/* * © 2021, Peter Cole. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create EX-IOExpander devices, these are defined in myHal.cpp: * (Note the device driver is included by default) * * void halSetup() { * // EXIOExpander::create(vpin, num_vpins, i2c_address, digitalPinCount, analoguePinCount); * EXIOExpander::create(800, 18, 0x65, 12, 8); * } * * Note when defining the number of digital and analogue pins, there is no way to sanity check * this from the device driver, and it is up to the user to define the correct values here. * * All pins available on the EX-IOExpander device must be accounted for. * * Vpins are allocated to digital pins first, and then analogue pins, so digital pins will * populate the first part of the specified vpin range, with the analogue pins populating the * last part of the vpin range. * Eg. for a default Nano, 800 - 811 are digital (D2 - D13), 812 to 817 are analogue (A0 - A3, A6/A7). */ #ifndef IO_EX_IOEXPANDER_H #define IO_EX_IOEXPANDER_H #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for EX-IOExpander. */ class EXIOExpander : public IODevice { public: static void create(VPIN vpin, int nPins, I2CAddress i2cAddress, int numDigitalPins, int numAnaloguePins) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress, numDigitalPins, numAnaloguePins); } private: // Constructor EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress, int numDigitalPins, int numAnaloguePins) { _firstVpin = firstVpin; _nPins = nPins; _I2CAddress = i2cAddress; _numDigitalPins = numDigitalPins; _numAnaloguePins = numAnaloguePins; _digitalPinBytes = (numDigitalPins+7)/8; _analoguePinBytes = numAnaloguePins * 2; _digitalInputStates=(byte*) calloc(_digitalPinBytes,1); _analogueInputStates=(byte*) calloc(_analoguePinBytes,1); addDevice(this); } void _begin() { // Initialise EX-IOExander device I2CManager.begin(); if (I2CManager.exists(_I2CAddress)) { _digitalOutBuffer[0] = EXIOINIT; _digitalOutBuffer[1] = _numDigitalPins; _digitalOutBuffer[2] = _numAnaloguePins; // Send config, if EXIORDY returned, we're good, otherwise go offline I2CManager.read(_I2CAddress, _commandBuffer, 1, _digitalOutBuffer, 3); if (_commandBuffer[0] != EXIORDY) { DIAG(F("ERROR configuring EX-IOExpander device, I2C:%s"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; return; } // Attempt to get version, if we don't get it, we don't care, don't go offline // Using digital in buffer in reverse to save RAM _commandBuffer[0] = EXIOVER; I2CManager.read(_I2CAddress, _versionBuffer, 3, _commandBuffer, 1); _majorVer = _versionBuffer[0]; _minorVer = _versionBuffer[1]; _patchVer = _versionBuffer[2]; DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"), _I2CAddress.toString(), _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]); #ifdef DIAG_IO _display(); #endif } else { DIAG(F("EX-IOExpander device not found, I2C:%s"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; } } bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { if (configType != CONFIGURE_INPUT) return false; if (paramCount != 1) return false; if (vpin >= _firstVpin + _numDigitalPins) { DIAG(F("EX-IOExpander ERROR: Vpin %d is an analogue pin, cannot use as a digital pin"), vpin); return false; } bool pullup = params[0]; int pin = vpin - _firstVpin; _digitalOutBuffer[0] = EXIODPUP; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = pullup; I2CManager.write(_I2CAddress, _digitalOutBuffer, 3); return true; } // We only use this to detect incorrect use of analogue pins int _configureAnalogIn(VPIN vpin) override { if (vpin < _firstVpin + _numDigitalPins) { DIAG(F("EX-IOExpander ERROR: Vpin %d is a digital pin, cannot use as an analogue pin"), vpin); return false; } int pin = vpin - _firstVpin; _analogueOutBuffer[0] = EXIOENAN; _analogueOutBuffer[1] = pin; I2CManager.write(_I2CAddress, _analogueOutBuffer, 2); return true; } void _loop(unsigned long currentMicros) override { (void)currentMicros; // remove warning _commandBuffer[0] = EXIORDD; I2CManager.read(_I2CAddress, _digitalInputStates, _digitalPinBytes, _commandBuffer, 1); _commandBuffer[0] = EXIORDAN; I2CManager.read(_I2CAddress, _analogueInputStates, _analoguePinBytes, _commandBuffer, 1); } int _readAnalogue(VPIN vpin) override { if (vpin < _firstVpin + _numDigitalPins) return false; int pin = vpin - _firstVpin - _numDigitalPins; uint8_t _pinLSBByte = pin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } int _read(VPIN vpin) override { if (vpin >= _firstVpin + _numDigitalPins) return false; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = _digitalInputStates[pinByte] >> (pin - pinByte * 8); return value; } void _write(VPIN vpin, int value) override { if (vpin >= _firstVpin + _numDigitalPins) return; int pin = vpin - _firstVpin; _digitalOutBuffer[0] = EXIOWRD; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = value; I2CManager.write(_I2CAddress, _digitalOutBuffer, 3); } void _display() override { int _firstAnalogue, _lastAnalogue; if (_numAnaloguePins == 0) { _firstAnalogue = 0; _lastAnalogue = 0; } else { _firstAnalogue = _firstVpin + _numDigitalPins; _lastAnalogue = _firstVpin + _nPins - 1; } DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d: %d Digital Vpins %d-%d, %d Analogue Vpins %d-%d %S"), _I2CAddress.toString(), _majorVer, _minorVer, _patchVer, _numDigitalPins, _firstVpin, _firstVpin + _numDigitalPins - 1, _numAnaloguePins, _firstAnalogue, _lastAnalogue, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); } uint8_t _numDigitalPins; uint8_t _numAnaloguePins; byte _analogueOutBuffer[2]; byte _digitalOutBuffer[3]; uint8_t _versionBuffer[3]; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; byte* _digitalInputStates; byte* _analogueInputStates; uint8_t _digitalPinBytes = 0; uint8_t _analoguePinBytes = 0; byte _commandBuffer[1]; enum { EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration EXIOVER = 0xE3, // Flag to get version EXIORDAN = 0xE4, // Flag to read an analogue input EXIOWRD = 0xE5, // Flag for digital write EXIORDD = 0xE6, // Flag to read digital input EXIOENAN = 0xE7, // Flag eo enable an analogue pin }; }; #endif