/* * @ 2023 Travis Farmer * © 2023 Neil McKechnie * © 2022-2023 Paul M. Antoine * © 2021 Mike S * © 2021, 2023 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a STM32 based boards // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #if defined(ARDUINO_GIGA) #include "DCCTimer.h" #include "DIAG.h" #include "Portenta_H7_TimerInterrupt.h" #include "pins_arduino.h" #include "pinDefinitions.h" /////////////////////////////////////////////////////////////////////////////////////////////// // Experimental code for High Accuracy (HA) DCC Signal mode // Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins, // which is used by the DC motor types. /////////////////////////////////////////////////////////////////////////////////////////////// INTERRUPT_CALLBACK interruptHandler=0; //HardwareTimer* timer = NULL; //HardwareTimer* timerAux = NULL; HardwareTimer timer(TIM2); HardwareTimer timerAux(TIM3); static bool tim2ModeHA = false; static bool tim3ModeHA = false; void DCCTimer_Handler() __attribute__((interrupt)); void DCCTimer_Handler() { interruptHandler(); } void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); timer.pause(); timerAux.pause(); timer.setPrescaleFactor(1); timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timer.attachInterrupt(DCCTimer_Handler); timer.refresh(); timerAux.setPrescaleFactor(1); timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timerAux.refresh(); timer.resume(); timerAux.resume(); interrupts(); } bool DCCTimer::isPWMPin(byte pin) { switch (pin) { case 12: return true; case 13: return true; default: return false; } } void DCCTimer::setPWM(byte pin, bool high) { switch (pin) { case 9: if (!tim3ModeHA) { timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 9); tim3ModeHA = true; } if (high) TIM17->CCMR1 = (TIM17->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM17->CCMR1 = (TIM17->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; case 8: if (!tim2ModeHA) { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 8); tim2ModeHA = true; } if (high) TIM16->CCMR1 = (TIM16->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM16->CCMR1 = (TIM16->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; } } void DCCTimer::clearPWM() { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim2ModeHA = false; timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim3ModeHA = false; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10; volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14; // volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; unsigned int tmp = (unsigned int)(&top - reinterpret_cast(sbrk(0))); return (int)(tmp / 1000); } void DCCTimer::reset() { //Watchdog &watchdog = Watchdog::get_instance(); //Watchdog::stop(); //Watchdog::start(500); //while(true) {}; } int16_t ADCee::ADCmax() { return 4095; } int ADCee::init(uint8_t pin) { return 123; // random number, faked for now } /* * Read function ADCee::read(pin) to get value instead of analogRead(pin) */ int ADCee::read(uint8_t pin, bool fromISR) { //int current; //DIAG(F("ADCee Read:%d"),fromISR); //if (!fromISR) noInterrupts(); //current = analogRead(pin); //if (!fromISR) interrupts(); mbed::AnalogIn* adc = analogPinToAdcObj(pin); if (adc == NULL) { adc = new mbed::AnalogIn(analogPinToPinName(pin)); analogPinToAdcObj(pin) = adc; } return (int)(adc->read_u16() >> (16 - 10)); } /* * Scan function that is called from interrupt */ #pragma GCC push_options #pragma GCC optimize ("-O3") void ADCee::scan() { } #pragma GCC pop_options void ADCee::begin() { noInterrupts(); interrupts(); } #endif