/*
* © 2024, Travis Farmer. All rights reserved.
* © 2021 Chris Harlow
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see .
*/
#include "IO_RSproto.h"
#include "defines.h"
static const byte PAYLOAD_FALSE = 0;
static const byte PAYLOAD_NORMAL = 1;
static const byte PAYLOAD_STRING = 2;
taskBuffer * taskBuffer::first=NULL;
taskBuffer::taskBuffer(unsigned long taskID, int *commandBuffer)
{
_taskID = taskID;
memset(commandArray, 0, ARRAY_SIZE);
memcpy(commandArray, commandBuffer, ARRAY_SIZE);
next=first;
first=this;
RSproto *bus = RSproto::findBus(0);
if (bus != NULL) {
bus->addTask(this);
return;
}
}
taskBuffer::~taskBuffer()
{
// destructor
}
void RSproto::remove_nulls(char *str, int len) {
int i, j = 0;
for (i = 0; i= 0 && pos < strlen(str)) {
for (int i = 0; i < strlen(str); i++) {
if (i < pos) result[i] = str[i];
}
}
if (result != NULL) return atoi(result);
else return 0;
}
void taskBuffer::doCommand(unsigned long taskID, int *commandBuffer) {
// add commands here to be sent
new taskBuffer(taskID, commandBuffer);
}
void RSproto::parseRx(int * outArray) {
int nodeFr = (outArray[3] << 8) | outArray[2];
int AddrCode = (outArray[5] << 8) | outArray[4];
DIAG(F("From: %i, To: %i"), nodeFr,(outArray[1] << 8) | outArray[0]);
RSprotonode *node = findNode(nodeFr);
switch (AddrCode) {
case EXIOPINS:
{node->_numDigitalPins = (outArray[7] << 8) | outArray[6];
node->_numAnaloguePins = (outArray[9] << 8) | outArray[8];
// See if we already have suitable buffers assigned
if (node->_numDigitalPins>0) {
size_t digitalBytesNeeded = (node->_numDigitalPins + 7) / 8;
if (node->_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (node->_digitalPinBytes > 0) free(node->_digitalInputStates);
if ((node->_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
node->_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), nodeFr, digitalBytesNeeded);
//_deviceState = DEVSTATE_FAILED;
node->_digitalPinBytes = 0;
return;
}
}
}
if (node->_numAnaloguePins>0) {
size_t analogueBytesNeeded = node->_numAnaloguePins * 2;
if (node->_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (node->_analoguePinBytes > 0) {
free(node->_analogueInputBuffer);
free(node->_analogueInputStates);
free(node->_analoguePinMap);
}
node->_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
node->_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
node->_analoguePinMap = (uint8_t*) calloc(node->_numAnaloguePins, 1);
if (node->_analogueInputStates != NULL &&
node->_analogueInputBuffer != NULL &&
node->_analoguePinMap != NULL) {
node->_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), nodeFr);
//_deviceState = DEVSTATE_FAILED;
node->_analoguePinBytes = 0;
return;
}
}
}
node->resFlag = 1;
break;}
case EXIOINITA: {
for (int i = 3; i < node->_numAnaloguePins; i++) {
node->_analoguePinMap[i] = (outArray[7] << 8) | outArray[6];
}
node->resFlag = 1;
break;
}
case EXIOVER: {
node->_majorVer = (outArray[7] << 8) | outArray[6];
node->_minorVer = (outArray[9] << 8) | outArray[8];
node->_patchVer = (outArray[11] << 8) | outArray[10];
node->resFlag = 1;
break;
}
case EXIORDY: {
node->resFlag = 1;
break;
}
case EXIOERR: {
node->resFlag = -1;
break;
}
case EXIORDD: {
for (int i = 0; i < (node->_numDigitalPins+7)/8; i=i+2) {
node->_digitalInputStates[i-3] = (outArray[i+1] << 8) | outArray[i];
}
node->resFlag = 1;
break;
}
case EXIORDAN: {
for (int i = 3; i < node->_numAnaloguePins*2; i++) {
node->_analogueInputBuffer[i-3] = (outArray[i+1] << 8) | outArray[i];
}
node->resFlag = 1;
break;
}
}
}
/************************************************************
* RSproto implementation
************************************************************/
// Constructor for RSproto
RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime) {
_serial = &serial;
_baud = baud;
_txPin = txPin;
_busNo = busNo;
_cycleTime = cycleTime;
bufferLength=0;
inCommandPayload=PAYLOAD_FALSE;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to RSproto chain.
