/* * © 2020, Chris Harlow. All rights reserved. * © 2021, modified by Neil McKechnie. All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /********************************************************************** DCC++ BASE STATION supports Sensor inputs that can be connected to any Arduino Pin not in use by this program. Sensors can be of any type (infrared, magentic, mechanical...). The only requirement is that when "activated" the Sensor must force the specified Arduino Pin LOW (i.e. to ground), and when not activated, this Pin should remain HIGH (e.g. 5V), or be allowed to float HIGH if use of the Arduino Pin's internal pull-up resistor is specified. To ensure proper voltage levels, some part of the Sensor circuitry MUST be tied back to the same ground as used by the Arduino. The Sensor code below utilises "de-bounce" logic to remove spikes generated by mechanical switches and transistors. This avoids the need to create smoothing circuitry for each sensor. You may need to change the parameters through trial and error for your specific sensors. To have this sketch monitor one or more Arduino pins for sensor triggers, first define/edit/delete sensor definitions using the following variation of the "S" command: : creates a new sensor ID, with specified PIN and PULLUP if sensor ID already exists, it is updated with specificed PIN and PULLUP returns: if successful and if unsuccessful (e.g. out of memory) : deletes definition of sensor ID returns: if successful and if unsuccessful (e.g. ID does not exist) : lists all defined sensors returns: for each defined sensor or if no sensors defined where ID: the numeric ID (0-32767) of the sensor PIN: the arduino pin number the sensor is connected to PULLUP: 1=use internal pull-up resistor for PIN, 0=don't use internal pull-up resistor for PIN Once all sensors have been properly defined, use the command to store their definitions to EEPROM. If you later make edits/additions/deletions to the sensor definitions, you must invoke the command if you want those new definitions updated in the EEPROM. You can also clear everything stored in the EEPROM by invoking the command. All sensors defined as per above are repeatedly and sequentially checked within the main loop of this sketch. If a Sensor Pin is found to have transitioned from one state to another, one of the following serial messages are generated: - for transition of Sensor ID from HIGH state to LOW state (i.e. the sensor is triggered) - for transition of Sensor ID from LOW state to HIGH state (i.e. the sensor is no longer triggered) Depending on whether the physical sensor is acting as an "event-trigger" or a "detection-sensor," you may decide to ignore the return and only react to triggers. **********************************************************************/ #include "StringFormatter.h" #include "CommandDistributor.h" #include "Sensors.h" #include "EEStore.h" #include "IODevice.h" /////////////////////////////////////////////////////////////////////////////// // checks a number of defined sensors per entry and prints _changed_ sensor state // to stream unless stream is NULL in which case only internal // state is updated. Then advances to next sensor which will // be checked at next invocation. Each cycle of reading all sensors will // be initiated no more frequently than the time set by 'cycleInterval' microseconds. // // The list of sensors is divided such that the first part of the list // contains sensors that support change notification via callback, and the second // part of the list contains sensors that require cyclic polling. The start of the // second part of the list is determined from by the 'firstPollSensor' pointer. /////////////////////////////////////////////////////////////////////////////// void Sensor::checkAll(){ uint16_t sensorCount = 0; #ifdef USE_NOTIFY // Register the event handler ONCE! if (!inputChangeCallbackRegistered) IONotifyCallback::add(inputChangeCallback); inputChangeCallbackRegistered = true; #endif if (firstSensor == NULL) return; // No sensors to be scanned if (readingSensor == NULL) { // Not currently scanning sensor list unsigned long thisTime = micros(); if (thisTime - lastReadCycle >= cycleInterval) { // Required time elapsed since last read cycle started, // so initiate new scan through the sensor list readingSensor = firstSensor; lastReadCycle = thisTime; } } // Loop until either end of list is encountered or we pause for some reason bool pause = false; while (readingSensor != NULL && !pause) { // Where the sensor is attached to a pin, read pin status. For sources such as LCN, // which don't have an input pin to read, the LCN class calls setState() to update inputState when // a message is received. The IODevice::read() call returns 1 for active pins (0v) and 0 for inactive (5v). // Also, on HAL drivers that support change notifications, the driver calls the notification callback // routine when an input signal change is detected, and this updates the inputState directly, // so these inputs don't need to be polled here. VPIN pin = readingSensor->data.pin; if (readingSensor->pollingRequired && pin != VPIN_NONE) readingSensor->inputState = IODevice::read(pin); // Check if changed since last time, and process changes. if (readingSensor->inputState == readingSensor->active) { // no change readingSensor->latchDelay = minReadCount; // Reset counter } else if (readingSensor->latchDelay > 0) { // change