/* * @ 2024 Arkadiusz Hahn * © 2021 Neil McKechnie * © 2021 Mike S * © 2021 Fred Decker * © 2020-2022 Harald Barth * © 2020-2021 Chris Harlow * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef ARDUINO_ARCH_ESP32 // This code is replaced entirely on an ESP32 #include #include "DCCWaveform.h" #include "TrackManager.h" #include "DCCTimer.h" #include "DCCACK.h" #include "DIAG.h" DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true); DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false); bool DCCWaveform::supportsRailcom=false; bool DCCWaveform::useRailcom=false; // This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits. const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; const byte idlePacket[] = {0xFF, 0x00, 0xFF}; const byte resetPacket[] = {0x00, 0x00, 0x00}; // For each state of the wave nextState=stateTransform[currentState] const WAVE_STATE stateTransform[]={ /* WAVE_START -> */ WAVE_PENDING, /* WAVE_MID_1 -> */ WAVE_START, /* WAVE_HIGH_0 -> */ WAVE_MID_0, /* WAVE_MID_0 -> */ WAVE_LOW_0, /* WAVE_LOW_0 -> */ WAVE_START, /* WAVE_PENDING (should not happen) -> */ WAVE_PENDING}; // For each state of the wave, signal pin is HIGH or LOW const bool signalTransform[]={ /* WAVE_START -> */ HIGH, /* WAVE_MID_1 -> */ LOW, /* WAVE_HIGH_0 -> */ HIGH, /* WAVE_MID_0 -> */ LOW, /* WAVE_LOW_0 -> */ LOW, /* WAVE_PENDING (should not happen) -> */ LOW}; void DCCWaveform::begin() { // supportsRailcom depends on hardware capability supportsRailcom = TrackManager::isRailcomCapable(); // useRailcom is user switchable at run time. useRailcom=supportsRailcom; if (useRailcom) { DIAG(F("Railcom is enabled")); } else { DIAG(F("Railcom is disabled")); } TrackManager::setCutout(false,false); TrackManager::setPROGCutout(false,false); DCCTimer::begin(DCCWaveform::interruptHandler); } void DCCWaveform::loop() { // empty placemarker in case ESP32 needs something here } bool DCCWaveform::setUseRailcom(bool on) { if (!supportsRailcom) return false; useRailcom=on; if (!on) { // turn off any existing cutout TrackManager::setCutout(false); TrackManager::setPROGCutout(false); } return true; } #pragma GCC push_options #pragma GCC optimize ("-O3") void DCCWaveform::interruptHandler() { // call the timer edge sensitive actions for progtrack and maintrack // member functions would be cleaner but have more overhead byte sigMain= signalTransform[mainTrack.state]; byte sigProg=TrackManager::progTrackSyncMain? sigMain : signalTransform[progTrack.state]; // Set the signal state for both tracks TrackManager::setDCCSignal(sigMain); TrackManager::setPROGSignal(sigProg); // Refresh the values in the ADCee object buffering the values of the ADC HW ADCee::scan(); // WAVE_START is at start of bit where we need to find // out if this is an railcom start or stop time if (useRailcom) { if (mainTrack.state==WAVE_MID_1) mainTrack.railcom2(true); if (mainTrack.state==WAVE_START) mainTrack.railcom2(false); if (progTrack.state==WAVE_MID_1) progTrack.railcom2(true); if (progTrack.state==WAVE_START) progTrack.railcom2(false); } // Move on in the state engine mainTrack.state=stateTransform[mainTrack.state]; progTrack.state=stateTransform[progTrack.state]; // WAVE_PENDING means we dont yet know what the next bit is if (mainTrack.state==WAVE_PENDING) mainTrack.interrupt2(); if (progTrack.state==WAVE_PENDING) { progTrack.interrupt2(); } else { DCCACK::checkAck(progTrack.getResets()); } } #pragma GCC pop_options // An instance of this class handles the DCC transmissions for one track. (main or prog) // Interrupts are marshalled via the statics. // A track has a current transmit buffer, and a pending buffer. // When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer. DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) { isMainTrack = isMain; packetPending = false; memcpy(transmitPacket, idlePacket, sizeof(idlePacket)); state = WAVE_START; // The +1 below is to allow the preamble generator to create the stop bit // for the previous packet. requiredPreambles = preambleBits+1; //requiredPreambles <<=1; // double the number of preamble wave halves remainingPreambles=0; bytes_sent = 0; bits_sent = 0; } #pragma GCC push_options #pragma GCC optimize ("-O3") void DCCWaveform::railcom2(bool starting) { bool cutout; if (starting && remainingPreambles==(requiredPreambles-2)) { cutout=true; } else if (!starting && remainingPreambles==(requiredPreambles-5)) { cutout=false; } else { return; // neither start or end of cutout, do nothing } if (isMainTrack) { if (TrackManager::progTrackSyncMain) {// we are main track and synced so we take care of prog track as well TrackManager::setPROGCutout(cutout,true); } TrackManager::setCutout(cutout,true); } else { if (!TrackManager::progTrackSyncMain) {// we are prog track and not synced so we take care of ourselves TrackManager::setPROGCutout(cutout,true); } } } #pragma