/* * © 2023, Neil McKechnie. All rights reserved. * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef IO_SERVO_H #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" class Servo : IODevice { public: enum ProfileType : uint8_t { Instant = 0, // Moves immediately between positions (if duration not specified) UseDuration = 0, // Use specified duration Fast = 1, // Takes around 500ms end-to-end Medium = 2, // 1 second end-to-end Slow = 3, // 2 seconds end-to-end Bounce = 4, // For semaphores/turnouts with a bit of bounce!! NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move. }; // Create device driver instance. static void create(VPIN firstVpin, int nPins, VPIN firstSlavePin) { if (checkNoOverlap(firstVpin, nPins)) new Servo(firstVpin, nPins, firstSlavePin); } private: VPIN _firstSlavePin; IODevice *_slaveDevice = NULL; struct ServoData { uint16_t activePosition : 12; // Config parameter uint16_t inactivePosition : 12; // Config parameter uint16_t currentPosition : 12; uint16_t fromPosition : 12; uint16_t toPosition : 12; uint8_t profile; // Config parameter uint16_t stepNumber; // Index of current step (starting from 0) uint16_t numSteps; // Number of steps in animation, or 0 if none in progress. uint8_t currentProfile; // profile being used for current animation. uint16_t duration; // time (tenths of a second) for animation to complete. }; // 14 bytes per element, i.e. per pin in use struct ServoData *_servoData [16]; static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off static const uint8_t FLASH _bounceProfile[30]; const unsigned int refreshInterval = 50; // refresh every 50ms // Configure a port on the Servo. bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) { if (configType != CONFIGURE_SERVO) return false; if (paramCount != 5) return false; #ifdef DIAG_IO DIAG(F("Servo: Configure VPIN:%d Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"), vpin, params[0], params[1], params[2], params[3], params[4]); #endif int8_t pin = vpin - _firstVpin; VPIN slavePin = vpin - _firstVpin + _firstSlavePin; struct ServoData *s = _servoData[pin]; if (s == NULL) { _servoData[pin] = (struct ServoData *)calloc(1, sizeof(struct ServoData)); s = _servoData[pin]; if (!s) return false; // Check for failed memory allocation } s->activePosition = params[0]; s->inactivePosition = params[1]; s->profile = params[2]; s->duration = params[3]; int state = params[4]; if (state != -1) { // Position servo to initial state IODevice::writeAnalogue(slavePin, state ? s->activePosition : s->inactivePosition, 0, 0); } return true; } // Constructor Servo(VPIN firstVpin, int nPins, VPIN firstSlavePin) { _firstVpin = firstVpin; _nPins = (nPins > 16) ? 16 : nPins; _firstSlavePin = firstSlavePin; // To save RAM, space for servo configuration is not allocated unless a pin is used. // Initialise the pointers to NULL. for (int i=0; i<_nPins; i++) _servoData[i] = NULL; addDevice(this); } // Device-specific initialisation void _begin() override { // Get reference to slave device to make accesses faster. _slaveDevice = this->findDevice(_firstSlavePin); // Check firstSlavePin is actually allocated to a device if (!_slaveDevice) { DIAG(F("Servo: Slave device not found on pins %d-%d"), _firstSlavePin, _firstSlavePin+_nPins-1); _deviceState = DEVSTATE_FAILED; } // Check that the last slave pin is allocated to the same device. if (_slaveDevice != this->findDevice(_firstSlavePin+_nPins-1)) { DIAG(F("Servo: Slave device does not cover all pins %d-%d"), _firstSlavePin, _firstSlavePin+_nPins-1); _deviceState = DEVSTATE_FAILED; } #if defined(DIAG_IO) _display(); #endif } // Device-specific write function, invoked from IODevice::write(). // For this function, the configured profile is used. void _write(VPIN vpin, int value) override { if (_deviceState == DEVSTATE_FAILED) return; #ifdef DIAG_IO DIAG(F("Servo Write Vpin:%d Value:%d"), vpin, value); #endif int pin = vpin - _firstVpin; VPIN slavePin = vpin - _firstVpin + _firstSlavePin; if (value) value = 1; struct ServoData *s = _servoData[pin]; if (s != NULL) { // Use configured parameters this->_writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration); } else { /* simulate digital pin on PWM */ this->_writeAnalogue(vpin, value ? 