detected, but first decrement delay readingSensor->latchDelay--; } else { // change validated, act on it. readingSensor->active = readingSensor->inputState; readingSensor->latchDelay = minReadCount; // Reset counter CommandDistributor::broadcastSensor(readingSensor->data.snum,readingSensor->active); pause = true; // Don't check any more sensors on this entry } // Move to next sensor in list. readingSensor = readingSensor->nextSensor; // Currently process max of 16 sensors per entry. // Performance measurements taken during development indicate that, with 128 sensors configured // on 8x 16-pin MCP23017 GPIO expanders with polling (no change notification), all inputs can be read from the devices // within 1.4ms (400Mhz I2C bus speed), and a full cycle of checking 128 sensors for changes takes under a millisecond. sensorCount++; if (sensorCount >= 16) pause = true; } } // Sensor::checkAll #ifdef USE_NOTIFY // Callback from HAL (IODevice class) when a digital input change is recognised. // Updates the inputState field, which is subsequently scanned for changes in the checkAll // method. Ideally the / message should be sent from here, instead of waiting for // the checkAll method, but the output stream is not available at this point. void Sensor::inputChangeCallback(VPIN vpin, int state) { Sensor *tt; // This bit is not ideal since it has, potentially, to look through the entire list of // sensors to find the one that has changed. Ideally this should be improved somehow. for (tt=firstSensor; tt!=NULL ; tt=tt->nextSensor) { if (tt->data.pin == vpin) break; } if (tt != NULL) { // Sensor found tt->inputState = (state != 0); } } #endif /////////////////////////////////////////////////////////////////////////////// // // prints all sensor states to stream // /////////////////////////////////////////////////////////////////////////////// void Sensor::printAll(Print *stream){ if (stream != NULL) { for(Sensor * tt=firstSensor;tt!=NULL;tt=tt->nextSensor){ StringFormatter::send(stream, F("<%c %d>\n"), tt->active ? 'Q' : 'q', tt->data.snum); } } // loop over all sensors } // Sensor::printAll /////////////////////////////////////////////////////////////////////////////// // Static Function to create/find Sensor object. Sensor *Sensor::create(int snum, VPIN pin, int pullUp){ Sensor *tt; if (pin > VPIN_MAX && pin != VPIN_NONE) return NULL; remove(snum); // Unlink and free any existing sensor with the same id, before creating the new one. tt = (Sensor *)calloc(1,sizeof(Sensor)); if (!tt) return tt; // memory allocation failure if (pin == VPIN_NONE) tt->pollingRequired = false; #ifdef USE_NOTIFY else if (IODevice::hasCallback(pin)) tt->pollingRequired = false; #endif else tt->pollingRequired = true; // Add to the start of the list tt->nextSensor = firstSensor; firstSensor = tt; tt->data.snum = snum; tt->data.pin = pin; tt->data.pullUp = pullUp; tt->active = 0; tt->inputState = 0; tt->latchDelay = minReadCount; if (pin != VPIN_NONE) IODevice::configureInput(pin, pullUp); // Generally, internal pull-up resistors are not, on their own, sufficient // for external infrared sensors --- each sensor must have its own 1K external pull-up resistor return tt; } /////////////////////////////////////////////////////////////////////////////// // Object method to directly change the input state, for sensors such as LCN which are updated // by means other than by polling an input. void Sensor::setState(int value) { // Trigger sensor change to be reported on next checkAll loop. inputState = (value != 0); latchDelay = 0; // Don't wait for anti-jitter logic } /////////////////////////////////////////////////////////////////////////////// Sensor* Sensor::get(int n){ Sensor *tt; for(tt=firstSensor;tt!=NULL && tt->data.snum!=n;tt=tt->nextSensor); return tt ; } /////////////////////////////////////////////////////////////////////////////// bool Sensor::remove(int n){ Sensor *tt,*pp=NULL; for(tt=firstSensor;tt!=NULL && tt->data.snum!=n;pp=tt,tt=tt->nextSensor); if (tt==NULL) return false; // Unlink the sensor from the list if(tt==firstSensor) firstSensor=tt->nextSensor; else pp->nextSensor=tt->nextSensor; #ifdef USE_NOTIFY if (tt==lastSensor) lastSensor = pp; if (tt==firstPollSensor) firstPollSensor = tt->nextSensor; #endif // Check if the sensor being deleted is the next one to be read. If so, // make the following one the next one to be read. if (readingSensor==tt) readingSensor=tt->nextSensor; free(tt); return true; } /////////////////////////////////////////////////////////////////////////////// void Sensor::load(){ struct SensorData data; Sensor *tt; uint16_t i=EEStore::eeStore->data.nSensors; while(i--){ EEPROM.get(EEStore::pointer(),data); tt=create(data.snum, data.pin, data.pullUp); EEStore::advance(sizeof(tt->data)); } } /////////////////////////////////////////////////////////////////////////////// void Sensor::store(){ Sensor *tt; tt=firstSensor; EEStore::eeStore->data.nSensors=0; while(tt!=NULL){ EEPROM.put(EEStore::pointer(),tt->data); EEStore::advance(sizeof(tt->data)); tt=tt->nextSensor; EEStore::eeStore->data.nSensors++; } } /////////////////////////////////////////////////////////////////////////////// Sensor *Sensor::firstSensor=NULL; Sensor *Sensor::readingSensor=NULL; unsigned long Sensor::lastReadCycle=0; #ifdef USE_NOTIFY Sensor *Sensor::firstPollSensor = NULL; Sensor *Sensor::lastSensor = NULL; bool Sensor::inputChangeCallbackRegistered = false; #endif