/* * © 2022 Paul M Antoine * © 2021 Neil McKechnie * © 2021 Mike S * © 2021 Herb Morton * © 2020-2023 Harald Barth * © 2020-2021 M Steve Todd * © 2020-2021 Fred Decker * © 2020-2021 Chris Harlow * © 2022 Colin Murdoch * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* List of single character OPCODEs in use for reference. When determining a new OPCODE for a new feature, refer to this list as the source of truth. Once a new OPCODE is decided upon, update this list. Character, Usage /, |EX-R| interactive commands -, Remove from reminder table =, |TM| configuration !, Emergency stop @, Reserved for future use - LCD messages to JMRI #, Request number of supported cabs/locos; heartbeat +, WiFi AT commands ?, Reserved for future use 0, Track power off 1, Track power on a, DCC accessory control A, b, Write CV bit on main B, Write CV bit c, Request current command C, configure the CS d, D, Diagnostic commands e, Erase EEPROM E, Store configuration in EEPROM f, Loco decoder function control (deprecated) F, Loco decoder function control g, G, h, H, Turnout state broadcast i, Server details string I, Turntable object command, control, and broadcast j, Throttle responses J, Throttle queries k, Reserved for future use - Potentially Railcom K, Reserved for future use - Potentially Railcom l, Loco speedbyte/function map broadcast L, Reserved for LCC interface (implemented in EXRAIL) m, M, Write DCC packet n, N, o, O, Output broadcast p, Broadcast power state P, Write DCC packet q, Sensor deactivated Q, Sensor activated r, Broadcast address read on programming track R, Read CVs s, Display status S, Sensor configuration t, Cab/loco update command T, Turnout configuration/control u, Reserved for user commands U, Reserved for user commands v, V, Verify CVs w, Write CV on main W, Write CV x, X, Invalid command y, Y, Output broadcast z, Z, Output configuration/control */ #include "StringFormatter.h" #include "DCCEXParser.h" #include "DCC.h" #include "DCCWaveform.h" #include "Turnouts.h" #include "Outputs.h" #include "Sensors.h" #include "GITHUB_SHA.h" #include "version.h" #include "defines.h" #include "CommandDistributor.h" #include "EEStore.h" #include "DIAG.h" #include "TrackManager.h" #include "DCCTimer.h" #include "EXRAIL2.h" #include "Turntables.h" #include "version.h" // This macro can't be created easily as a portable function because the // flashlist requires a far pointer for high flash access. #define SENDFLASHLIST(stream,flashList) \ for (int16_t i=0;;i+=sizeof(flashList[0])) { \ int16_t value=GETHIGHFLASHW(flashList,i); \ if (value==INT16_MAX) break; \ StringFormatter::send(stream,F(" %d"),value); \ } // These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter. // To discover new keyword numbers , use the <$ YOURKEYWORD> command const int16_t HASH_KEYWORD_MAIN = 11339; const int16_t HASH_KEYWORD_CABS = -11981; const int16_t HASH_KEYWORD_RAM = 25982; const int16_t HASH_KEYWORD_CMD = 9962; const int16_t HASH_KEYWORD_ACK = 3113; const int16_t HASH_KEYWORD_ON = 2657; const int16_t HASH_KEYWORD_DCC = 6436; const int16_t HASH_KEYWORD_SLOW = -17209; #ifndef DISABLE_PROG const int16_t HASH_KEYWORD_JOIN = -30750; const int16_t HASH_KEYWORD_PROG = -29718; const int16_t HASH_KEYWORD_PROGBOOST = -6353; #endif #ifndef DISABLE_EEPROM const int16_t HASH_KEYWORD_EEPROM = -7168; #endif const int16_t HASH_KEYWORD_LIMIT = 27413; const int16_t HASH_KEYWORD_MAX = 16244; const int16_t HASH_KEYWORD_MIN = 15978; const int16_t HASH_KEYWORD_RESET = 26133; const int16_t HASH_KEYWORD_RETRY = 25704; const int16_t HASH_KEYWORD_SPEED28 = -17064; const int16_t HASH_KEYWORD_SPEED128 = 25816; const int16_t HASH_KEYWORD_SERVO=27709; const int16_t HASH_KEYWORD_TT=2688; const int16_t HASH_KEYWORD_VPIN=-415; const int16_t HASH_KEYWORD_A='A'; const int16_t HASH_KEYWORD_C='C'; const int16_t HASH_KEYWORD_G='G'; const int16_t HASH_KEYWORD_H='H'; const int16_t HASH_KEYWORD_I='I'; const