4095 : 0, Instant | NoPowerOff, 0); } } // Device-specific writeAnalogue function, invoked from IODevice::writeAnalogue(). // Profile is as follows: // Bit 7: 0=Set PWM to 0% to power off servo motor when finished // 1=Keep PWM pulses on (better when using PWM to drive an LED) // Bits 6-0: 0 Use specified duration (defaults to 0 deciseconds) // 1 (Fast) Move servo in 0.5 seconds // 2 (Medium) Move servo in 1.0 seconds // 3 (Slow) Move servo in 2.0 seconds // 4 (Bounce) Servo 'bounces' at extremes. // void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override { #ifdef DIAG_IO DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"), vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F("")); #endif if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; if (value > 4095) value = 4095; else if (value < 0) value = 0; struct ServoData *s = _servoData[pin]; if (s == NULL) { // Servo pin not configured, so configure now using defaults s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1); if (s == NULL) return; // Check for memory allocation failure s->activePosition = 4095; s->inactivePosition = 0; s->currentPosition = value; s->profile = Instant | NoPowerOff; // Use instant profile (but not this time) } // Animated profile. Initiate the appropriate action. s->currentProfile = profile; uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit. s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds profileValue==Medium ? 20 : // 1.0 seconds profileValue==Slow ? 40 : // 2.0 seconds profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms) s->stepNumber = 0; s->toPosition = value; s->fromPosition = s->currentPosition; } // _read returns true if the device is currently in executing an animation, // changing the output over a period of time. int _read(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; struct ServoData *s = _servoData[pin]; if (s == NULL) return false; // No structure means no animation! else return (s->stepNumber < s->numSteps); } void _loop(unsigned long currentMicros) override { if (_deviceState == DEVSTATE_FAILED) return; for (int pin=0; pin<_nPins; pin++) { updatePosition(pin); } delayUntil(currentMicros + refreshInterval * 1000UL); } // Private function to reposition servo // TODO: Could calculate step number from elapsed time, to allow for erratic loop timing. void updatePosition(uint8_t pin) { struct ServoData *s = _servoData[pin]; if (s == NULL) return; // No pin configuration/state data if (s->numSteps == 0) return; // No animation in progress if (s->stepNumber == 0 && s->fromPosition == s->toPosition) { // Go straight to end of sequence, output final position. s->stepNumber = s->numSteps-1; } if (s->stepNumber < s->numSteps) { // Animation in progress, reposition servo s->stepNumber++; if ((s->currentProfile & ~NoPowerOff) == Bounce) { // Retrieve step positions from array in flash uint8_t profileValue = GETFLASH(&_bounceProfile[s->stepNumber]); s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition); } else { // All other profiles - calculate step by linear interpolation between from and to positions. s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition); } // Send servo command _slaveDevice->writeAnalogue(_firstSlavePin+pin, s->currentPosition); } else if (s->stepNumber < s->numSteps + _catchupSteps) { // We've finished animation, wait a little to allow servo to catch up s->stepNumber++; } else if (s->stepNumber == s->numSteps + _catchupSteps && s->currentPosition != 0) { #ifdef IO_SWITCH_OFF_SERVO if ((s->currentProfile & NoPowerOff) == 0) { // Wait has finished, so switch off PWM to prevent annoying servo buzz _slaveDevice->writeAnalogue(_firstSlavePin+pin, 0); } #endif s->numSteps = 0; // Done now. } } // Display details of this device. void _display() override { DIAG(F("Servo Configured on Vpins:%d-%d, slave pins:%d-%d %S"), (int)_firstVpin, (int)_firstVpin+_nPins-1, (int)_firstSlavePin, (int)_firstSlavePin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F("")); } }; // Profile for a bouncing signal or turnout // The profile below is in the range 0-100% and should be combined with the desired limits // of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here, // i.e. the bounce is the same on the down action as on the up action. First entry isn't used. const byte FLASH Servo::_bounceProfile[30] = {0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100}; #endif