/* * © 2023 Travis Farmer * © 2023 Neil McKechnie * © 2022-2023 Paul M. Antoine * © 2021 Mike S * © 2021, 2023 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a STM32 based boards // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #if defined(ARDUINO_GIGA) #include "DCCTimer.h" #include "DIAG.h" #include "GigaHardwareTimer.h" #include //#include "config.h" /////////////////////////////////////////////////////////////////////////////////////////////// // Experimental code for High Accuracy (HA) DCC Signal mode // Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins, // which is used by the DC motor types. /////////////////////////////////////////////////////////////////////////////////////////////// INTERRUPT_CALLBACK interruptHandler=0; #ifndef DCC_EX_TIMER #if defined(TIM6) #define DCC_EX_TIMER TIM6 #elif defined(TIM7) #define DCC_EX_TIMER TIM7 #elif defined(TIM12) #define DCC_EX_TIMER TIM12 #else #warning This Giga variant does not have Timers 1,8 or 11!! #endif #endif // ifndef DCC_EX_TIMER HardwareTimer dcctimer(TIM8); void DCCTimer_Handler() __attribute__((interrupt)); void DCCTimer_Handler() { interruptHandler(); } void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); dcctimer.pause(); dcctimer.setPrescaleFactor(1); // timer.setOverflow(CLOCK_CYCLES * 2); dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); // dcctimer.attachInterrupt(Timer11_Handler); dcctimer.attachInterrupt(DCCTimer_Handler); dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority! dcctimer.refresh(); dcctimer.resume(); interrupts(); } bool DCCTimer::isPWMPin(byte pin) { //TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM, // there's no support yet for High Accuracy, so for now return false // return digitalPinHasPWM(pin); (void) pin; return false; } void DCCTimer::setPWM(byte pin, bool high) { // TODO: High Accuracy mode is not supported as yet, and may never need to be (void) pin; (void) high; return; } void DCCTimer::clearPWM() { return; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE; volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4; volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; volatile uint32_t m3 = *serno3; mac[0] = 0xBE; mac[1] = 0xEF; mac[2] = m1 ^ m3 >> 24; mac[3] = m1 ^ m3 >> 16; mac[4] = m1 ^ m3 >> 8; mac[5] = m1 ^ m3 >> 0; //DIAG(F("MAC: %P:%P:%P:%P:%P:%P"),mac[0],mac[1],mac[2],mac[3],mac[4],mac[5]); } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; unsigned int tmp = (unsigned int)(&top - reinterpret_cast(sbrk(0))); return (int)(tmp / 1000); } void DCCTimer::reset() { //Watchdog &watchdog = Watchdog::get_instance(); //Watchdog::stop(); //Watchdog::start(500); //while(true) {}; return; } int * ADCee::analogvals = NULL; int16_t ADCee::ADCmax() { return 1023; } AdvancedADC adc; pin_size_t active_pins[] = {A0, A1, A2, A3}; pin_size_t active_pinsB[] = {A4, A5, A6, A7}; int num_active_pins = 4; const int samples_per_round = 512; int ADCee::init(uint8_t pin) { adc.stop(); if (pin >= A0 && pin <= A3) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pins); else if (pin >= A4 && pin <= A7) adc.begin(AN_RESOLUTION_10, 16000, 1, samples_per_round, num_active_pins, active_pinsB); return 123; } /* * Read function ADCee::read(pin) to get value instead of analogRead(pin) */ int ADCee::read(uint8_t pin, bool fromISR) { int tmpPin = 0; if (pin >= A0 && pin <= A3) tmpPin = (pin - A0); else if (pin >= A4 && pin <= A7) tmpPin = ((pin - A0) - 4); static SampleBuffer buf = adc.read(); int retVal = -123; if (adc.available()) { buf.release(); buf = adc.read(); } return (buf[tmpPin]); } /* * Scan function that is called from interrupt */ #pragma GCC push_options #pragma GCC optimize ("-O3") void ADCee::scan() { } #pragma GCC pop_options void ADCee::begin() { noInterrupts(); interrupts(); } #endif