/* * © 2023 Neil McKechnie * © 2022-23 Paul M. Antoine * © 2021 Mike S * © 2021, 2023 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a STM32 based boards // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #ifdef ARDUINO_ARCH_STM32 #include "DCCTimer.h" #ifdef DEBUG_ADC #include "TrackManager.h" #endif #include "DIAG.h" #if defined(ARDUINO_NUCLEO_F411RE) // Nucleo-64 boards don't have Serial1 defined by default HardwareSerial Serial1(PB7, PA15); // Rx=PB7, Tx=PA15 -- CN7 pins 17 and 21 - F411RE // Serial2 is defined to use USART2 by default, but is in fact used as the diag console // via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc. // Let's define Serial6 as an additional serial port (the only other option for the Nucleo-64s) HardwareSerial Serial3(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 - F411RE #elif defined(ARDUINO_NUCLEO_F446RE) // Nucleo-64 boards don't have Serial1 defined by default // HardwareSerial Serial1(PA10, PB6); // Rx=PA10 (D2), Tx=PB6 (D10) -- CN10 pins 17 and 9 - F446RE // Serial2 is defined to use USART2 by default, but is in fact used as the diag console // via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc. HardwareSerial Serial1(PC11, PC10); // Rx=PC11, Tx=PC10 -- USART3 - F446RE HardwareSerial Serial3(PD2, PC12); // Rx=PC7, Tx=PC6 -- UART5 - F446RE // NB: USART3 and USART6 are available but as yet undefined #elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE) // Nucleo-144 boards don't have Serial1 defined by default HardwareSerial Serial1(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6 // Serial3 is defined to use USART3 by default, but is in fact used as the diag console // via the debugger on the Nucleo-144. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc. #else #error STM32 board selected is not yet explicitly supported - so Serial1 peripheral is not defined #endif /////////////////////////////////////////////////////////////////////////////////////////////// // Experimental code for High Accuracy (HA) DCC Signal mode // Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins, // which is used by the DC motor types. /////////////////////////////////////////////////////////////////////////////////////////////// // INTERRUPT_CALLBACK interruptHandler=0; // // Let's use STM32's timer #2 which supports hardware pulse generation on pin D13. // // Also, timer #3 will do hardware pulses on pin D12. This gives // // accurate timing, independent of the latency of interrupt handling. // // We only need to interrupt on one of these (TIM2), the other will just generate // // pulses. // HardwareTimer timer(TIM2); // HardwareTimer timerAux(TIM3); // static bool tim2ModeHA = false; // static bool tim3ModeHA = false; // // Timer IRQ handler // void Timer_Handler() { // interruptHandler(); // } // void DCCTimer::begin(INTERRUPT_CALLBACK callback) { // interruptHandler=callback; // noInterrupts(); // // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); // timer.pause(); // timerAux.pause(); // timer.setPrescaleFactor(1); // timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); // timer.attachInterrupt(Timer_Handler); // timer.refresh(); // timerAux.setPrescaleFactor(1); // timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); // timerAux.refresh(); // timer.resume(); // timerAux.resume(); // interrupts(); // } // bool DCCTimer::isPWMPin(byte pin) { // // Timer 2 Channel 1 controls pin D13, and Timer3 Channel 1 controls D12. // // Enable the appropriate timer channel. // switch (pin) { // case 12: // return true; // case 13: // return true; // default: // return false; // } // } // void DCCTimer::setPWM(byte pin, bool high) { // // Set the timer so that, at the next counter overflow, the requested // // pin state is activated automatically before the interrupt code runs. // // TIM2 is timer, TIM3 is timerAux. // switch (pin) { // case 12: // if (!tim3ModeHA) { // timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D12); // tim3ModeHA = true; // } // if (high) // TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; // else // TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; // break; // case 13: // if (!tim2ModeHA) { // timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D13); // tim2ModeHA = true; // } // if (high) // TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; // else // TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; // break; // } // } // void DCCTimer::clearPWM() { // timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); // tim2ModeHA = false; // timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); // tim3ModeHA = false; // } /////////////////////////////////////////////////////////////////////////////////////////////// INTERRUPT_CALLBACK interruptHandler=0; // Let's use STM32's timer #11 until disabused of this notion // Timer #11 is used for "servo" library, but as DCC-EX is not using // this libary, we should be free and clear. HardwareTimer timer(TIM11); // Timer IRQ handler void Timer11_Handler() { interruptHandler(); } void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); timer.pause(); timer.setPrescaleFactor(1); // timer.setOverflow(CLOCK_CYCLES * 2); timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timer.attachInterrupt(Timer11_Handler); timer.refresh(); timer.resume(); interrupts(); } bool DCCTimer::isPWMPin(byte pin) { //TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM, // there's