1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-25 00:56:13 +01:00

Compare commits

...

1 Commits

Author SHA1 Message Date
Colin Murdoch
ae1c1d0e9a Added OnOverload
Added code for OnOverload EXRAIL command.  Untested at this point.
2023-08-06 21:00:52 +01:00
5 changed files with 369 additions and 109 deletions

View File

@ -2,7 +2,7 @@
* © 2021 Neil McKechnie
* © 2021-2023 Harald Barth
* © 2020-2023 Chris Harlow
* © 2022 Colin Murdoch
* © 2022-2023 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -94,6 +94,8 @@ LookList * RMFT2::onAmberLookup=NULL;
LookList * RMFT2::onGreenLookup=NULL;
LookList * RMFT2::onChangeLookup=NULL;
LookList * RMFT2::onClockLookup=NULL;
//CHM
LookList * RMFT2::onOverloadLookup=NULL;
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
@ -175,6 +177,8 @@ LookList* RMFT2::LookListLoader(OPCODE op1, OPCODE op2, OPCODE op3) {
onGreenLookup=LookListLoader(OPCODE_ONGREEN);
onChangeLookup=LookListLoader(OPCODE_ONCHANGE);
onClockLookup=LookListLoader(OPCODE_ONTIME);
//CHM
onOverloadLookup=LookListLoader(OPCODE_ONOVERLOAD);
// Second pass startup, define any turnouts or servos, set signals red
@ -266,12 +270,12 @@ void RMFT2::setTurnoutHiddenState(Turnout * t) {
char RMFT2::getRouteType(int16_t id) {
for (int16_t i=0;;i+=2) {
int16_t rid= GETHIGHFLASHW(routeIdList,i);
if (rid==0) break;
if (rid==INT16_MAX) break;
if (rid==id) return 'R';
}
for (int16_t i=0;;i+=2) {
int16_t rid= GETHIGHFLASHW(automationIdList,i);
if (rid==0) break;
if (rid==INT16_MAX) break;
if (rid==id) return 'A';
}
return 'X';
@ -610,6 +614,7 @@ void RMFT2::loop2() {
break;
case OPCODE_SPEED:
forward=DCC::getThrottleDirection(loco)^invert;
driveLoco(operand);
break;
@ -883,18 +888,13 @@ void RMFT2::loop2() {
while(loopTask) loopTask->kill(F("KILLALL"));
return;
#ifndef DISABLE_PROG
case OPCODE_JOIN:
TrackManager::setPower(POWERMODE::ON);
TrackManager::setJoin(true);
CommandDistributor::broadcastPower();
break;
case OPCODE_POWERON:
TrackManager::setMainPower(POWERMODE::ON);
TrackManager::setJoin(false);
CommandDistributor::broadcastPower();
break;
case OPCODE_UNJOIN:
TrackManager::setJoin(false);
CommandDistributor::broadcastPower();
@ -920,6 +920,13 @@ void RMFT2::loop2() {
forward=true;
invert=false;
break;
#endif
case OPCODE_POWERON:
TrackManager::setMainPower(POWERMODE::ON);
TrackManager::setJoin(false);
CommandDistributor::broadcastPower();
break;
case OPCODE_START:
{
@ -983,6 +990,8 @@ void RMFT2::loop2() {
case OPCODE_ONGREEN:
case OPCODE_ONCHANGE:
case OPCODE_ONTIME:
//CHM
case OPCODE_ONOVERLOAD:
break;
@ -1136,6 +1145,15 @@ void RMFT2::clockEvent(int16_t clocktime, bool change) {
handleEvent(F("CLOCK"),onClockLookup,25*60+clocktime%60);
}
}
//CHM
void RMFT2::powerEvent(char track, bool overload) {
// Hunt for an ONOVERLOAD for this item
if (Diag::CMD)
DIAG(F("Looking for Power event on track : %c"), track);
if (overload) {
handleEvent(F("POWER"),onOverloadLookup,track);
}
}
void RMFT2::handleEvent(const FSH* reason,LookList* handlers, int16_t id) {
int pc= handlers->find(id);
@ -1242,7 +1260,10 @@ void RMFT2::thrungeString(uint32_t strfar, thrunger mode, byte id) {
DCCEXParser::parseOne(&USB_SERIAL,(byte*)buffer->getString(),NULL);
break;
case thrunge_broadcast:
// TODO CommandDistributor::broadcastText(buffer->getString());
CommandDistributor::broadcastRaw(CommandDistributor::COMMAND_TYPE,buffer->getString());
break;
case thrunge_withrottle:
CommandDistributor::broadcastRaw(CommandDistributor::WITHROTTLE_TYPE,buffer->getString());
break;
case thrunge_lcd:
LCD(id,F("%s"),buffer->getString());

