/* * © 2022, Peter Cole. All rights reserved. * © 2024, Harald Barth. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create EX-IOExpander devices, these are defined in myHal.cpp: * (Note the device driver is included by default) * * void halSetup() { * // EXIOExpander::create(vpin, num_vpins, i2c_address); * EXIOExpander::create(800, 18, 0x65); * } * * All pins on an EX-IOExpander device are allocated according to the pin map for the specific * device in use. There is no way for the device driver to sanity check pins are used for the * correct purpose, however the EX-IOExpander device's pin map will prevent pins being used * incorrectly (eg. A6/7 on Nano cannot be used for digital input/output). * * The total number of pins cannot exceed 256 because of the communications packet format. * The number of analogue inputs cannot exceed 16 because of a limit on the maximum * I2C packet size of 32 bytes (in the Wire library). */ #ifndef IO_EX_IOEXPANDER_H #define IO_EX_IOEXPANDER_H #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for EX-IOExpander. */ class EXIOExpander : public IODevice { public: enum ProfileType : uint8_t { Instant = 0, // Moves immediately between positions (if duration not specified) UseDuration = 0, // Use specified duration Fast = 1, // Takes around 500ms end-to-end Medium = 2, // 1 second end-to-end Slow = 3, // 2 seconds end-to-end Bounce = 4, // For semaphores/turnouts with a bit of bounce!! NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move. }; static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress); } private: // Constructor EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) { _firstVpin = firstVpin; // Number of pins cannot exceed 256 (1 byte) because of I2C message structure. if (nPins > 256) nPins = 256; _nPins = nPins; _I2CAddress = i2cAddress; addDevice(this); } void _begin() { uint8_t status; // Initialise EX-IOExpander device I2CManager.begin(); if (I2CManager.exists(_I2CAddress)) { // Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline // NB The I2C calls here are done as blocking calls, as they're not time-critical // during initialisation and the reads require waiting for a response anyway. // Hence we can allocate I/O buffers from the stack. uint8_t receiveBuffer[3]; uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)}; status = I2CManager.read(_I2CAddress, receiveBuffer, sizeof(receiveBuffer), commandBuffer, sizeof(commandBuffer)); if (status == I2C_STATUS_OK) { if (receiveBuffer[0] == EXIOPINS) { _numDigitalPins = receiveBuffer[1]; _numAnaloguePins = receiveBuffer[2]; // See if we already have suitable buffers assigned if (_numDigitalPins>0) { size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8; if (_digitalPinBytes < digitalBytesNeeded) { // Not enough space, free any existing buffer and allocate a new one if (_digitalPinBytes > 0) free(_digitalInputStates); if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) { _digitalPinBytes = digitalBytesNeeded; } else { DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded); _deviceState = DEVSTATE_FAILED; _digitalPinBytes = 0; return; } } } if (_numAnaloguePins>0) { size_t analogueBytesNeeded = _numAnaloguePins * 2; if (_analoguePinBytes < analogueBytesNeeded) { // Free any existing buffers and allocate new ones. if (_analoguePinBytes > 0) { free(_analogueInputBuffer); free(_analogueInputStates); free(_analoguePinMap); } _analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1); _analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1); _analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1); if (_analogueInputStates != NULL && _analogueInputBuffer != NULL && _analoguePinMap != NULL) { _analoguePinBytes = analogueBytesNeeded; } else { DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; _analoguePinBytes = 0; return; } } } } else { DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; return; } } // We now need to retrieve the analogue pin map if there are analogue pins if (status == I2C_STATUS_OK && _numAnaloguePins>0) { commandBuffer[0] = EXIOINITA; status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1); } if (status == I2C_STATUS_OK) { // Attempt to get version, if we don't get it, we don't care, don't go offline uint8_t versionBuffer[3]; commandBuffer[0] = EXIOVER; if (I2CManager.read(_I2CAddress, versionBuffer, sizeof(versionBuffer), commandBuffer, 1) == I2C_STATUS_OK) { _majorVer = versionBuffer[0]; _minorVer = versionBuffer[1]; _patchVer = versionBuffer[2]; } DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"), _I2CAddress.toString(), _majorVer, _minorVer, _patchVer); #ifdef DIAG_IO _display(); #endif } if (status != I2C_STATUS_OK) reportError(status); } else { DIAG(F("EX-IOExpander I2C:%s device not found"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; } } // Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested. // Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can // be allocated from the stack to reduce RAM allocation. bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { if (paramCount != 1) return false; int pin = vpin - _firstVpin; if (configType == CONFIGURE_INPUT) { uint8_t pullup = params[0]; uint8_t outBuffer[] = {EXIODPUP, (uint8_t)pin, pullup}; uint8_t responseBuffer[1]; uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer), outBuffer, sizeof(outBuffer)); if (status == I2C_STATUS_OK) { if (responseBuffer[0] == EXIORDY) { return true; } else { DIAG(F("EXIOVpin %u cannot be used as a digital input pin"), (int)vpin); } } else reportError(status); } else if (configType == CONFIGURE_ANALOGINPUT) { // TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn // from IODevice class definition. Not urgent, but each virtual function defined // means increasing the RAM requirement of every HAL device driver, whether it's relevant // to the driver or not. return false; } return false; } // Analogue input pin configuration, used to enable an EX-IOExpander device. // Use I2C blocking calls and allocate buffers from stack to save RAM. int _configureAnalogIn(VPIN vpin) override { int pin = vpin - _firstVpin; uint8_t commandBuffer[] = {EXIOENAN, (uint8_t)pin}; uint8_t responseBuffer[1]; uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer), commandBuffer, sizeof(commandBuffer)); if (status == I2C_STATUS_OK) { if (responseBuffer[0] == EXIORDY) { return true; } else { DIAG(F("EX-IOExpander: Vpin %u cannot be used as an analogue