int16_t HASH_KEYWORD_O='O'; const int16_t HASH_KEYWORD_P='P'; const int16_t HASH_KEYWORD_R='R'; const int16_t HASH_KEYWORD_T='T'; const int16_t HASH_KEYWORD_X='X'; const int16_t HASH_KEYWORD_LCN = 15137; const int16_t HASH_KEYWORD_HAL = 10853; const int16_t HASH_KEYWORD_SHOW = -21309; const int16_t HASH_KEYWORD_ANIN = -10424; const int16_t HASH_KEYWORD_ANOUT = -26399; const int16_t HASH_KEYWORD_WIFI = -5583; const int16_t HASH_KEYWORD_ETHERNET = -30767; const int16_t HASH_KEYWORD_WIT = 31594; const int16_t HASH_KEYWORD_EXTT = 8573; const int16_t HASH_KEYWORD_ADD = 3201; int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS]; bool DCCEXParser::stashBusy; Print *DCCEXParser::stashStream = NULL; RingStream *DCCEXParser::stashRingStream = NULL; byte DCCEXParser::stashTarget=0; // This is a JMRI command parser. // It doesnt know how the string got here, nor how it gets back. // It knows nothing about hardware or tracks... it just parses strings and // calls the corresponding DCC api. // Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes. int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd, bool usehex) { byte state = 1; byte parameterCount = 0; int16_t runningValue = 0; const byte *remainingCmd = cmd + 1; // skips the opcode bool signNegative = false; // clear all parameters in case not enough found for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++) result[i] = 0; while (parameterCount < MAX_COMMAND_PARAMS) { byte hot = *remainingCmd; switch (state) { case 1: // skipping spaces before a param if (hot == ' ') break; if (hot == '\0') return -1; if (hot == '>') return parameterCount; state = 2; continue; case 2: // checking sign signNegative = false; runningValue = 0; state = 3; if (hot != '-') continue; signNegative = true; break; case 3: // building a parameter if (hot >= '0' && hot <= '9') { runningValue = (usehex?16:10) * runningValue + (hot - '0'); break; } if (hot >= 'a' && hot <= 'z') hot=hot-'a'+'A'; // uppercase a..z if (usehex && hot>='A' && hot<='F') { // treat A..F as hex not keyword runningValue = 16 * runningValue + (hot - 'A' + 10); break; } if (hot=='_' || (hot >= 'A' && hot <= 'Z')) { // Since JMRI got modified to send keywords in some rare cases, we need this // Super Kluge to turn keywords into a hash value that can be recognised later runningValue = ((runningValue << 5) + runningValue) ^ hot; break; } result[parameterCount] = runningValue * (signNegative ? -1 : 1); parameterCount++; state = 1; continue; } remainingCmd++; } return parameterCount; } extern __attribute__((weak)) void myFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]); FILTER_CALLBACK DCCEXParser::filterCallback = myFilter; FILTER_CALLBACK DCCEXParser::filterRMFTCallback = 0; AT_COMMAND_CALLBACK DCCEXParser::atCommandCallback = 0; // deprecated void DCCEXParser::setFilter(FILTER_CALLBACK filter) { filterCallback = filter; } void DCCEXParser::setRMFTFilter(FILTER_CALLBACK filter) { filterRMFTCallback = filter; } void DCCEXParser::setAtCommandCallback(AT_COMMAND_CALLBACK callback) { atCommandCallback = callback; } // Parse an F() string void DCCEXParser::parse(const FSH * cmd) { DIAG(F("SETUP(\"%S\")"),cmd); int size=STRLEN_P((char *)cmd)+1; char buffer[size]; STRCPY_P(buffer,(char *)cmd); parse(&USB_SERIAL,(byte *)buffer,NULL); } // See documentation on DCC class for info on this section void DCCEXParser::parse(Print *stream, byte *com, RingStream *ringStream) { // This function can get stings of the form "" or "C OMM AND" // found is true first after the leading "<" has been passed bool found = (com[0] != '<'); for (byte *c=com; c[0] != '\0'; c++) { if (found) { parseOne(stream, c, ringStream); found=false; } if (c[0] == '<') found = true; } } void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream) { #ifdef DISABLE_PROG (void)ringStream; #endif #ifndef DISABLE_EEPROM (void)EEPROM; // tell compiler not to warn this is unused #endif byte params = 0; if (Diag::CMD) DIAG(F("PARSING:%s"), com); int16_t p[MAX_COMMAND_PARAMS]; while (com[0] == '<' || com[0] == ' ') com++; // strip off any number of < or spaces byte opcode = com[0]; int16_t splitnum = splitValues(p, com, opcode=='M' || opcode=='P'); if (splitnum < 0 || splitnum >= MAX_COMMAND_PARAMS) // if arguments are broken, leave but via printing goto out; // Because of check above we are now inside byte size params = splitnum; if (filterCallback) filterCallback(stream, opcode, params, p); if (filterRMFTCallback && opcode!