View File

@ -1,7 +1,7 @@
/*
* © 2021 Neil McKechnie
* © 2020-2022 Chris Harlow
* © 2022 Colin Murdoch
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* All rights reserved.
*
@ -45,7 +45,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_RED,OPCODE_GREEN,OPCODE_AMBER,OPCODE_DRIVE,
OPCODE_SERVO,OPCODE_SIGNAL,OPCODE_TURNOUT,OPCODE_WAITFOR,
OPCODE_PAD,OPCODE_FOLLOW,OPCODE_CALL,OPCODE_RETURN,
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,OPCODE_POM,
#ifndef DISABLE_PROG
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,
#endif
OPCODE_POM,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,OPCODE_POWERON,
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
@ -59,6 +62,7 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_ONCHANGE,
OPCODE_ONCLOCKTIME,
OPCODE_ONTIME,
OPCODE_ONOVERLOAD,
// OPcodes below this point are skip-nesting IF operations
// placed here so that they may be skipped as a group
@ -77,7 +81,8 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
// Ensure thrunge_lcd is put last as there may be more than one display,
// sequentially numbered from thrunge_lcd.
enum thrunger: byte {
thrunge_print, thrunge_broadcast, thrunge_serial,thrunge_parse,
thrunge_print, thrunge_broadcast, thrunge_withrottle,
thrunge_serial,thrunge_parse,
thrunge_serial1, thrunge_serial2, thrunge_serial3,
thrunge_serial4, thrunge_serial5, thrunge_serial6,
thrunge_lcn,
@ -126,6 +131,7 @@ class LookList {
static void activateEvent(int16_t addr, bool active);
static void changeEvent(int16_t id, bool change);
static void clockEvent(int16_t clocktime, bool change);
static void powerEvent(char track, bool overload);
static const int16_t SERVO_SIGNAL_FLAG=0x4000;
static const int16_t ACTIVE_HIGH_SIGNAL_FLAG=0x2000;
static const int16_t DCC_SIGNAL_FLAG=0x1000;
@ -184,6 +190,9 @@ private:
static LookList * onGreenLookup;
static LookList * onChangeLookup;
static LookList * onClockLookup;
//CHM
static LookList * onOverloadLookup;
// Local variables - exist for each instance/task
RMFT2 *next; // loop chain

View File

@ -1,6 +1,6 @@
/*
* © 2020-2022 Chris Harlow. All rights reserved.
* © 2022 Colin Murdoch
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
*
* This file is part of CommandStation-EX
@ -93,6 +93,8 @@
#undef ONTIME
#undef ONCLOCKTIME
#undef ONCLOCKMINS
//CHM
#undef ONOVERLOAD
#undef ONGREEN
#undef ONRED
#undef ONTHROW
@ -101,7 +103,9 @@
#undef PAUSE
#undef PIN_TURNOUT
#undef PRINT
#ifndef DISABLE_PROG
#undef POM
#endif
#undef POWEROFF
#undef POWERON
#undef READ_LOCO
@ -142,6 +146,7 @@
#undef VIRTUAL_SIGNAL
#undef VIRTUAL_TURNOUT
#undef WAITFOR
#undef WITHROTTLE
#undef XFOFF
#undef XFON
@ -214,6 +219,8 @@
#define ONCLOCKMINS(mins)
#define ONDEACTIVATE(addr,subaddr)
#define ONDEACTIVATEL(linear)
//CHM
#define ONOVERLOAD(track_id)
#define ONCLOSE(turnout_id)
#define ONGREEN(signal_id)
#define ONRED(signal_id)
@ -223,7 +230,9 @@
#define PIN_TURNOUT(id,pin,description...)
#define PRINT(msg)
#define PARSE(msg)
#ifndef DISABLE_PROG
#define POM(cv,value)
#endif
#define POWEROFF
#define POWERON
#define READ_LOCO
@ -264,6 +273,7 @@
#define VIRTUAL_SIGNAL(id)
#define VIRTUAL_TURNOUT(id,description...)
#define WAITFOR(pin)
#define WITHROTTLE(msg)
#define XFOFF(cab,func)
#define XFON(cab,func)
#endif