no support yet for High Accuracy, so for now return false // return digitalPinHasPWM(pin); return false; } void DCCTimer::setPWM(byte pin, bool high) { // TODO: High Accuracy mode is not supported as yet, and may never need to be (void) pin; (void) high; } void DCCTimer::clearPWM() { return; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10; volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14; // volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; return (int)(&top - reinterpret_cast(sbrk(0))); } void DCCTimer::reset() { __disable_irq(); NVIC_SystemReset(); while(true) {}; } #define NUM_ADC_INPUTS NUM_ANALOG_INPUTS // TODO: may need to use uint32_t on STMF4xx variants with > 16 analog inputs! #if defined(ARDUINO_NUCLEO_F446RE) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE) #warning STM32 board selected not fully supported - only use ADC1 inputs 0-15 for current sensing! #endif uint16_t ADCee::usedpins = 0; int * ADCee::analogvals = NULL; uint32_t * analogchans = NULL; bool adc1configured = false; int16_t ADCee::ADCmax() { return 4095; } int ADCee::init(uint8_t pin) { int value = 0; PinName stmpin = analogInputToPinName(pin); if (stmpin == NC) // do not continue if this is not an analog pin at all return -1024; // some silly value as error uint32_t stmgpio = STM_PORT(stmpin); // converts to the GPIO port (16-bits per port group on STM32) uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC channel (only valid for ADC1!) GPIO_TypeDef * gpioBase; // Port config - find which port we're on and power it up switch(stmgpio) { case 0x00: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; //Power up PORTA gpioBase = GPIOA; break; case 0x01: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; //Power up PORTB gpioBase = GPIOB; break; case 0x02: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; //Power up PORTC gpioBase = GPIOC; break; default: return -1023; // some silly value as error } // Set pin mux mode to analog input, the 32 bit port mode register has 2 bits per pin gpioBase->MODER |= (0b011 << (STM_PIN(stmpin) << 1)); // Set pin mux to analog mode (binary 11) // Set the sampling rate for that analog input // This is F411x specific! Different on for example F334 // STM32F11xC/E Reference manual // 11.12.4 ADC sample time register 1 (ADC_SMPR1) (channels 10 to 18) // 11.12.5 ADC sample time register 2 (ADC_SMPR2) (channels 0 to 9) if (adcchan > 18) return -1022; // silly value as error if (adcchan < 10) ADC1->SMPR2 |= (0b111 << (adcchan * 3)); // Channel sampling rate 480 cycles else ADC1->SMPR1 |= (0b111 << ((adcchan - 10) * 3)); // Channel sampling rate 480 cycles // Read the inital ADC value for this analog input ADC1->SQR3 = adcchan; // 1st conversion in regular sequence ADC1->CR2 |= (1 << 30); // Start 1st conversion SWSTART while(!(ADC1->SR & (1 << 1))); // Wait until conversion is complete value = ADC1->DR; // Read value from register uint8_t id = pin - PNUM_ANALOG_BASE; if (id > 15) { // today we have not enough bits in the mask to support more return -1021; } if (analogvals == NULL) { // allocate analogvals and analogchans if this is the first invocation of init. analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int)); analogchans = (uint32_t *)calloc(NUM_ADC_INPUTS+1, sizeof(uint32_t)); } analogvals[id] = value; // Store sampled value analogchans[id] = adcchan; // Keep track of which ADC channel is used for reading this pin usedpins |= (1 << id); // This pin is now ready DIAG(F("ADCee::init(): value=%d, channel=%d, id=%d"), value, adcchan, id); return value; } /* * Read function ADCee::read(pin) to get value instead of analogRead(pin) */ int ADCee::read(uint8_t pin, bool fromISR) { uint8_t id = pin - PNUM_ANALOG_BASE; // Was this pin initialised yet? if ((usedpins & (1<SR & (1 << 1))) return; // no result, continue to wait // found value analogvals[id] = ADC1->DR; // advance at least one track #ifdef DEBUG_ADC if (id == 1) TrackManager::track[1]->setBrake(0); #endif waiting = false; id++; mask = mask << 1; if (mask == 0) { // the 1 has been shifted out id = 0; mask = 1; } } if (!waiting) { if (usedpins == 0) // otherwise we would loop forever return; // look for a valid track to sample or until we are around while (true) { if (mask & usedpins) { // start new ADC aquire on id ADC1->SQR3 = analogchans[id]; //1st conversion in regular sequence ADC1->CR2 |= (1 << 30); //Start 1st conversion SWSTART #ifdef DEBUG_ADC if (id == 1) TrackManager::track[1]->setBrake(1); #endif waiting = true; return; } id++; mask = mask << 1; if (mask == 0) { // the 1 has been shifted out id = 0; mask = 1; } } } } #pragma GCC pop_options void ADCee::begin() { noInterrupts(); //ADC1 config sequence // TODO: currently defaults to ADC1, may need more to handle other members of STM32F4xx family RCC->APB2ENR |= (1 << 8); //Enable ADC1 clock (Bit8) // Set ADC prescaler - DIV8 ~ 40ms, DIV6 ~ 30ms, DIV4 ~ 20ms, DIV2 ~ 11ms ADC->CCR = (0 << 16); // Set prescaler 0=DIV2, 1=DIV4, 2=DIV6, 3=DIV8 ADC1->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8) ADC1->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00) ADC1->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion ADC1->CR2 &= ~(1 << 1); //Single conversion ADC1->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0 ADC1->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register ADC1->CR2 |= (1 << 0); // Switch on ADC1 interrupts(); } #endif