/* * © 2021 Neil McKechnie * © 2021 Mike S * © 2021 Fred Decker * © 2021 Herb Morton * © 2020-2022 Harald Barth * © 2020-2021 M Steve Todd * © 2020-2021 Chris Harlow * All rights reserved. * * This file is part of DCC-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "DIAG.h" #include "DCC.h" #include "DCCWaveform.h" #ifndef DISABLE_EEPROM #include "EEStore.h" #endif #include "GITHUB_SHA.h" #include "version.h" #include "FSH.h" #include "IODevice.h" #include "EXRAIL2.h" #include "CommandDistributor.h" #include "TrackManager.h" #include "DCCTimer.h" // This module is responsible for converting API calls into // messages to be sent to the waveform generator. // It has no visibility of the hardware, timers, interrupts // nor of the waveform issues such as preambles, start bits checksums or cutouts. // // Nor should it have to deal with JMRI responsess other than the OK/FAIL // or cv value returned. I will move that back to the JMRI interface later // // The interface to the waveform generator is narrowed down to merely: // Scheduling a message on the prog or main track using a function // Obtaining ACKs from the prog track using a function // There are no volatiles here. const byte FN_GROUP_1=0x01; const byte FN_GROUP_2=0x02; const byte FN_GROUP_3=0x04; const byte FN_GROUP_4=0x08; const byte FN_GROUP_5=0x10; FSH* DCC::shieldName=NULL; byte DCC::globalSpeedsteps=128; void DCC::begin() { StringFormatter::send(&USB_SERIAL,F("\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA)); #ifndef DISABLE_EEPROM // Load stuff from EEprom (void)EEPROM; // tell compiler not to warn this is unused EEStore::init(); #endif #ifndef ARDUINO_ARCH_ESP32 /* On ESP32 started in TrackManager::setTrackMode() */ DCCWaveform::begin(); #endif } void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) { byte speedCode = (tSpeed & 0x7F) + tDirection * 128; setThrottle2(cab, speedCode); TrackManager::setDCSignal(cab,speedCode); // in case this is a dcc track on this addr // retain speed for loco reminders updateLocoReminder(cab, speedCode ); } void DCC::setThrottle2( uint16_t cab, byte speedCode) { uint8_t b[4]; uint8_t nB = 0; // DIAG(F("setSpeedInternal %d %x"),cab,speedCode); if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); if (globalSpeedsteps <= 28) { uint8_t speed128 = speedCode & 0x7F; uint8_t speed28; uint8_t code28; if (speed128 == 0 || speed128 == 1) { // stop or emergency stop code28 = speed128; } else { speed28= (speed128*10+36)/46; // convert 2-127 to 1-28 /* if (globalSpeedsteps <= 14) // Don't want to do 14 steps, to get F0 there is ugly code28 = (speed28+3)/2 | (Value of F0); // convert 1-28 to DCC 14 step speed code else */ code28 = (speed28+3)/2 | ( (speed28 & 1) ? 0 : 0b00010000 ); // convert 1-28 to DCC 28 step speed code } // Construct command byte from: // command speed direction b[nB++] = 0b01000000 | code28 | ((speedCode & 0x80) ? 0b00100000 : 0); } else { // 128 speedsteps b[nB++] = SET_SPEED; // 128-step speed control byte b[nB++] = speedCode; // for encoding see setThrottle } DCCWaveform::mainTrack.schedulePacket(b, nB, 0); } void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) { // DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2); byte b[4]; byte nB = 0; if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); if (byte1!=0) b[nB++] = byte1; b[nB++] = byte2; DCCWaveform::mainTrack.schedulePacket(b, nB, count); } // returns speed steps 0 to 127 (1 == emergency stop) // or -1 on "loco not found" int8_t DCC::getThrottleSpeed(int cab) { int reg=lookupSpeedTable(cab); if (reg<0) return -1; return speedTable[reg].speedCode & 0x7F; } // returns speed code byte // or 128 (speed 0, dir forward) on "loco not found". uint8_t DCC::getThrottleSpeedByte(int cab) { int reg=lookupSpeedTable(cab); if (reg<0) return 128; return speedTable[reg].speedCode; } // returns 0 to 7 for frequency uint8_t DCC::getThrottleFrequency(int cab) { #if defined(ARDUINO_AVR_UNO) (void)cab; return 0; #else int reg=lookupSpeedTable(cab); if (reg<0) return 0; // use default frequency // shift out first 29 bits so we have the 3 "frequency bits" left uint8_t res = (uint8_t)(speedTable[reg].functions >>29); //DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res); return res; #endif } // returns direction on loco // or true/forward on "loco not found" bool DCC::getThrottleDirection(int cab) { int reg=lookupSpeedTable(cab); if (reg<0) return true; return (speedTable[reg].speedCode & 0x80) !=0; } // Set function to value on or off bool DCC::setFn( int cab, int16_t functionNumber, bool on) { if (cab<=0 ) return false; if (functionNumber < 0) return false; if (functionNumber>28) { //non reminding advanced binary bit set byte b[5]; byte nB = 0; if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); if (functionNumber <= 127) { b[nB++] = 0b11011101; // Binary State Control Instruction short form b[nB++] = functionNumber | (on ? 