View File

@ -1,7 +1,7 @@
/*
* © 2021 Neil McKechnie
* © 2020-2022 Chris Harlow
* © 2022 Colin Murdoch
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* All rights reserved.
*
@ -81,14 +81,14 @@ void exrailHalSetup() {
#define ROUTE(id, description) id,
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
#include "myAutomation.h"
0};
INT16_MAX};
// Pass 2a create throttle automation list
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
const int16_t HIGHFLASH RMFT2::automationIdList[]= {
#include "myAutomation.h"
0};
INT16_MAX};
// Pass 3 Create route descriptions:
#undef ROUTE
@ -153,6 +153,8 @@ const int StringMacroTracker1=__COUNTER__;
lcdid=id;\
break;\
}
#undef WITHROTTLE
#define WITHROTTLE(msg) THRUNGE(msg,thrunge_withrottle)
void RMFT2::printMessage(uint16_t id) {
thrunger tmode;
@ -188,7 +190,7 @@ const FSH * RMFT2::getTurnoutDescription(int16_t turnoutid) {
// Pass 6: Roster IDs (count)
#include "EXRAIL2MacroReset.h"
#undef ROSTER
#define ROSTER(cabid,name,funcmap...) +1
#define ROSTER(cabid,name,funcmap...) +(cabid <= 0 ? 0 : 1)
const byte RMFT2::rosterNameCount=0
#include "myAutomation.h"
;
@ -199,7 +201,7 @@ const byte RMFT2::rosterNameCount=0
#define ROSTER(cabid,name,funcmap...) cabid,
const int16_t HIGHFLASH RMFT2::rosterIdList[]={
#include "myAutomation.h"
0};
INT16_MAX};
// Pass 7: Roster names getter
#include "EXRAIL2MacroReset.h"
@ -221,7 +223,7 @@ const FSH * RMFT2::getRosterFunctions(int16_t id) {
#include "myAutomation.h"
default: break;
}
return F("");
return NULL;
}
// Pass 8 Signal definitions
@ -320,13 +322,16 @@ const HIGHFLASH int16_t RMFT2::SignalDefinitions[] = {
#define ONCLOCKMINS(mins) ONCLOCKTIME(25,mins)
#define ONDEACTIVATE(addr,subaddr) OPCODE_ONDEACTIVATE,V(addr<<2|subaddr),
#define ONDEACTIVATEL(linear) OPCODE_ONDEACTIVATE,V(linear+3),
#define ONOVERLOAD(track_id) OPCODE_ONOVERLOAD,V(track_id),
#define ONGREEN(signal_id) OPCODE_ONGREEN,V(signal_id),
#define ONRED(signal_id) OPCODE_ONRED,V(signal_id),
#define ONTHROW(turnout_id) OPCODE_ONTHROW,V(turnout_id),
#define ONCHANGE(sensor_id) OPCODE_ONCHANGE,V(sensor_id),
#define PAUSE OPCODE_PAUSE,0,0,
#define PIN_TURNOUT(id,pin,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
#ifndef DISABLE_PROG
#define POM(cv,value) OPCODE_POM,V(cv),OPCODE_PAD,V(value),
#endif
#define POWEROFF OPCODE_POWEROFF,0,0,
#define POWERON OPCODE_POWERON,0,0,
#define PRINT(msg) OPCODE_PRINT,V(__COUNTER__ - StringMacroTracker2),
@ -368,6 +373,7 @@ const HIGHFLASH int16_t RMFT2::SignalDefinitions[] = {
#define UNLATCH(sensor_id) OPCODE_UNLATCH,V(sensor_id),
#define VIRTUAL_SIGNAL(id)
#define VIRTUAL_TURNOUT(id,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(0),
#define WITHROTTLE(msg) PRINT(msg)
#define WAITFOR(pin) OPCODE_WAITFOR,V(pin),
#define XFOFF(cab,func) OPCODE_XFOFF,V(cab),OPCODE_PAD,V(func),
#define XFON(cab,func) OPCODE_XFON,V(cab),OPCODE_PAD,V(func),