='\0') filterRMFTCallback(stream, opcode, params, p); // Functions return from this switch if complete, break from switch implies error to send switch (opcode) { case '\0': return; // filterCallback asked us to ignore case 't': // THROTTLE { if (params==1) { // display state int16_t slot=DCC::lookupSpeedTable(p[0],false); if (slot>=0) { DCC::LOCO * sp=&DCC::speedTable[slot]; StringFormatter::send(stream,F("\n"), sp->loco,slot,sp->speedCode,sp->functions); } else // send dummy state speed 0 fwd no functions. StringFormatter::send(stream,F("\n"),p[0]); return; } int16_t cab; int16_t tspeed; int16_t direction; if (params == 4) { // cab = p[1]; tspeed = p[2]; direction = p[3]; } else if (params == 3) { // cab = p[0]; tspeed = p[1]; direction = p[2]; } else break; // Convert DCC-EX protocol speed steps where // -1=emergency stop, 0-126 as speeds // to DCC 0=stop, 1= emergency stop, 2-127 speeds if (tspeed > 126 || tspeed < -1) break; // invalid JMRI speed code if (tspeed < 0) tspeed = 1; // emergency stop DCC speed else if (tspeed > 0) tspeed++; // map 1-126 -> 2-127 if (cab == 0 && tspeed > 1) break; // ignore broadcasts of speed>1 if (direction < 0 || direction > 1) break; // invalid direction code if (cab > 10239 || cab < 0) break; // beyond DCC range DCC::setThrottle(cab, tspeed, direction); if (params == 4) // send obsolete format T response StringFormatter::send(stream, F("\n"), p[0], p[2], p[3]); // speed change will be broadcast anyway in new format return; } case 'f': // FUNCTION if (parsef(stream, params, p)) return; break; case 'a': // ACCESSORY or { int address; byte subaddress; byte activep; byte onoff; if (params==2) { // address=(p[0] - 1) / 4 + 1; subaddress=(p[0] - 1) % 4; activep=1; onoff=2; // send both } else if (params==3) { // address=p[0]; subaddress=p[1]; activep=2; onoff=2; // send both } else if (params==4) { // address=p[0]; subaddress=p[1]; activep=2; if ((p[3] < 0) || (p[3] > 1)) // invalid onoff 0|1 break; onoff=p[3]; } else break; // invalid no of parameters if ( ((address & 0x01FF) != address) // invalid address (limit 9 bits) || ((subaddress & 0x03) != subaddress) // invalid subaddress (limit 2 bits) || (p[activep] > 1) || (p[activep] < 0) // invalid activate 0|1 ) break; // Honour the configuration option (config.h) which allows the command to be reversed #ifdef DCC_ACCESSORY_COMMAND_REVERSE DCC::setAccessory(address, subaddress,p[activep]==0,onoff); #else DCC::setAccessory(address, subaddress,p[activep]==1,onoff); #endif } return; case 'T': // TURNOUT if (parseT(stream, params, p)) return; break; case 'z': // direct pin manipulation if (p[0]==0) break; if (params==1) { // if (p[0]>0) IODevice::write(p[0],HIGH); else IODevice::write(-p[0],LOW); return; } if (params>=2 && params<=4) { // // unused params default to 0 IODevice::writeAnalogue(p[0],p[1],p[2],p[3]); return; } break; case 'Z': // OUTPUT if (parseZ(stream, params, p)) return; break; case 'S': // SENSOR if (parseS(stream, params, p)) return; break; #ifndef DISABLE_PROG case 'w': // WRITE CV on MAIN if (params != 3) break; DCC::writeCVByteMain(p[0], p[1], p[2]); return; case 'b': // WRITE CV BIT ON MAIN if (params != 4) break; DCC::writeCVBitMain(p[0], p[1], p[2], p[3]); return; #endif case 'M': // WRITE TRANSPARENT DCC PACKET MAIN #ifndef DISABLE_PROG case 'P': // WRITE TRANSPARENT DCC PACKET PROG

