutput();
};
#endif //WifiNINA_h

View File

@ -161,6 +161,14 @@
//#endif
#define SDA I2C_SDA
#define SCL I2C_SCL
#define DCC_EX_TIMER
// these don't work...
//extern const uint16_t PROGMEM port_to_input_PGM[];
//extern const uint16_t PROGMEM port_to_output_PGM[];
//extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
//#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
//#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
//#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
/* TODO when ready
#elif defined(ARDUINO_ARCH_RP2040)