/* * © 2024, Chris Harlow. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create NEOPIXEL devices, these are defined in myAutomation.h: * (Note the device driver is included by default) * * HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address) * e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60) * This gives each pixel in the chain an individual vpin * The number of pixels must match the physical pixels in the chain. * * This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit. * This can be written/read with an analog write/read call. * The ON bit can be set on and off with a digital write. This allows for * a pixel to be preset a colour and then turned on and off like any other light. */ #ifndef IO_EX_NeoPixel_H #define IO_EX_NeoPixel_H #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" // The following macros to define the Neopixel String type // have been copied from the Adafruit Seesaw Library under the // terms of the GPL. // Credit to: https://github.com/adafruit/Adafruit_Seesaw // The order of primary colors in the NeoPixel data stream can vary // among device types, manufacturers and even different revisions of // the same item. The third parameter to the seesaw_NeoPixel // constructor encodes the per-pixel byte offsets of the red, green // and blue primaries (plus white, if present) in the data stream -- // the following #defines provide an easier-to-use named version for // each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible // device expecting three bytes per pixel, with the first byte // containing the green value, second containing red and third // containing blue. The in-memory representation of a chain of // NeoPixels is the same as the data-stream order; no re-ordering of // bytes is required when issuing data to the chain. // Bits 5,4 of this value are the offset (0-3) from the first byte of // a pixel to the location of the red color byte. Bits 3,2 are the // green offset and 1,0 are the blue offset. If it is an RGBW-type // device (supporting a white primary in addition to R,G,B), bits 7,6 // are the offset to the white byte...otherwise, bits 7,6 are set to // the same value as 5,4 (red) to indicate an RGB (not RGBW) device. // i.e. binary representation: // 0bWWRRGGBB for RGBW devices // 0bRRRRGGBB for RGB // RGB NeoPixel permutations; white and red offsets are always same // Offset: W R G B #define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) #define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) #define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) #define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) #define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) #define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) // RGBW NeoPixel permutations; all 4 offsets are distinct // Offset: W R G B #define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) #define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) #define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) #define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) #define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) #define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) #define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) #define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) #define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) #define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) #define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) #define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) #define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) #define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) #define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) #define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) #define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) #define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) #define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) #define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) #define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) #define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) #define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) #define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) // If 400 KHz support is enabled, the third parameter to the constructor // requires a 16-bit value (in order to select 400 vs 800 KHz speed). // If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value // is sufficient to encode pixel color order, saving some space. #define NEO_KHZ800 0x0000 // 800 KHz datastream #define NEO_KHZ400 0x0100 // 400 KHz datastream ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for NeoPixel. */ class NeoPixel : public IODevice { public: static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) { if (checkNoOverlap(vpin, nPins, mode, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress); } private: static const byte SEESAW_NEOPIXEL_BASE=0x0E; static const byte SEESAW_NEOPIXEL_STATUS = 0x00; static const byte SEESAW_NEOPIXEL_PIN = 0x01; static const byte SEESAW_NEOPIXEL_SPEED = 0x02; static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03; static const byte SEESAW_NEOPIXEL_BUF=0x04; static const byte SEESAW_NEOPIXEL_SHOW=0x05; // all adafruit examples say this pin. Presumably its hard wired // in the adapter anyway. static const byte SEESAW_PIN15 = 15; // Constructor NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) { _firstVpin = firstVpin; _nPins=nPins; _I2CAddress = i2cAddress; // calculate the offsets into the seesaw buffer for each colour depending // on the pixel strip type passed in mode. _redOffset=4+(mode >> 4 & 0x03); _greenOffset=4+(mode >> 2 & 0x03); _blueOffset=4+(mode & 0x03); if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3; else _bytesPerPixel=4; // string has a white byte. _kHz800=(mode & NEO_KHZ400)==0; _showPendimg=false; // Each pixel requires 3 bytes RGB memory. // Although the driver device can remember this, it cant do off/on without // forgetting what the on colour was! pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB)); stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off if (pixelBuffer==nullptr || stateBuffer==nullptr) { DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString()); return; } // preset all pins to white so a digital on/off will do something even if no colour set. memset(pixelBuffer,0xFF,_nPins*sizeof(RGB)); addDevice(this); } void _begin() { // Initialise Neopixel device I2CManager.begin(); if (!I2CManager.exists(_I2CAddress)) { DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; return; } byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800}; I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer)); // In the driver there are 3 of 4 byts per pixel auto numBytes=_bytesPerPixel * _nPins; byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH, (byte)(numBytes >> 8), (byte)(numBytes & 0xFF)}; I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer)); const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15}; I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer)); for (auto pin=0;pin<_nPins;pin++) transmit(pin); _display(); } // loop called by HAL supervisor void _loop(unsigned long currentMicros) override { (void)currentMicros; if (!_showPendimg) return; byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW}; I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer)); _showPendimg=false; } // read back pixel on/off int _read(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; return isPixelOn(vpin-_firstVpin); } // Write digital value. Sets pixel on or off void _write(VPIN vpin, int value) override { if (_deviceState == DEVSTATE_FAILED) return; auto pixel=vpin-_firstVpin; if (value) { if (isPixelOn(pixel)) return; setPixelOn(pixel); } else { // set off if (!isPixelOn(pixel)) return; setPixelOff(pixel); } transmit(pixel); } VPIN _writeRange(VPIN vpin,int value, int count) { // using write range cuts out the constant vpin to driver lookup so // we can update multiple pixels much faster. VPIN nextVpin=vpin + (count>_nPins ? _nPins : count); if (_deviceState != DEVSTATE_FAILED) while(vpin>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)}; auto pixel=vpin-_firstVpin; if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change if (onoff) setPixelOn(pixel); else setPixelOff(pixel); pixelBuffer[pixel]=newColour; transmit(pixel); } VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override { // using write range cuts out the constant vpin to driver lookup so VPIN nextVpin=vpin + (count>_nPins ? _nPins : count); if (_deviceState != DEVSTATE_FAILED) while(vpin>(pixel%8));} void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));} void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));} // Helper function for error handling void reportError(uint8_t status, bool fail=true) { DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); if (fail) _deviceState = DEVSTATE_FAILED; } void transmit(uint16_t pixel) { byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00}; uint16_t offset= pixel * _bytesPerPixel; buffer[2]=(byte)(offset>>8); buffer[3]=(byte)(offset & 0xFF); if (isPixelOn(pixel)) { auto colour=pixelBuffer[pixel]; buffer[_redOffset]=colour.red; buffer[_greenOffset]=colour.green; buffer[_blueOffset]=colour.blue; } // else leave buffer black (in buffer preset to zeros above) // Transmit pixel to driver I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel); _showPendimg=true; } struct RGB { byte red; byte green; byte blue; bool operator==(const RGB& other) const { return red == other.red && green == other.green && blue == other.blue; } }; RGB* pixelBuffer = nullptr; byte* stateBuffer = nullptr; // 1 bit per pixel bool _showPendimg; // mapping of RGB onto pixel buffer for seesaw. byte _bytesPerPixel; byte _redOffset; byte _greenOffset; byte _blueOffset; bool _kHz800; }; #endif