GCC pop_options #pragma GCC push_options #pragma GCC optimize ("-O3") void DCCWaveform::interrupt2() { // calculate the next bit to be sent: // set state WAVE_MID_1 for a 1=bit // or WAVE_HIGH_0 for a 0 bit. if (remainingPreambles > 0 ) { state=WAVE_MID_1; // switch state to trigger LOW on next interrupt remainingPreambles--; // Update free memory diagnostic as we don't have anything else to do this time. // Allow for checkAck and its called functions using 22 bytes more. DCCTimer::updateMinimumFreeMemoryISR(22); return; } // Wave has gone HIGH but what happens next depends on the bit to be transmitted // beware OF 9-BIT MASK generating a zero to start each byte state=(transmitPacket[bytes_sent] & bitMask[bits_sent])? WAVE_MID_1 : WAVE_HIGH_0; bits_sent++; // If this is the last bit of a byte, prepare for the next byte if (bits_sent == 9) { // zero followed by 8 bits of a byte //end of Byte bits_sent = 0; bytes_sent++; // if this is the last byte, prepere for next packet if (bytes_sent >= transmitLength) { // end of transmission buffer... repeat or switch to next message bytes_sent = 0; remainingPreambles = requiredPreambles; if (transmitRepeats > 0) { transmitRepeats--; } else if (packetPending) { // Copy pending packet to transmit packet // a fixed length memcpy is faster than a variable length loop for these small lengths // for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b]; memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket)); transmitLength = pendingLength; transmitRepeats = pendingRepeats; packetPending = false; clearResets(); } else { // Fortunately reset and idle packets are the same length memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket)); transmitLength = sizeof(idlePacket); transmitRepeats = 0; if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!) } } } } #pragma GCC pop_options // Wait until there is no packet pending, then make this pending void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) { if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum while (packetPending); byte checksum = 0; for (byte b = 0; b < byteCount; b++) { checksum ^= buffer[b]; pendingPacket[b] = buffer[b]; } // buffer is MAX_PACKET_SIZE but pendingPacket is one bigger pendingPacket[byteCount] = checksum; pendingLength = byteCount + 1; pendingRepeats = repeats; packetPending = true; clearResets(); } bool DCCWaveform::getPacketPending() { return packetPending; } #endif #ifdef ARDUINO_ARCH_ESP32 #include "DCCWaveform.h" #include "DCCACK.h" DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true); DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false); RMTChannel *DCCWaveform::rmtMainChannel = NULL; RMTChannel *DCCWaveform::rmtProgChannel = NULL; DCCWaveform::DCCWaveform(byte preambleBits, bool isMain) { isMainTrack = isMain; requiredPreambles = preambleBits; } void DCCWaveform::begin() { for(const auto& md: TrackManager::getMainDrivers()) { pinpair p = md->getSignalPin(); if(rmtMainChannel) { //DIAG(F("added pins %d %d to MAIN channel"), p.pin, p.invpin); rmtMainChannel->addPin(p); // add pin to existing main channel } else { //DIAG(F("new MAIN channel with pins %d %d"), p.pin, p.invpin); rmtMainChannel = new RMTChannel(p, true); /* create new main channel */ } } MotorDriver *md = TrackManager::getProgDriver(); if (md) { pinpair p = md->getSignalPin(); if (rmtProgChannel) { //DIAG(F("added pins %d %d to PROG channel"), p.pin, p.invpin); rmtProgChannel->addPin(p); // add pin to existing prog channel } else { //DIAG(F("new PROGchannel with pins %d %d"), p.pin, p.invpin); rmtProgChannel = new RMTChannel(p, false); } } } void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) { if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum byte checksum = 0; for (byte b = 0; b < byteCount; b++) { checksum ^= buffer[b]; pendingPacket[b] = buffer[b]; } // buffer is MAX_PACKET_SIZE but pendingPacket is one bigger pendingPacket[byteCount] = checksum; pendingLength = byteCount + 1; pendingRepeats = repeats; // DIAG repeated commands (accesories) // if (pendingRepeats > 0) // DIAG(F("Repeats=%d on %s track"), pendingRepeats, isMainTrack ? "MAIN" : "PROG"); // The resets will be zero not only now but as well repeats packets into the future clearResets(repeats+1); { int ret; do { if(isMainTrack) { if (rmtMainChannel != NULL) ret = rmtMainChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats); } else { if (rmtProgChannel != NULL) ret = rmtProgChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats); } } while(ret > 0); } } bool DCCWaveform::getPacketPending() { if(isMainTrack) { if (rmtMainChannel == NULL) return true; return rmtMainChannel->busy(); } else { if (rmtProgChannel == NULL) return true; return rmtProgChannel->busy(); } } void IRAM_ATTR DCCWaveform::loop() { DCCACK::checkAck(progTrack.getResets()); } #endif