_nextBus = _busList;
_busList = this;
}
/* -= _loop =-
//
// Main loop function for RSproto.
// Work through list of nodes. For each node, in separate loop entries
// When the slot time has finished, move on to the next device.
*/
// CRC-16 implementation (replace with your preferred CRC library if needed)
uint16_t RSproto::crc16(uint8_t *data, uint16_t length) {
uint16_t crc = 0xFFFF;
for (uint16_t i = 0; i < length; i++) {
crc ^= data[i];
for (int j = 0; j < 8; j++) {
bool bit = ((crc & 0x0001) != 0);
crc >>= 1;
if (bit) {
crc ^= 0xA001;
}
}
}
return crc;
}
void RSproto::sendInstantCommand(int *buf) {
// Calculate CRC for response data
uint16_t response_crc = crc16((uint8_t*)buf, ARRAY_SIZE);
if (_txPin != -1) digitalWrite(_txPin,HIGH);
// Send response data with CRC
for (int i = 0; i < ARRAY_SIZE; i++) {
_serial->write(buf[i]);
}
_serial->write(response_crc >> 8);
_serial->write(response_crc & 0xFF);
_serial->flush();
if (_txPin != -1) digitalWrite(_txPin,LOW);
// delete task command after sending, for now
DIAG(F("SA: %I"),_serial->available());
if (_serial->available() >= ARRAY_SIZE) {
int received_data[ARRAY_SIZE];
// Read data and CRC
for (int i = 0; i < ARRAY_SIZE; i++) {
received_data[i] = _serial->read();
}
uint16_t received_crc = (_serial->read() << 8) | _serial->read();
// Calculate CRC for received data
uint16_t calculated_crc = crc16((uint8_t*)received_data, ARRAY_SIZE);
// Check CRC validity
if (calculated_crc == received_crc) {
// Data received successfully, process it (e.g., print)
int nodeTo = (received_data[1] << 8) | received_data[0];
if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway.
parseRx(received_data);
}
} else {
DIAG(F("IO_RSproto: CRC Error!"));
}
}
}
void RSproto::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
if (_busy == true) return;
if (_currentTask == NULL) {
_currentTask = _taskListStart;
}
if (_currentMicros - _cycleStartTime < _cycleTime) return;
_cycleStartTime = _currentMicros;
if (_currentTask != NULL && _currentTask->commandArray[0] != 0) {
// Calculate CRC for response data
uint16_t response_crc = crc16((uint8_t*)_currentTask->commandArray, ARRAY_SIZE);
if (_txPin != -1) digitalWrite(_txPin,HIGH);
// Send response data with CRC
for (int i = 0; i < ARRAY_SIZE; i++) {
_serial->write(_currentTask->commandArray[i]);
}
_serial->write(response_crc >> 8);
_serial->write(response_crc & 0xFF);
_serial->flush();
if (_txPin != -1) digitalWrite(_txPin,LOW);
// delete task command after sending, for now
memset(_currentTask->commandArray, 0, ARRAY_SIZE);
_currentTask->_commandSize = 0;
}
if (_serial->available() >= ARRAY_SIZE) {
int received_data[ARRAY_SIZE];
// Read data and CRC
for (int i = 0; i < ARRAY_SIZE; i++) {
received_data[i / sizeof(int)] = _serial->read();
}
uint16_t received_crc = (_serial->read() << 8) | _serial->read();
// Calculate CRC for received data
uint16_t calculated_crc = crc16((uint8_t*)received_data, ARRAY_SIZE);
// Check CRC validity
if (calculated_crc == received_crc) {
// Data received successfully, process it (e.g., print)
int nodeTo = (received_data[1] << 8) | received_data[0];
if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway.
parseRx(received_data);
}
} else {
DIAG(F("IO_RSproto: CRC Error!"));
}
}
task->getNext();
}
// Link to chain of RSproto instances, left over from RSproto template.
