/* * © 2024, Travis Farmer. All rights reserved. * © 2021 Chris Harlow * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_EXIO485.h" #include "defines.h" static const byte PAYLOAD_FALSE = 0; static const byte PAYLOAD_NORMAL = 1; static const byte PAYLOAD_STRING = 2; /************************************************************ * EXIO485 implementation ************************************************************/ // Constructor for EXIO485 EXIO485::EXIO485(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime) { _serial = &serial; _baud = baud; _txPin = txPin; _busNo = busNo; _cycleTime = cycleTime * 1000UL; bufferLength=0; inCommandPayload=PAYLOAD_FALSE; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to EXIO485 chain. _nextBus = _busList; _busList = this; } /* -= _loop =- // // Main loop function for EXIO485. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ // CRC-16 implementation (replace with your preferred CRC library if needed) uint16_t EXIO485::crc16(uint8_t *data, uint16_t length) { uint16_t crc = 0xFFFF; for (uint16_t i = 0; i < length; i++) { crc ^= data[i]; for (int j = 0; j < 8; j++) { bool bit = ((crc & 0x0001) != 0); crc >>= 1; if (bit) { crc ^= 0xA001; } } } return crc; } void EXIO485::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; if (_currentNode == NULL) _currentNode = _nodeListStart; if (!hasTasks() && _currentNode->isInitialised()) { _cycleStartTime = _currentMicros; uint8_t buffA[3]; buffA[0] = (_currentNode->getNodeID()); buffA[1] = (0); buffA[2] = (EXIORDD); addTask(buffA, 3, EXIORDD); uint8_t buffB[3]; buffB[0] = (_currentNode->getNodeID()); buffB[1] = (0); buffB[2] = (EXIORDAN); addTask(buffB, 3, EXIORDAN); _currentNode = _currentNode->getNext(); DIAG(F("Polling")); } if ( hasTasks()){ _cycleStartTimeA = _currentMicros; if (CurrentTaskID == -1) { CurrentTaskID = getNextTaskId(); } Task* currentTask = getTaskById(CurrentTaskID); if (_currentMicros - _cycleStartTime > 1000000UL) { // timout every 1000ms _cycleStartTime = _currentMicros;// reset timout if (taskResendCount >= 2) { // max resends markTaskCompleted(CurrentTaskID); // kill task and move on CurrentTaskID = getNextTaskId(); // move on taskResendCount = 0; DIAG(F("Move on")); } else { currentTask->rxMode = false; // resend taskResendCount++; DIAG(F("Resend")); } } if (!currentTask->rxMode) { // Check if a task was found currentTask->crcPassFail = 0; uint16_t response_crc = crc16((uint8_t*)currentTask->commandArray, currentTask->byteCount-1); if (_txPin != -1) digitalWrite(_txPin,HIGH); // Send response data with CRC _serial->write(0xFE); _serial->write(0xFE); _serial->write(response_crc >> 8); _serial->write(response_crc & 0xFF); _serial->write(currentTask->byteCount); for (int i = 0; i < currentTask->byteCount; i++) { _serial->write(currentTask->commandArray[i]); } _serial->write(0xFD); _serial->write(0xFD); _serial->flush(); if (_txPin != -1) digitalWrite(_txPin,LOW); // delete task command after sending, for now currentTask->rxMode = true; DIAG(F("Task")); } else { if ( _serial->available()) { uint16_t calculated_crc; int byteCount = 100; int curByte = _serial->read(); if (curByte == 0xFE && flagStart == false) flagStart = true; else if ( curByte == 0xFE && flagStart == true) { flagProc = false; byteCounter = 0; flagStarted = true; flagStart = false; flagEnded = false; rxStart = true; rxEnd = false; crcPass = false; memset(received_data, 0, ARRAY_SIZE); }else if (flagStarted) { crc[0] = curByte; byteCounter++; flagStarted = false; } else if (byteCounter == 1) { crc[1] = curByte; received_crc = (crc[0] << 8) | crc[1]; byteCounter++; } else if (byteCounter == 2) { byteCount = curByte; byteCounter++; } else if (flagEnded == false && byteCounter >= 3) { received_data[byteCounter-3] = curByte; byteCounter++; } if (curByte == 0xFD && flagEnd == false) flagEnd = true; else if ( curByte == 0xFD && flagEnd == true) { flagEnded = true; flagEnd = false; rxEnd = true; byteCount = byteCounter; byteCounter = 0; } if (flagEnded) { calculated_crc = crc16((uint8_t*)received_data, byteCount-6); if (received_crc == calculated_crc) { crcPass = true; } flagEnded = false; } // Check CRC validity if (crcPass) { // Data received successfully, process it (e.g., print) int nodeTo = received_data[0]; if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway. flagProc = true; } } if (flagProc) { int nodeFr = received_data[1]; EXIO485node *node = findNode(nodeFr); int AddrCode = received_data[2]; switch (AddrCode) { case EXIOPINS: {node->setnumDigitalPins(received_data[3]); node->setnumAnalogPins(received_data[4]); // See if we already have suitable buffers assigned if (node->getnumDigialPins()>0) { size_t digitalBytesNeeded = (node->getnumDigialPins() + 7) / 8; if (node->getdigitalPinBytes() < digitalBytesNeeded) { // Not enough space, free any existing buffer and allocate a new one if (node->cleandigitalPinStates(digitalBytesNeeded)) { node->setdigitalPinBytes(digitalBytesNeeded); } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), nodeFr, digitalBytesNeeded); node->setdigitalPinBytes(0); } } } if (node->getnumAnalogPins()>0) { size_t analogueBytesNeeded = node->getnumAnalogPins() * 2; if (node->getanalogPinBytes() < analogueBytesNeeded) { // Free any existing buffers and allocate new ones. if (node->cleanAnalogStates(analogueBytesNeeded)) { node->setanalogPinBytes(analogueBytesNeeded); } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), nodeFr); node->setanalogPinBytes(0); } } } markTaskCompleted(currentTask->taskID); break;} case EXIOINITA: { for (int i = 0; i < node->getnumAnalogPins(); i++) { node->setanalogPinMap(received_data[i+3], i); } markTaskCompleted(currentTask->taskID); break; } case EXIOVER: { node->setMajVer(received_data[3]); node->setMinVer(received_data[4]); node->setPatVer(received_data[5]); DIAG(F("EX-IOExpander485: Found node %i v%i.%i.%i"),node->getNodeID(), node->getMajVer(), node->getMinVer(), node->getPatVer()); node->setInitialised(); markTaskCompleted(currentTask->taskID); break; } case EXIORDY: { markTaskCompleted(currentTask->taskID); break; } case EXIOERR: { markTaskCompleted(currentTask->taskID); DIAG(F("EX-IOExplorer485: Some sort of error was received...")); // ;-) break; } case EXIORDAN: { for (int i = 0; i < node->_numAnaloguePins; i++) { node->setanalogInputBuffer(received_data[i+3], i); } markTaskCompleted(currentTask->taskID); break; } case EXIORDD: { for (int i = 0; i < (node->_numDigitalPins+7)/8; i++) { node->setdigitalInputStates(received_data[i+3], i); } markTaskCompleted(currentTask->taskID); break; } } } flagProc = false; } } } } // Link to chain of EXIO485 instances, left over from EXIO485 template. EXIO485 *EXIO485::_busList = NULL; /************************************************************ * EXIO485node implementation ************************************************************/ /* -= EXIO485node =- // // Constructor for EXIO485node object */ EXIO485node::EXIO485node(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; _initialised = false; memset(resFlag, 0, 255); if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add EXIO485node to EXIO485 object. EXIO485 *bus = EXIO485::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } } bool EXIO485node::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) { if (paramCount != 1) return false; int pin = vpin - _firstVpin; uint8_t pullup = (uint8_t)params[0]; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIODPUP); buff[3] = (pin); buff[4] = (pullup); EXIO485 *bus = EXIO485::findBus(0); bus->setBusy(); bus->addTask(buff, 5, EXIODPUP); return true; } int EXIO485node::_configureAnalogIn(VPIN vpin) { int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOENAN); buff[3] = (pin); buff[4] = lowByte(_firstVpin); buff[5] = highByte(_firstVpin); EXIO485 *bus = EXIO485::findBus(0); bus->setBusy(); bus->addTask(buff, 6, EXIOENAN); return false; } void EXIO485node::_begin() { uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINIT); buff[3] = (_nPins); buff[4] = ((_firstVpin & 0xFF)); buff[5] = ((_firstVpin >> 8)); EXIO485 *bus = EXIO485::findBus(0); bus->initTask(); bus->setBusy(); bus->addTask(buff, 6, EXIOINIT); buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINITA); bus->setBusy(); bus->addTask(buff, 3, EXIOINITA); buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOVER); bus->setBusy(); bus->addTask(buff, 3, EXIOVER); #ifdef DIAG_IO _display(); #endif } int EXIO485node::_read(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } void EXIO485node::_write(VPIN vpin, int value) { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRD); buff[3] = (pin); buff[4] = (value); EXIO485 *bus = EXIO485::findBus(0); bus->setBusy(); bus->addTask(buff, 5, EXIOWRD); } int EXIO485node::_readAnalogue(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { uint8_t _pinLSBByte = aPin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } } return -1; // pin not found in table } void EXIO485node::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) { int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRAN); buff[3] = (pin); buff[4] = lowByte(value); buff[5] = highByte(value); buff[6] = (profile); buff[7] = lowByte(duration); buff[8] = highByte(duration); EXIO485 *bus = EXIO485::findBus(0); bus->setBusy(); bus->addTask(buff, 9, EXIOWRAN); }