input pin"), (int)vpin); } } else reportError(status); return false; } // Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads) void _loop(unsigned long currentMicros) override { if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return // Request block is used for analogue and digital reads from the IOExpander, which are performed // on a cyclic basis. Writes are performed synchronously as and when requested. if (_readState != RDS_IDLE) { if (_i2crb.isBusy()) return; // If I2C operation still in progress, return uint8_t status = _i2crb.status; if (status == I2C_STATUS_OK) { // If device request ok, read input data // First check if we need to process received data if (_readState == RDS_ANALOGUE) { // Read of analogue values was in progress, so process received values // Here we need to copy the values from input buffer to the analogue value array. We need to // do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed // while the value is being read). memcpy(_analogueInputStates, _analogueInputBuffer, _analoguePinBytes); // Copy I2C input buffer to states } else if (_readState == RDS_DIGITAL) { // Read of digital states was in progress, so process received values // The received digital states are placed directly into the digital buffer on receipt, // so don't need any further processing at this point (unless we want to check for // changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h). } } else reportError(status, false); // report error but don't go offline. _readState = RDS_IDLE; } // If we're not doing anything now, check to see if a new input transfer is due. if (_readState == RDS_IDLE) { if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh // Issue new read request for digital states. As the request is non-blocking, the buffer has to // be allocated from heap (object state). _readCommandBuffer[0] = EXIORDD; I2CManager.read(_I2CAddress, _digitalInputStates, (_numDigitalPins+7)/8, _readCommandBuffer, 1, &_i2crb); // non-blocking read _lastDigitalRead = currentMicros; _readState = RDS_DIGITAL; } else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh // Issue new read for analogue input states _readCommandBuffer[0] = EXIORDAN; I2CManager.read(_I2CAddress, _analogueInputBuffer, _numAnaloguePins * 2, _readCommandBuffer, 1, &_i2crb); _lastAnalogueRead = currentMicros; _readState = RDS_ANALOGUE; } } } // Obtain the correct analogue input value, with reference to the analogue // pin map. // Obtain the correct analogue input value int _readAnalogue(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { uint8_t _pinLSBByte = aPin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } } return -1; // pin not found in table } // Obtain the correct digital input value int _read(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } // Write digital value. We could have an output buffer of states, that is periodically // written to the device if there are any changes; this would reduce the I2C overhead // if lots of output requests are being made. We could also cache the last value // sent so that we don't write the same value over and over to the output. // However, for the time being, we just write the current value (blocking I2C) to the // IOExpander node. As it is a blocking request, we can use buffers allocated from // the stack to save RAM allocation. void _write(VPIN vpin, int value) override { uint8_t digitalOutBuffer[3]; uint8_t responseBuffer[1]; if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; digitalOutBuffer[0] = EXIOWRD; digitalOutBuffer[1] = pin; digitalOutBuffer[2] = value; uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3); if (status != I2C_STATUS_OK) { reportError(status); } else { if (responseBuffer[0] != EXIORDY) { DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin); } } } // Write analogue (integer) value. Write the parameters (blocking I2C) to the // IOExpander node. As it is a blocking request, we can use buffers allocated from // the stack to reduce RAM allocation. void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override { uint8_t servoBuffer[7]; uint8_t responseBuffer[1]; if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; #ifdef DIAG_IO DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"), vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F("")); #endif servoBuffer[0] = EXIOWRAN; servoBuffer[1] = pin; servoBuffer[2] = value & 0xFF; servoBuffer[3] = value >> 8; servoBuffer[4] = profile; servoBuffer[5] = duration & 0xFF; servoBuffer[6] = duration >> 8; uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, servoBuffer, 7); if (status != I2C_STATUS_OK) { DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); _deviceState = DEVSTATE_FAILED; } else { if (responseBuffer[0] != EXIORDY) { DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int)vpin); } } } // Display device information and status. void _display() override { DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %u-%u %S"), _I2CAddress.toString(), _majorVer, _minorVer, _patchVer, (int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); } // Helper function for error handling void reportError(uint8_t status, bool fail=true) { DIAG(F("EX-IOExpander I2C:%s Error:%d (%S)"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); if (fail) _deviceState = DEVSTATE_FAILED; } uint8_t _numDigitalPins = 0; uint8_t _numAnaloguePins = 0; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; uint8_t* _digitalInputStates = NULL; uint8_t* _analogueInputStates = NULL; uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers uint8_t _readCommandBuffer[1]; uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed) uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed) uint8_t* _analoguePinMap = NULL; I2CRB _i2crb; enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states uint8_t _readState = RDS_IDLE; unsigned long _lastDigitalRead = 0; unsigned long _lastAnalogueRead = 0; const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms // EX-IOExpander protocol flags enum { EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration EXIOVER = 0xE3, // Flag to get version EXIORDAN = 0xE4, // Flag to read an analogue input EXIOWRD = 0xE5, // Flag for digital write EXIORDD = 0xE6, // Flag to read digital input EXIOENAN = 0xE7, // Flag to enable an analogue pin EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM) EXIOERR = 0xEF, // Flag we've received an error }; }; #endif