RSproto *RSproto::_busList = NULL;
/************************************************************
* RSprotonode implementation
************************************************************/
/* -= RSprotonode =-
//
// Constructor for RSprotonode object
*/
RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = 0;
_nodeID = nodeID;
//bus = bus->findBus(0);
//_serial = bus->_serialD;
if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags
if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID
// Add this device to HAL device list
IODevice::addDevice(this);
_display();
// Add RSprotonode to RSproto object.
RSproto *bus = RSproto::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}
bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
uint8_t pullup = (uint8_t)params[0];
int buff[ARRAY_SIZE];
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIODPUP);
buff[5] = lowByte(EXIODPUP);
buff[6] = highByte(pin);
buff[7] = lowByte(pin);
buff[8] = highByte(pullup);
buff[9] = lowByte(pullup);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->_busy = true;
bus->sendInstantCommand(buff);
bus->_busy = false;
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin);
return false;
}
resFlag = 0;
return true;
}
int RSprotonode::_configureAnalogIn(VPIN vpin) {
int pin = vpin - _firstVpin;
//RSproto *mainrs = RSproto::findBus(_busNo);
int buff[ARRAY_SIZE];
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOENAN);
buff[5] = lowByte(EXIOENAN);
buff[6] = highByte(pin);
buff[7] = lowByte(pin);
buff[8] = highByte(_firstVpin);
buff[9] = lowByte(_firstVpin);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->_busy = true;
bus->sendInstantCommand(buff);
bus->_busy = false;
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin);
return false;
}
resFlag = 0;
return true;
}
void RSprotonode::_begin() {
int buff[ARRAY_SIZE];
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOINIT);
buff[5] = lowByte(EXIOINIT);
buff[6] = highByte(_nPins);
buff[7] = lowByte(_nPins);
buff[8] = highByte((_firstVpin & 0xFF));
buff[9] = lowByte((_firstVpin >> 8));
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->_busy = true;
bus->sendInstantCommand(buff);
bus->_busy = false;
while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINIT"), _nodeID);
}
resFlag = 0;
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOINITA);
buff[5] = lowByte(EXIOINITA);
startMillis = millis();
bus->_busy = true;
bus->sendInstantCommand(buff);
bus->_busy = false;
while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINITA"), _nodeID);
}
resFlag = 0;
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOVER);
buff[5] = lowByte(EXIOVER);
startMillis = millis();
bus->_busy = true;
bus->sendInstantCommand(buff);
bus->_busy = false; task->doCommand(bus->taskCounter++, buff);
while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
} else DIAG(F("EX-IOExpander device found, Node:%d, Version v%d.%d.%d"), _nodeID, _majorVer, _minorVer, _patchVer);
resFlag = 0;
#ifdef DIAG_IO
_display();
#endif
}
int RSprotonode::_read(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
uint8_t pinByte = pin / 8;
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value;
}
void RSprotonode::_write(VPIN vpin, int value) {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
int buff[ARRAY_SIZE];
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOWRD);
buff[5] = lowByte(EXIOWRD);
buff[6] = highByte(pin);
buff[7] = lowByte(pin);
buff[8] = highByte(value);
buff[9] = lowByte(value);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
task->doCommand(bus->taskCounter++, buff);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
}
resFlag = 0;
}
int RSprotonode::_readAnalogue(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
uint8_t _pinLSBByte = aPin * 2;
uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
}
}
return -1; // pin not found in table
}
void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
int pin = vpin - _firstVpin;
int buff[ARRAY_SIZE];
buff[0] = highByte(_nodeID);
buff[1] = lowByte(_nodeID);
buff[2] = highByte(0);
buff[3] = lowByte(0);
buff[4] = highByte(EXIOWRAN);
buff[5] = lowByte(EXIOWRAN);
buff[6] = highByte(pin);
buff[7] = lowByte(pin);
buff[8] = highByte(value);
buff[9] = lowByte(value);
buff[8] = highByte(profile);
buff[9] = lowByte(profile);
buff[8] = highByte(duration);
buff[9] = lowByte(duration);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
task->doCommand(bus->taskCounter++, buff);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
}
resFlag = 0;
}