View File

@ -4,6 +4,7 @@
* © 2021 Fred Decker
* © 2020-2023 Harald Barth
* © 2020-2021 Chris Harlow
* © 2023 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -26,16 +27,18 @@
#include "DCCWaveform.h"
#include "DCCTimer.h"
#include "DIAG.h"
#include "EXRAIL2.h"
bool MotorDriver::commonFaultPin=false;
unsigned long MotorDriver::globalOverloadStart = 0;
volatile portreg_t shadowPORTA;
volatile portreg_t shadowPORTB;
volatile portreg_t shadowPORTC;
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, int8_t fault_pin) {
powerPin=power_pin;
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) {
const FSH * warnString = F("** WARNING **");
invertPower=power_pin < 0;
if (invertPower) {
powerPin = 0-power_pin;
@ -91,35 +94,54 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
}
else dualSignal=false;
brakePin=brake_pin;
if (brake_pin!=UNUSED_PIN){
invertBrake=brake_pin < 0;
brakePin=invertBrake ? 0-brake_pin : brake_pin;
if (invertBrake)
brake_pin = 0-brake_pin;
if (brake_pin > MAX_PIN)
DIAG(F("%S Brake pin %d > %d"), warnString, brake_pin, MAX_PIN);
brakePin=(byte)brake_pin;
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
// if brake is used for railcom cutout we need to do PORTX register trick here as well
pinMode(brakePin, OUTPUT);
setBrake(true); // start with brake on in case we hace DC stuff going on
} else {
brakePin=UNUSED_PIN;
}
else brakePin=UNUSED_PIN;
currentPin=current_pin;
if (currentPin!=UNUSED_PIN) ADCee::init(currentPin);
if (currentPin!=UNUSED_PIN) {
int ret = ADCee::init(currentPin);
if (ret < -1010) { // XXX give value a name later
DIAG(F("ADCee::init error %d, disable current pin %d"), ret, currentPin);
currentPin = UNUSED_PIN;
}
}
senseOffset=0; // value can not be obtained until waveform is activated
faultPin=fault_pin;
if (faultPin != UNUSED_PIN) {
if (fault_pin != UNUSED_PIN) {
invertFault=fault_pin < 0;
faultPin=invertFault ? 0-fault_pin : fault_pin;
if (invertFault)
fault_pin = 0-fault_pin;
if (fault_pin > MAX_PIN)
DIAG(F("%S Fault pin %d > %d"), warnString, fault_pin, MAX_PIN);
faultPin=(byte)fault_pin;
DIAG(F("Fault pin = %d invert %d"), faultPin, invertFault);
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
pinMode(faultPin, INPUT);
} else {
faultPin=UNUSED_PIN;
}
// This conversion performed at compile time so the remainder of the code never needs
// float calculations or libraray code.
senseFactorInternal=sense_factor * senseScale;
tripMilliamps=trip_milliamps;
rawCurrentTripValue=mA2raw(trip_milliamps);
#ifdef MAX_CURRENT
if (MAX_CURRENT > 0 && MAX_CURRENT < tripMilliamps)
tripMilliamps = MAX_CURRENT;
#endif
rawCurrentTripValue=mA2raw(tripMilliamps);
if (rawCurrentTripValue + senseOffset > ADCee::ADCmax()) {
// This would mean that the values obtained from the ADC never
@ -134,20 +156,16 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
}
if (currentPin==UNUSED_PIN)
DIAG(F("** WARNING ** No current or short detection"));
DIAG(F("%S No current or short detection"), warnString);
else {
DIAG(F("Track %c, TripValue=%d"), trackLetter, rawCurrentTripValue);
DIAG(F("Pin %d Max %dmA (%d)"), currentPin, raw2mA(rawCurrentTripValue), rawCurrentTripValue);
// self testing diagnostic for the non-float converters... may be removed when happy
// DIAG(F("senseFactorInternal=%d raw2mA(1000)=%d mA2Raw(1000)=%d"),
// senseFactorInternal, raw2mA(1000),mA2raw(1000));
}
// prepare values for current detection
sampleDelay = 0;
lastSampleTaken = millis();
progTripValue = mA2raw(TRIP_CURRENT_PROG);
}
