/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see .
*/
#include
#include "DCCWaveform.h"
#include "DCCTimer.h"
#include "DIAG.h"
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
bool DCCWaveform::progTrackSyncMain=false;
bool DCCWaveform::progTrackBoosted=false;
void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
mainTrack.motorDriver=mainDriver;
progTrack.motorDriver=progDriver;
mainTrack.setPowerMode(POWERMODE::OFF);
progTrack.setPowerMode(POWERMODE::OFF);
DCCTimer::begin(DCCWaveform::interruptHandler);
}
void DCCWaveform::loop() {
mainTrack.checkPowerOverload();
progTrack.checkPowerOverload();
}
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
bool mainCall2 = mainTrack.interrupt1();
bool progCall2 = progTrack.interrupt1();
// call (if necessary) the procs to get the current bits
// these must complete within 50microsecs of the interrupt
// but they are only called ONCE PER BIT TRANSMITTED
// after the rising edge of the signal
if (mainCall2) mainTrack.interrupt2();
if (progCall2) progTrack.interrupt2();
}
// An instance of this class handles the DCC transmissions for one track. (main or prog)
// Interrupts are marshalled via the statics.
// A track has a current transmit buffer, and a pending buffer.
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
// establish appropriate pins
isMainTrack = isMain;
packetPending = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
state = 0;
// The +1 below is to allow the preamble generator to create the stop bit
// fpr the previous packet.
requiredPreambles = preambleBits+1;
bytes_sent = 0;
bits_sent = 0;
sampleDelay = 0;
lastSampleTaken = millis();
ackPending=false;
}
POWERMODE DCCWaveform::getPowerMode() {
return powerMode;
}
void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode = mode;
bool ison = (mode == POWERMODE::ON);
motorDriver->setPower( ison);
}
void DCCWaveform::checkPowerOverload() {
static int progTripValue = motorDriver->mA2raw(TRIP_CURRENT_PROG); // need only calculate once, hence static
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= motorDriver->getRawCurrentTripValue();
if (!isMainTrack && !ackPending && !progTrackSyncMain && !progTrackBoosted)
tripValue=progTripValue;
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent = motorDriver->getCurrentRaw();
if (lastCurrent <= tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPowerMode(POWERMODE::OVERLOAD);
unsigned int mA=motorDriver->raw2mA(lastCurrent);
unsigned int maxmA=motorDriver->raw2mA(tripValue);
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d offtime=%l ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA, power_sample_overload_wait);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}
// process time-edge sensitive part of interrupt
// return true if second level required
bool DCCWaveform::interrupt1() {
// NOTE: this must consume transmission buffers even if the power is off
// otherwise can cause hangs in main loop waiting for the pendingBuffer.
switch (state) {
case 0: // start of bit transmission
setSignal(HIGH);
state = 1;
return true; // must call interrupt2 to set currentBit
case 1: // 58us after case 0
if (currentBit) {
setSignal(LOW);
state = 0;
}
else {
setSignal(HIGH); // jitter prevention
state = 2;
}
break;
case 2: // 116us after case 0
setSignal(LOW);
state = 3;
break;
case 3: // finished sending zero bit
setSignal(LOW); // jitter prevention
state = 0;
break;
}
// ACK check is prog track only and will only be checked if
// this is not case(0) which needs relatively expensive packet change code to be called.
if (ackPending) checkAck();
return false;
}
void DCCWaveform::setSignal(bool high) {
if (progTrackSyncMain) {
if (!isMainTrack) return; // ignore PROG track waveform while in sync
// set both tracks to same signal
motorDriver->setSignal(high);
progTrack.motorDriver->setSignal(high);
return;
}
motorDriver->setSignal(high);
}
void DCCWaveform::interrupt2() {
// set currentBit to be the next bit to be sent.
if (remainingPreambles > 0 ) {
currentBit = true;
remainingPreambles--;
return;
}
// beware OF 9-BIT MASK generating a zero to start each byte
currentBit = transmitPacket[bytes_sent] & bitMask[bits_sent];
bits_sent++;
// If this is the last bit of a byte, prepare for the next byte
if (bits_sent == 9) { // zero followed by 8 bits of a byte
//end of Byte
bits_sent = 0;
bytes_sent++;
// if this is the last byte, prepere for next packet
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
remainingPreambles = requiredPreambles;
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
sentResetsSincePacket=0;
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (sentResetsSincePacket<250) sentResetsSincePacket++;
}
}
}
}
// Wait until there is no packet pending, then make this pending
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount >= MAX_PACKET_SIZE) return; // allow for chksum
while (packetPending);
byte checksum = 0;
for (int b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
}
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
packetPending = true;
sentResetsSincePacket=0;
}
int DCCWaveform::getLastCurrent() {
return lastCurrent;
}
// Operations applicable to PROG track ONLY.
// (yes I know I could have subclassed the main track but...)
void DCCWaveform::setAckBaseline() {
if (isMainTrack) return;
int baseline = motorDriver->getCurrentRaw();
ackThreshold= baseline + motorDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("\nACK baseline=%d/%dmA Threshold=%d/%dmA Duration: %dus <= pulse <= %dus"),
baseline,motorDriver->raw2mA(baseline),
ackThreshold,motorDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
}
void DCCWaveform::setAckPending() {
if (isMainTrack) return;
ackMaxCurrent=0;
ackPulseStart=0;
ackPulseDuration=0;
ackDetected=false;
ackCheckStart=millis();
ackPending=true; // interrupt routines will now take note
}
byte DCCWaveform::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("\n%S after %dmS max=%d/%dmA pulse=%duS"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,motorDriver->raw2mA(ackMaxCurrent), ackPulseDuration);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
void DCCWaveform::checkAck() {
// This function operates in interrupt() time so must be fast and can't DIAG
if (sentResetsSincePacket > 6) { //ACK timeout
ackCheckDuration=millis()-ackCheckStart;
ackPending = false;
return;
}
lastCurrent=motorDriver->getCurrentRaw();
if (lastCurrent > ackMaxCurrent) ackMaxCurrent=lastCurrent;
// An ACK is a pulse lasting between minAckPulseDuration and maxAckPulseDuration uSecs (refer @haba)
if (lastCurrent>ackThreshold) {
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
// detected trailing edge of pulse
ackPulseDuration=micros()-ackPulseStart;
if (ackPulseDuration>=minAckPulseDuration && ackPulseDuration<=maxAckPulseDuration) {
ackCheckDuration=millis()-ackCheckStart;
ackDetected=true;
ackPending=false;
transmitRepeats=0; // shortcut remaining repeat packets
return; // we have a genuine ACK result
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}