/*
* © 2023 Travis Farmer
* © 2023 Neil McKechnie
* © 2022-2023 Paul M. Antoine
* © 2021 Mike S
* © 2021, 2023 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021 David Cutting
* All rights reserved.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see .
*/
// ATTENTION: this file only compiles on a STM32 based boards
// Please refer to DCCTimer.h for general comments about how this class works
// This is to avoid repetition and duplication.
#if defined(ARDUINO_GIGA)
#include "DCCTimer.h"
#include "DIAG.h"
#include "GigaHardwareTimer.h"
#include
//#include "config.h"
///////////////////////////////////////////////////////////////////////////////////////////////
// Experimental code for High Accuracy (HA) DCC Signal mode
// Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins,
// which is used by the DC motor types.
///////////////////////////////////////////////////////////////////////////////////////////////
INTERRUPT_CALLBACK interruptHandler=0;
#ifndef DCC_EX_TIMER
#if defined(TIM6)
#define DCC_EX_TIMER TIM6
#elif defined(TIM7)
#define DCC_EX_TIMER TIM7
#elif defined(TIM12)
#define DCC_EX_TIMER TIM12
#else
#warning This Giga variant does not have Timers 1,8 or 11!!
#endif
#endif // ifndef DCC_EX_TIMER
HardwareTimer dcctimer(TIM8);
void DCCTimer_Handler() __attribute__((interrupt));
void DCCTimer_Handler() {
interruptHandler();
}
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
dcctimer.pause();
dcctimer.setPrescaleFactor(1);
// timer.setOverflow(CLOCK_CYCLES * 2);
dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// dcctimer.attachInterrupt(Timer11_Handler);
dcctimer.attachInterrupt(DCCTimer_Handler);
dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority!
dcctimer.refresh();
dcctimer.resume();
interrupts();
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
// return digitalPinHasPWM(pin);
(void) pin;
return false;
}
void DCCTimer::setPWM(byte pin, bool high) {
// TODO: High Accuracy mode is not supported as yet, and may never need to be
(void) pin;
(void) high;
return;
}
void DCCTimer::clearPWM() {
return;
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE;
volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4;
volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8;
volatile uint32_t m1 = *serno1;
volatile uint32_t m2 = *serno2;
volatile uint32_t m3 = *serno3;
mac[0] = 0xBE;
mac[1] = 0xEF;
mac[2] = m1 ^ m3 >> 24;
mac[3] = m1 ^ m3 >> 16;
mac[4] = m1 ^ m3 >> 8;
mac[5] = m1 ^ m3 >> 0;
//DIAG(F("MAC: %P:%P:%P:%P:%P:%P"),mac[0],mac[1],mac[2],mac[3],mac[4],mac[5]);
}
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
// Return low memory value...
int DCCTimer::getMinimumFreeMemory() {
noInterrupts(); // Disable interrupts to get volatile value
int retval = freeMemory();
interrupts();
return retval;
}
extern "C" char* sbrk(int incr);
int DCCTimer::freeMemory() {
char top;
unsigned int tmp = (unsigned int)(&top - reinterpret_cast(sbrk(0)));
return (int)(tmp / 1000);
}
void DCCTimer::reset() {
//Watchdog &watchdog = Watchdog::get_instance();
//Watchdog::stop();
//Watchdog::start(500);
//while(true) {};
return;
}
int * ADCee::analogvals = NULL;
int16_t ADCee::ADCmax()
{
return 1023;
}
AdvancedADC adc;
pin_size_t active_pins[] = {A0, A1, A2, A3};
pin_size_t active_pinsB[] = {A4, A5, A6, A7};
int num_active_pins = 4;
const int samples_per_round = 512;
int ADCee::init(uint8_t pin) {
adc.stop();
if (pin >= A0 && pin <= A3) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pins);
else if (pin >= A4 && pin <= A7) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pinsB);
return 123;
}
/*
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
int tmpPin = 0;
if (pin >= A0 && pin <= A3) tmpPin = (pin - A0);
else if (pin >= A4 && pin <= A7) tmpPin = ((pin - A0) - 4);
static SampleBuffer buf = adc.read();
int retVal = -123;
if (adc.available()) {
buf.release();
buf = adc.read();
}
return (buf[tmpPin]);
}
/*
* Scan function that is called from interrupt
*/
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() {
}
#pragma GCC pop_options
void ADCee::begin() {
noInterrupts();
interrupts();
}
#endif