/* * © 2023, Peter Cole. All rights reserved. * © 2022, Peter Cole. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_RotaryEncoder device driver is used to receive positions from a rotary encoder connected to an Arduino via I2C. * * There is separate code required for the Arduino the rotary encoder is connected to, which is located here: * https://github.com/peteGSX-Projects/dcc-ex-rotary-encoder * * This device driver receives the rotary encoder position when the rotary encoder button is pushed, and these positions * can be tested in EX-RAIL with: * ONCHANGE(vpin) - flag when the rotary encoder position has changed from the previous position * IFRE(vpin, position) - test to see if specified rotary encoder position has been received * * Feedback can also be sent to the rotary encoder by using 2 Vpins, and sending a SET()/RESET() to the second Vpin. * A SET(vpin) will flag that a turntable (or anything else) is in motion, and a RESET(vpin) that the motion has finished. * * In addition, defining a third Vpin will allow a position number to be sent so that when an EXRAIL automation or some other * activity has moved a turntable, the position can be reflected in the rotary encoder software. This can be accomplished * using the EXRAIL SERVO(vpin, position, profile) command, where: * - vpin = the third defined Vpin (any other is ignored) * - position = the defined position in the DCC-EX Rotary Encoder software, 0 (Home) to 255 * - profile = Must be defined as per the SERVO() command, but is ignored as it has no relevance * * Defining in myAutomation.h requires the device driver to be included in addition to the HAL() statement. Examples: * * #include "IO_RotaryEncoder.h" * HAL(RotaryEncoder, 700, 1, 0x70) // Define single Vpin, no feedback or position sent to rotary encoder software * HAL(RotaryEncoder, 700, 2, 0x70) // Define two Vpins, feedback only sent to rotary encoder software * HAL(RotaryEncoder, 700, 3, 0x70) // Define three Vpins, can send feedback and position update to rotary encoder software * * Refer to the documentation for further information including the valid activities and examples. */ #ifndef IO_ROTARYENCODER_H #define IO_ROTARYENCODER_H #include "EXRAIL2.h" #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" class RotaryEncoder : public IODevice { public: static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress) { if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new RotaryEncoder(firstVpin, nPins, i2cAddress); } private: // Constructor RotaryEncoder(VPIN firstVpin, int nPins, I2CAddress i2cAddress){ _firstVpin = firstVpin; _nPins = nPins; if (_nPins > 3) { _nPins = 3; DIAG(F("RotaryEncoder WARNING:%d vpins defined, only 3 supported"), _nPins); } _I2CAddress = i2cAddress; addDevice(this); } // Initiate the device void _begin() { uint8_t _status; // Attempt to initialise device I2CManager.begin(); if (I2CManager.exists(_I2CAddress)) { // Send RE_RDY, must receive RE_RDY to be online _sendBuffer[0] = RE_RDY; _status = I2CManager.read(_I2CAddress, _rcvBuffer, 1, _sendBuffer, 1); if (_status == I2C_STATUS_OK) { if (_rcvBuffer[0] == RE_RDY) { _sendBuffer[0] = RE_VER; if (I2CManager.read(_I2CAddress, _versionBuffer, 3, _sendBuffer, 1) == I2C_STATUS_OK) { _majorVer = _versionBuffer[0]; _minorVer = _versionBuffer[1]; _patchVer = _versionBuffer[2]; } } else { DIAG(F("RotaryEncoder I2C:%s garbage received: %d"), _I2CAddress.toString(), _rcvBuffer[0]); _deviceState = DEVSTATE_FAILED; return; } } else { DIAG(F("RotaryEncoder I2C:%s ERROR connecting"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; return; } #ifdef DIAG_IO _display(); #endif } else { DIAG(F("RotaryEncoder I2C:%s device not found"), _I2CAddress.toString()); _deviceState = DEVSTATE_FAILED; } } void _loop(unsigned long currentMicros) override { if (_deviceState == DEVSTATE_FAILED) return; // Return if device has failed if (_i2crb.isBusy()) return; // Return if I2C operation still in progress if (currentMicros - _lastPositionRead > _positionRefresh) { _lastPositionRead = currentMicros; _sendBuffer[0] = RE_READ; I2CManager.read(_I2CAddress, _rcvBuffer, 1, _sendBuffer, 1, &_i2crb); // Read position from encoder _position = _rcvBuffer[0]; // If EXRAIL is active, we need to trigger the ONCHANGE() event handler if it's in use #if defined(EXRAIL_ACTIVE) if (_position != _previousPosition) { _previousPosition = _position; RMFT2::changeEvent(_firstVpin, 1); } else { RMFT2::changeEvent(_firstVpin, 0); } #endif } } // Return the position sent by the rotary encoder software int _readAnalogue(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; return _position; } // Send the feedback value to the rotary encoder software void _write(VPIN vpin, int value) override { if (vpin == _firstVpin + 1) { if (value != 0) value = 0x01; byte _feedbackBuffer[2] = {RE_OP, (byte)value}; I2CManager.write(_I2CAddress, _feedbackBuffer, 2); } } // Send a position update to the rotary encoder software // To be valid, must be 0 to 255, and different to the current position // If the current position is the same, it was initiated by the rotary encoder void _writeAnalogue(VPIN vpin, int position, uint8_t profile, uint16_t duration) override { if (vpin == _firstVpin + 2) { if (position >= 0 && position <= 255 && position != _position) { byte newPosition = position & 0xFF; byte _positionBuffer[2] = {RE_MOVE, newPosition}; I2CManager.write(_I2CAddress, _positionBuffer, 2); } } } void _display() override { DIAG(F("Rotary Encoder I2C:%s v%d.%d.%d Configured on VPIN:%u-%d %S"), _I2CAddress.toString(), _majorVer, _minorVer, _patchVer, (int)_firstVpin, _firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F("")); } int8_t _position; int8_t _previousPosition = 0; uint8_t _versionBuffer[3]; uint8_t _sendBuffer[1]; uint8_t _rcvBuffer[1]; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; I2CRB _i2crb; unsigned long _lastPositionRead = 0; const unsigned long _positionRefresh = 100000UL; // Delay refreshing position for 100ms enum { RE_RDY = 0xA0, // Flag to check if encoder is ready for operation RE_VER = 0xA1, // Flag to retrieve rotary encoder software version RE_READ = 0xA2, // Flag to read the current position of the encoder RE_OP = 0xA3, // Flag for operation start/end, sent to when sending feedback on move start/end RE_MOVE = 0xA4, // Flag for sending a position update from the device driver to the encoder }; }; #endif