#endif // NOTE: this command was parsed in HEX instead of decimal params--; // drop REG if (params<1) break; if (params > MAX_PACKET_SIZE) break; { byte packet[params]; for (int i=0;i if (!stashCallback(stream, p, ringStream)) break; if (params == 1) // Write new loco id (clearing consist and managing short/long) DCC::setLocoId(p[0],callback_Wloco); else if (params == 4) // WRITE CV ON PROG DCC::writeCVByte(p[0], p[1], callback_W4); else if (params == 2) // WRITE CV ON PROG DCC::writeCVByte(p[0], p[1], callback_W); else break; return; case 'V': // VERIFY CV ON PROG if (params == 2) { // if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVByte(p[0], p[1], callback_Vbyte); return; } if (params == 3) { if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVBit(p[0], p[1], p[2], callback_Vbit); return; } break; case 'B': // WRITE CV BIT ON PROG or if (params != 3 && params != 5) break; if (!stashCallback(stream, p, ringStream)) break; DCC::writeCVBit(p[0], p[1], p[2], callback_B); return; case 'R': // READ CV ON PROG if (params == 1) { // -- uses verify callback if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVByte(p[0], 0, callback_Vbyte); return; } if (params == 3) { // if (!stashCallback(stream, p, ringStream)) break; DCC::readCV(p[0], callback_R); return; } if (params == 0) { // New read loco id if (!stashCallback(stream, p, ringStream)) break; DCC::getLocoId(callback_Rloco); return; } break; #endif case '1': // POWERON <1 [MAIN|PROG|JOIN]> { if (params > 1) break; if (params==0) { // All TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON); } if (params==1) { if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN> TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON); } #ifndef DISABLE_PROG else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN> TrackManager::setJoin(true); TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON); } else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG> TrackManager::setJoin(false); TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON); } #endif else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H> byte t = (p[0] - 'A'); TrackManager::setTrackPower(POWERMODE::ON, t); //StringFormatter::send(stream, F("\n"), t+'A'); } else break; // will reply } CommandDistributor::broadcastPower(); //TrackManager::streamTrackState(NULL,t); return; } case '0': // POWEROFF <0 [MAIN | PROG] > { if (params > 1) break; if (params==0) { // All TrackManager::setJoin(false); TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF); } if (params==1) { if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN> TrackManager::setJoin(false); TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF); } #ifndef DISABLE_PROG else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG> TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF); } #endif else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H> byte t = (p[0] - 'A'); TrackManager::setJoin(false); TrackManager::setTrackPower(POWERMODE::OFF, t); //StringFormatter::send(stream, F("\n"), t+'A'); } else break; // will reply } CommandDistributor::broadcastPower(); return; } case '!': // ESTOP ALL DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1. return; case 'c': // SEND METER RESPONSES // No longer useful because of multiple tracks See and if (params>0) break; TrackManager::reportObsoleteCurrent(stream); return; case 'Q': // SENSORS Sensor::printAll(stream); return; case 's': // STATUS StringFormatter::send(stream, F("\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA)); CommandDistributor::broadcastPower(); // is the only "get power status" command we have Turnout::printAll(stream); //send all Turnout states Sensor::printAll(stream); //send all Sensor states return; #ifndef DISABLE_EEPROM case 'E': // STORE EPROM EEStore::store(); StringFormatter::send(stream, F("\n"), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs); return; case 'e': // CLEAR EPROM