bool MotorDriver::isPWMCapable() {
@ -156,7 +174,12 @@ bool MotorDriver::isPWMCapable() {
void MotorDriver::setPower(POWERMODE mode) {
bool on=mode==POWERMODE::ON;
if (powerMode == mode) return;
//DIAG(F("Track %c POWERMODE=%d"), trackLetter, (int)mode);
lastPowerChange[(int)mode] = micros();
if (mode == POWERMODE::OVERLOAD)
globalOverloadStart = lastPowerChange[(int)mode];
bool on=(mode==POWERMODE::ON || mode ==POWERMODE::ALERT);
if (on) {
// when switching a track On, we need to check the crrentOffset with the pin OFF
if (powerMode==POWERMODE::OFF && currentPin!=UNUSED_PIN) {
@ -196,8 +219,8 @@ bool MotorDriver::canMeasureCurrent() {
return currentPin!=UNUSED_PIN;
}
/*
* Return the current reading as pin reading 0 to 1023. If the fault
* pin is activated return a negative current to show active fault pin.
* Return the current reading as pin reading 0 to max resolution (1024 or 4096).
* If the fault pin is activated return a negative current to show active fault pin.
* As there is no -0, cheat a little and return -1 in that case.
*
* senseOffset handles the case where a shield returns values above or below
@ -214,14 +237,12 @@ int MotorDriver::getCurrentRaw(bool fromISR) {
// if (fromISR == false) DIAG(F("%c: %d"), trackLetter, current);
current = current-senseOffset; // adjust with offset
if (current<0) current=0-current;
if ((faultPin != UNUSED_PIN) && powerMode==POWERMODE::ON) {
if (invertFault && isLOW(fastFaultPin))
return (current == 0 ? -1 : -current);
if (!invertFault && !isLOW(fastFaultPin))
// current >= 0 here, we use negative current as fault pin flag
if ((faultPin != UNUSED_PIN) && powerPin) {
if (invertFault ? isHIGH(fastFaultPin) : isLOW(fastFaultPin))
return (current == 0 ? -1 : -current);
}
return current;
}
#ifdef ANALOG_READ_INTERRUPT
@ -259,6 +280,7 @@ void MotorDriver::startCurrentFromHW() {
#endif //ANALOG_READ_INTERRUPT
#if defined(ARDUINO_ARCH_ESP32)
#ifdef VARIABLE_TONES
uint16_t taurustones[28] = { 165, 175, 196, 220,
247, 262, 294, 330,
349, 392, 440, 494,
@ -267,16 +289,43 @@ uint16_t taurustones[28] = { 165, 175, 196, 220,
330, 284, 262, 247,
220, 196, 175, 165 };
#endif
#endif
void MotorDriver::setDCSignal(byte speedcode) {
if (brakePin == UNUSED_PIN)
return;
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
TCCR4B = (TCCR4B & B11111000) | B00000100; // same for timer 4 but maxcount and thus divisor differs
case 9:
case 10:
// Timer2 (is differnet)
TCCR2A = (TCCR2A & B11111100) | B00000001; // set WGM1=0 and WGM0=1 phase correct PWM
TCCR2B = (TCCR2B & B11110000) | B00000110; // set WGM2=0 ; set divisor on timer 2 to 1/256 for 122.55Hz
//DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
#endif
default:
break;
}
// spedcoode is a dcc speed & direction
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
byte tDir=speedcode & 0x80;
@ -284,11 +333,13 @@ void MotorDriver::setDCSignal(byte speedcode) {
#if defined(ARDUINO_ARCH_ESP32)
{
int f = 131;
#ifdef VARIABLE_TONES
if (tSpeed > 2) {
if (tSpeed <= 58) {
f = taurustones[ (tSpeed-2)/2 ] ;
}
}
#endif
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
}
#endif
@ -327,7 +378,60 @@ void MotorDriver::setDCSignal(byte speedcode) {
interrupts();
}
}
void MotorDriver::throttleInrush(bool on) {
if (brakePin == UNUSED_PIN)
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
return;
byte duty = on ? 208 : 0;
if (invertBrake)
duty = 255-duty;
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
} else {
ledcDetachPin(brakePin);
}
#else
if(on){