EEStore::clear(); StringFormatter::send(stream, F("\n")); return; #endif case ' ': // < > StringFormatter::send(stream, F("\n")); return; case 'C': // CONFIG if (parseC(stream, params, p)) return; break; #ifndef DISABLE_DIAG case 'D': // DIAG if (parseD(stream, params, p)) return; break; #endif case '=': // TRACK MANAGER CONTROL <= [params]> if (TrackManager::parseEqualSign(stream, params, p)) return; break; case '#': // NUMBER OF LOCOSLOTS <#> StringFormatter::send(stream, F("<# %d>\n"), MAX_LOCOS); return; case '-': // Forget Loco <- [cab]> if (params > 1 || p[0]<0) break; if (p[0]==0) DCC::forgetAllLocos(); else DCC::forgetLoco(p[0]); return; case 'F': // New command to call the new Loco Function API if(params!=3) break; if (Diag::CMD) DIAG(F("Setting loco %d F%d %S"), p[0], p[1], p[2] ? F("ON") : F("OFF")); if (DCC::setFn(p[0], p[1], p[2] == 1)) return; break; #if WIFI_ON case '+': // Complex Wifi interface command (not usual parse) if (atCommandCallback && !ringStream) { TrackManager::setPower(POWERMODE::OFF); atCommandCallback((HardwareSerial *)stream,com); return; } break; #endif case 'J' : // throttle info access { if ((params<1) | (params>3)) break; // //if ((params<1) | (params>2)) break; // int16_t id=(params==2)?p[1]:0; switch(p[0]) { case HASH_KEYWORD_C: // sets time and speed if (params==1) { // returns latest time int16_t x = CommandDistributor::retClockTime(); StringFormatter::send(stream, F("\n"), x); return; } CommandDistributor::setClockTime(p[1], p[2], 1); return; case HASH_KEYWORD_G: // current gauge limits if (params>1) break; TrackManager::reportGauges(stream); // return; case HASH_KEYWORD_I: // current values if (params>1) break; TrackManager::reportCurrent(stream); // return; case HASH_KEYWORD_A: // intercepted by EXRAIL// returns automations/routes if (params!=1) break; // StringFormatter::send(stream, F("\n")); return; case HASH_KEYWORD_R: // returns rosters StringFormatter::send(stream, F("\n")); return; case HASH_KEYWORD_T: // returns turnout list StringFormatter::send(stream, F(" for ( Turnout * t=Turnout::first(); t; t=t->next()) { if (t->isHidden()) continue; StringFormatter::send(stream, F(" %d"),t->getId()); } } else { // Turnout * t=Turnout::get(id); if (!t || t->isHidden()) StringFormatter::send(stream, F(" %d X"),id); else { const FSH *tdesc = NULL; #ifdef EXRAIL_ACTIVE tdesc = RMFT2::getTurnoutDescription(id); #endif if (tdesc == NULL) tdesc = F(""); StringFormatter::send(stream, F(" %d %c \"%S\""), id,t->isThrown()?'T':'C', tdesc); } } StringFormatter::send(stream, F(">\n")); return; // No turntables without HAL support #ifndef IO_NO_HAL case HASH_KEYWORD_O: // for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) { if (tto->isHidden()) continue; StringFormatter::send(stream, F(" %d"),tto->getId()); } StringFormatter::send(stream, F(">\n")); } else { // Turntable *tto=Turntable::get(id); if (!tto || tto->isHidden()) { StringFormatter::send(stream, F(" %d X>\n"), id); } else { uint8_t pos = tto->getPosition(); uint8_t type = tto->isEXTT(); uint8_t posCount = tto->getPositionCount(); const FSH *todesc = NULL; #ifdef EXRAIL_ACTIVE todesc = RMFT2::getTurntableDescription(id); #endif if (todesc == NULL) todesc = F(""); StringFormatter::send(stream, F(" %d %d %d %d \"%S\">\n"), id, type, pos, posCount, todesc); } } return; case HASH_KEYWORD_P: // returns turntable position list for the turntable id if (params==2) { // Turntable *tto=Turntable::get(id); if (!tto || tto->isHidden()) { StringFormatter::send(stream, F(" %d X>\n"), id); } else { uint8_t posCount = tto->getPositionCount(); const FSH *tpdesc = NULL; for (uint8_t p = 0; p < posCount; p++) { StringFormatter::send(stream, F("getPositionAngle(p); #ifdef EXRAIL_ACTIVE tpdesc = RMFT2::getTurntablePositionDescription(id, p); #endif if (tpdesc == NULL) tpdesc = F(""); StringFormatter::send(stream, F(" %d %d %d \"%S\""), id, p, angle, tpdesc); StringFormatter::send(stream, F(">\n")); } } } else { StringFormatter::send(stream, F("\n")); } return; #endif default: break; } // switch(p[1]) break; // case J } // No turntables without HAL support #ifndef IO_NO_HAL case 'I': // TURNTABLE if (parseI(stream, params, p)) return; break; #endif case 'L': // LCC interface implemented in EXRAIL parser break; // Will if not intercepted by EXRAIL case '@': // JMRI saying "give me virtual LCD msgs" CommandDistributor::setVirtualLCDSerial(stream); StringFormatter::send(stream, F("<@ 0 0 \"DCC-EX v" VERSION "\">\n" "<@ 0 1 \"Lic GPLv3\">\n")); return; default: //anything else will diagnose and drop out to if (opcode >= ' ' && opcode <= '~') { DIAG(F("Opcode=%c params=%d"), opcode, params); for (int i = 0; i < params; i++) DIAG(F("p[%d]=%d (0x%x)"), i, p[i], p[i]); } else { DIAG(F("Unprintable %x"), opcode); } break; } // end of opcode switch out:// Any fallout here sends an StringFormatter::send(stream, F("\n")); } bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 2: // { Output *o = Output::get(p[0]); if (o == NULL) return false; o->activate(p[1]); StringFormatter::send(stream, F("\n"), p[0], p[1]); } return true; case 3: // if (p[0] < 0 || p[2] < 0 || p[2] > 7 ) return false; if (!Output::create(p[0], p[1], p[2], 1)) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // if (!Output::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list Output definitions { bool gotone = false; for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput) { gotone = true; StringFormatter::send(stream, F("\n"), tt->data.id, tt->data.pin, tt->data.flags, tt->data.active); } return gotone; } default: return false; } } //=================================== bool DCCEXParser::parsef(Print *stream, int16_t params, int16_t p[]) { // JMRI sends this info in DCC message format but it's not exactly // convenient for other processing if (params == 2) { byte instructionField = p[1] & 0xE0; // 1110 0000 if (instructionField == 0x80) { // 1000 0000 Function group 1 // Shuffle bits from order F0 F4 F3 F2 F1 to F4 F3 F2 F1 F0 byte normalized = (p[1] << 1 & 0x1e) | (p[1] >> 4 & 0x01); return (funcmap(p[0], normalized, 0, 4)); } else if (instructionField == 0xA0) { // 1010 0000 Function group 2 if (p[1] & 0x10) // 0001 0000 Bit selects F5toF8 / F9toF12 return (funcmap(p[0], p[1], 5, 8)); else return (funcmap(p[0], p[1], 9, 12)); } } if (params == 3) { if (p[1] == 222) { return (funcmap(p[0], p[2], 13, 20)); } else if (p[1] == 223) { return (funcmap(p[0], p[2], 21, 28)); } } (void)stream; // NO RESPONSE return false; } bool DCCEXParser::funcmap(int16_t cab, byte value, byte fstart, byte fstop) { for (int16_t i = fstart; i <= fstop; i++) { if (! DCC::setFn(cab, i, value & 1)) return false; value >>= 1; } return true; } //=================================== bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 0: // list turnout definitions return Turnout::printAll(stream); // will if none found case 1: // delete turnout if (!Turnout::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 2: // { bool state = false; switch (p[1]) { // Turnout messages use 1=throw, 0=close. case 0: case HASH_KEYWORD_C: state = true; break; case 1: case HASH_KEYWORD_T: state= false; break; case HASH_KEYWORD_X: { Turnout *tt = Turnout::get(p[0]); if (tt) { tt->print(stream); return true; } return false; } default: // Invalid parameter return false; } if (!Turnout::setClosed(p[0], state)) return false; return true; } default: // Anything else is some kind of turnout create function. if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5])) return false; } else if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // if (!VpinTurnout::create(p[0], p[2])) return false; } else if (params >= 3 && p[1] == HASH_KEYWORD_DCC) { // 0<=addr<=511, 0<=subadd<=3 (like command). if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // if (!DCCTurnout::create(p[0], p[2], p[3])) return false; } else if (params==3 && p[2]>0 && p[2]<=512*4) { // , 1<=nn<=2048 // Linearaddress 1 maps onto decoder address 1/0 (not 0/0!). if (!DCCTurnout::create(p[0], (p[2]-1)/4+1, (p[2]-1)%4)) return false; } else return false; } else if (params==3) { // legacy for DCC accessory if (p[1]>=0 && p[1]<512 && p[2]>=0 && p[2]<4) { if (!DCCTurnout::create(p[0], p[1], p[2])) return false; } else return false; } else if (params==4) { // legacy for Servo if (!ServoTurnout::create(p[0], (VPIN)p[1], (uint16_t)p[2], (uint16_t)p[3], 1)) return false; } else return false; StringFormatter::send(stream, F("\n")); return true; } } bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 3: // create sensor. pullUp indicator (0=LOW/1=HIGH) if (!Sensor::create(p[0], p[1], p[2])) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // S id> remove sensor if (!Sensor::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list sensor definitions if (Sensor::firstSensor == NULL) return false; for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor) { StringFormatter::send(stream, F("\n"), tt->data.snum, tt->data.pin, tt->data.pullUp); } return true; default: // invalid number of arguments break; } return false; } bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) { if (params == 0) return false; switch (p[0]) { #ifndef DISABLE_PROG case HASH_KEYWORD_PROGBOOST: TrackManager::progTrackBoosted=true; return true; #endif case HASH_KEYWORD_RESET: DCCTimer::reset(); break; // and if we didnt restart case HASH_KEYWORD_SPEED28: DCC::setGlobalSpeedsteps(28); DIAG(F("28 Speedsteps")); return true; case HASH_KEYWORD_SPEED128: DCC::setGlobalSpeedsteps(128); DIAG(F("128 Speedsteps")); return true; #ifndef DISABLE_PROG case HASH_KEYWORD_ACK: // if (params >= 3) { if (p[1] == HASH_KEYWORD_LIMIT) { DCCACK::setAckLimit(p[2]); LCD(1, F("Ack Limit=%dmA"), p[2]); // } else if (p[1] == HASH_KEYWORD_MIN) { DCCACK::setMinAckPulseDuration(p[2]); LCD(0, F("Ack Min=%uus"), p[2]); // } else if (p[1] == HASH_KEYWORD_MAX) { DCCACK::setMaxAckPulseDuration(p[2]); LCD(0, F("Ack Max=%uus"), p[2]); // } else if (p[1] == HASH_KEYWORD_RETRY) { if (p[2] >255) p[2]=3; LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // } } else { bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off DIAG(F("Ack diag %S"), onOff ? F("on") : F("off")); Diag::ACK = onOff; } return true; #endif default: // invalid/unknown break; } return false; } bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[]) { if (params == 0) return false; bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off switch (p[0]) { case HASH_KEYWORD_CABS: // DCC::displayCabList(stream); return true; case HASH_KEYWORD_RAM: // DIAG(F("Free memory=%d"), DCCTimer::getMinimumFreeMemory()); return true; case HASH_KEYWORD_CMD: // Diag::CMD = onOff; return true; #ifdef HAS_ENOUGH_MEMORY case HASH_KEYWORD_WIFI: // Diag::WIFI = onOff; return true; case HASH_KEYWORD_ETHERNET: // Diag::ETHERNET = onOff; return true; case HASH_KEYWORD_WIT: // Diag::WITHROTTLE = onOff; return true; case HASH_KEYWORD_LCN: // Diag::LCN = onOff; return true; #endif #ifndef DISABLE_EEPROM case HASH_KEYWORD_EEPROM: // if (params >= 2) EEStore::dump(p[1]); return true; #endif case HASH_KEYWORD_SERVO: // case HASH_KEYWORD_ANOUT: // IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0); break; case HASH_KEYWORD_ANIN: // Display analogue input value DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1])); break; #if !defined(IO_NO_HAL) case HASH_KEYWORD_HAL: if (p[1] == HASH_KEYWORD_SHOW) IODevice::DumpAll(); else if (p[1] == HASH_KEYWORD_RESET) IODevice::reset(); break; #endif case HASH_KEYWORD_TT: // IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0); break; default: // invalid/unknown return parseC(stream, params, p); } return false; } // ========================== // Turntable - no support if no HAL // - list all // - broadcast type and current position // - create DCC - This is TBA // - operate (DCC) // - operate (EXTT) // - add position // - create EXTT #ifndef IO_NO_HAL bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 0: // list turntable objects return Turntable::printAll(stream); case 1: // broadcast type and current position { Turntable *tto = Turntable::get(p[0]); if (tto) { bool type = tto->isEXTT(); uint8_t position = tto->getPosition(); StringFormatter::send(stream, F("\n"), type, position); } else { return false; } } return true; case 2: // - rotate a DCC turntable { Turntable *tto = Turntable::get(p[0]); if (tto && !tto->isEXTT()) { if (!tto->setPosition(p[0], p[1])) return false; } else { return false; } } return true; case 3: // | - rotate to position for EX-Turntable or create DCC turntable { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_DCC) { if (tto || p[2] < 0 || p[2] > 3600) return false; if (!DCCTurntable::create(p[0])) return false; Turntable *tto = Turntable::get(p[0]); tto->addPosition(0, 0, p[2]); StringFormatter::send(stream, F("\n")); } else { if (!tto) return false; if (!tto->isEXTT()) return false; if (!tto->setPosition(p[0], p[1], p[2])) return false; } } return true; case 4: // create an EXTT turntable { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_EXTT) { if (tto || p[3] < 0 || p[3] > 3600) return false; if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false; Turntable *tto = Turntable::get(p[0]); tto->addPosition(0, 0, p[3]); StringFormatter::send(stream, F("\n")); } else { return false; } } return true; case 5: // add a position { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_ADD) { // tto must exist, no more than 48 positions, angle 0 - 3600 if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false; tto->addPosition(p[2], p[3], p[4]); StringFormatter::send(stream, F("\n")); } else { return false; } } return true; default: // Anything else is invalid return false; } } #endif // CALLBACKS must be static bool DCCEXParser::stashCallback(Print *stream, int16_t p[MAX_COMMAND_PARAMS], RingStream * ringStream) { if (stashBusy ) return false; stashBusy = true; stashStream = stream; stashRingStream=ringStream; if (ringStream) stashTarget= ringStream->peekTargetMark(); memcpy(stashP, p, MAX_COMMAND_PARAMS * sizeof(p[0])); return true; } Print * DCCEXParser::getAsyncReplyStream() { if (stashRingStream) { stashRingStream->mark(stashTarget); return stashRingStream; } return stashStream; } void DCCEXParser::commitAsyncReplyStream() { if (stashRingStream) stashRingStream->commit(); stashBusy = false; } void DCCEXParser::callback_W(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], result == 1 ? stashP[1] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_W4(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[2], stashP[3], stashP[0], result == 1 ? stashP[1] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_B(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[3], stashP[4], stashP[0], stashP[1], result == 1 ? stashP[2] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbit(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], stashP[1], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbyte(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_R(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[1], stashP[2], stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Rloco(int16_t result) { const FSH * detail; if (result<=0) { detail=F("\n"); } else { bool longAddr=result & LONG_ADDR_MARKER; //long addr if (longAddr) result = result^LONG_ADDR_MARKER; if (longAddr && result <= HIGHEST_SHORT_ADDR) detail=F("\n"); else detail=F("\n"); } StringFormatter::send(getAsyncReplyStream(), detail, result); commitAsyncReplyStream(); } void DCCEXParser::callback_Wloco(int16_t result) { if (result==1) result=stashP[0]; // pick up original requested id from command StringFormatter::send(getAsyncReplyStream(), F("\n"), result); commitAsyncReplyStream(); }