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
case 9:
case 10:
// Timer2 (is different)
TCCR2A = (TCCR2A & B11111100) | B00000011; // set WGM0=1 and WGM1=1 for fast PWM
TCCR2B = (TCCR2B & B11110000) | B00000001; // set WGM2=0 and prescaler div=1 (max)
DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
#endif
default:
break;
}
}
analogWrite(brakePin,duty);
#endif
}
unsigned int MotorDriver::raw2mA( int raw) {
//DIAG(F("%d = %d * %d / %d"), (int32_t)raw * senseFactorInternal / senseScale, raw, senseFactorInternal, senseScale);
return (int32_t)raw * senseFactorInternal / senseScale;
@ -356,64 +460,174 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
///////////////////////////////////////////////////////////////////////////////////////////
// checkPowerOverload(useProgLimit, trackno)
// bool useProgLimit: Trackmanager knows if this track is in prog mode or in main mode
// byte trackno: trackmanager knows it's number (could be skipped?)
//
// Short ciruit handling strategy:
//
// There are the following power states: ON ALERT OVERLOAD OFF
// OFF state is only changed to/from manually. Power is on
// during ON and ALERT. Power is off during OVERLOAD and OFF.
// The overload mechanism changes between the other states like
//
// ON -1-> ALERT -2-> OVERLOAD -3-> ALERT -4-> ON
// or
// ON -1-> ALERT -4-> ON
//
// Times are in class MotorDriver (MotorDriver.h).
//
// 1. ON to ALERT:
// Transition on fault pin condition or current overload
//
// 2. ALERT to OVERLOAD:
// Transition happens if different timeouts have elapsed.
// If only the fault pin is active, timeout is
// POWER_SAMPLE_IGNORE_FAULT_LOW (100ms)
// If only overcurrent is detected, timeout is
// POWER_SAMPLE_IGNORE_CURRENT (100ms)
// If fault pin and overcurrent are active, timeout is
// POWER_SAMPLE_IGNORE_FAULT_HIGH (5ms)
// Transition to OVERLOAD turns off power to the affected
// output (unless fault pins are shared)
// If the transition conditions are not fullfilled,
// transition according to 4 is tested.
//
// 3. OVERLOAD to ALERT
// Transiton happens when timeout has elapsed, timeout
// is named power_sample_overload_wait. It is started
// at POWER_SAMPLE_OVERLOAD_WAIT (40ms) at first entry
// to OVERLOAD and then increased by a factor of 2
// at further entries to the OVERLOAD condition. This
// happens until POWER_SAMPLE_RETRY_MAX (10sec) is reached.
// power_sample_overload_wait is reset by a poweroff or
// a POWER_SAMPLE_ALL_GOOD (5sec) period during ON.
// After timeout power is turned on again and state
// goes back to ALERT.
//
// 4. ALERT to ON
// Transition happens by watching the current and fault pin
// samples during POWER_SAMPLE_ALERT_GOOD (20ms) time. If
// values have been good during that time, transition is
// made back to ON. Note that even if state is back to ON,
// the power_sample_overload_wait time is first reset
// later (see above).
//
// The time keeping is handled by timestamps lastPowerChange[]
// which are set by each power change and by lastBadSample which
// keeps track if conditions during ALERT have been good enough
// to go back to ON. The time differences are calculated by
// microsSinceLastPowerChange().
//
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
// Trackname for diag messages later
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
case POWERMODE::OFF: {
lastPowerMode = POWERMODE::OFF;
power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (commonFaultPin) {
if (lastCurrent < tripValue) {
setPower(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE: POWERTOGGLE TRACK %c"), trackno + 'A');
case POWERMODE::ON: {
lastPowerMode = POWERMODE::ON;
bool cF = checkFault();
bool cC = checkCurrent(useProgLimit);
if(cF || cC ) {
if (cC) {
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c ALERT %s %dmA"), trackno + 'A',
cF ? "FAULT" : "",
mA);
} else {
DIAG(F("TRACK %c FAULT PIN ACTIVE - OVERLOAD"), trackno + 'A');
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A');
}
setPower(POWERMODE::ALERT);
break;
}
// all well
if (microsSinceLastPowerChange(POWERMODE::ON) > POWER_SAMPLE_ALL_GOOD) {
power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
break;
}
case POWERMODE::ALERT: {
// set local flags that handle how much is output to diag (do not output duplicates)
bool notFromOverload = (lastPowerMode != POWERMODE::OVERLOAD);
bool powerModeChange = (powerMode != lastPowerMode);
unsigned long now = micros();
if (powerModeChange)
lastBadSample = now;
lastPowerMode = POWERMODE::ALERT;
// check how long we have been in this state
unsigned long mslpc = microsSinceLastPowerChange(POWERMODE::ALERT);
if(checkFault()) {
throttleInrush(true);
lastBadSample = now;
unsigned long timeout = checkCurrent(useProgLimit) ? POWER_SAMPLE_IGNORE_FAULT_HIGH : POWER_SAMPLE_IGNORE_FAULT_LOW;
if ( mslpc < timeout) {
if (powerModeChange)
DIAG(F("TRACK %c FAULT PIN (%M ignore)"), trackno + 'A', timeout);
break;
}
DIAG(F("TRACK %c FAULT PIN detected after %4M. Pause %4M)"), trackno + 'A', mslpc, power_sample_overload_wait);
throttleInrush(false);
setPower(POWERMODE::OVERLOAD);
//CHM
RMFT2::powerEvent(trackno + 'A', true); // Tell EXRAIL we have an overload
break;
}
if (checkCurrent(useProgLimit)) {
lastBadSample = now;
if (mslpc < POWER_SAMPLE_IGNORE_CURRENT) {
if (powerModeChange) {
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c CURRENT (%M ignore) %dmA"), trackno + 'A', POWER_SAMPLE_IGNORE_CURRENT, mA);
}
break;
}
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("TRACK %c POWER OVERLOAD %dmA (limit %dmA) shutdown for %dms"), trackno + 'A', mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
DIAG(F("TRACK %c POWER OVERLOAD %4dmA (max %4dmA) detected after %4M. Pause %4M"),
trackno + 'A', mA, maxmA, mslpc, power_sample_overload_wait);
throttleInrush(false);
setPower(POWERMODE::OVERLOAD);
//CHM
RMFT2::powerEvent(trackno + 'A', true); // Tell EXRAIL we have an overload
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
}
// all well
unsigned long goodtime = micros() - lastBadSample;
if (goodtime > POWER_SAMPLE_ALERT_GOOD) {
if (true || notFromOverload) { // we did a RESTORE message XXX
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c NORMAL (after %M/%M) %dmA"), trackno + 'A', goodtime, mslpc, mA);
}
throttleInrush(false);
setPower(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("TRACK %c POWER RESTORE (check %dms)"), trackno + 'A', sampleDelay);
}
break;
}
case POWERMODE::OVERLOAD: {
lastPowerMode = POWERMODE::OVERLOAD;
unsigned long mslpc = (commonFaultPin ? (micros() - globalOverloadStart) : microsSinceLastPowerChange(POWERMODE::OVERLOAD));
if (mslpc > power_sample_overload_wait) {
// adjust next wait time
power_sample_overload_wait *= 2;
if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX)
power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX;
// power on test
DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc);
setPower(POWERMODE::ALERT);
}
break;
}
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
break;
}
}