0x80 : 0); } else { b[nB++] = 0b11000000; // Binary State Control Instruction long form b[nB++] = (functionNumber & 0x7F) | (on ? 0x80 : 0); // low order bits and state flag b[nB++] = functionNumber >>7 ; // high order bits } DCCWaveform::mainTrack.schedulePacket(b, nB, 4); } // We use the reminder table up to 28 for normal functions. // We use 29 to 31 for DC frequency as well so up to 28 // are "real" functions and 29 to 31 are frequency bits // controlled by function buttons if (functionNumber > 31) return true; int reg = lookupSpeedTable(cab); if (reg<0) return false; // Take care of functions: // Set state of function uint32_t previous=speedTable[reg].functions; uint32_t funcmask = (1UL<31) return; int reg = lookupSpeedTable(cab); if (reg<0) return; unsigned long funcmask = (1UL<31) return -1; // unknown int reg = lookupSpeedTable(cab); if (reg<0) return -1; unsigned long funcmask = (1UL<3) return; auto reg=lookupSpeedTable(cab,true); // drop and replace F29,30,31 (top 3 bits) auto newFunctions=speedTable[reg].functions & 0x1FFFFFFFUL; if (freq==1) newFunctions |= (1UL<<29); // F29 else if (freq==2) newFunctions |= (1UL<<30); // F30 else if (freq==3) newFunctions |= (1UL<<31); // F31 if (newFunctions==speedTable[reg].functions) return; // no change speedTable[reg].functions=newFunctions; CommandDistributor::broadcastLoco(reg); } void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) { // onoff is tristate: // 0 => send off packet // 1 => send on packet // >1 => send both on and off packets. // An accessory has an address, 4 ports and 2 gates (coils) each. That's how // the initial decoders were orgnized and that influenced how the DCC // standard was made. #ifdef DIAG_IO DIAG(F("DCC::setAccessory(%d,%d,%d)"), address, port, gate); #endif // use masks to detect wrong values and do nothing if(address != (address & 511)) return; if(port != (port & 3)) return; byte b[2]; // first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address // second byte is of the form 1AAACPPG, where C is 1 for on, PP the ports 0 to 3 and G the gate (coil). b[0] = address % 64 + 128; b[1] = ((((address / 64) % 8) << 4) + (port % 4 << 1) + gate % 2) ^ 0xF8; if (onoff != 0) { DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat on packet three times #if defined(EXRAIL_ACTIVE) RMFT2::activateEvent(address<<2|port,gate); #endif } if (onoff != 1) { b[1] &= ~0x08; // set C to 0 DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat off packet three times } } bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) { /* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time. {preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1 XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects represented by the values for XXXXX are determined by the signaling system used and the prototype being modeled. From https://normen.railcommunity.de/RCN-213.pdf: More information is in RCN-213 about how the address bits are organized. preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- .... Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX Die Adresse f�r den ersten erweiterten Zubeh�rdecoder ist wie bei den einfachen Zubeh�rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in Anwenderdialogen als Adresse 1 dargestellt. This means that the first address shown to the user as "1" is mapped to internal address 4. Note that the Basic accessory format mentions "By convention these bits (bits 4-6 of the second data byte) are in ones complement" but this note is absent from the advanced packet description. The english translation does not mention that the address format for the advanced packet follows the one for the basic packet but according to the RCN-213 this is the case. We allow for addresses from -3 to 2047-3 as that allows to address the whole range of the 11 bits sent to track. */ if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3 if (value != (value & 0x1F)) return false; // 5 bits address+=3; // +3 offset according to RCN-213 byte b[3]; b[0]= 0x80 // bits always on | ((address>>2) & 0x3F); // shift out 2, mask out used bits b[1]= 0x01 // bits always on | (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4 | ((address & 0x03)<<1); // mask 2 bits, shift up 1 b[2]=value; DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats); return true; } bool DCC::setTime(uint16_t minutes,uint8_t speed, bool suddenChange) { /* see rcn-122 5 Global commands These commands are sent and begin exclusively with a broadcast address 0 always with {synchronous bits} 0 0000-0000 … and end with the checksum ... PPPPPPPP 1. Therefore, only the bytes of the commands and not that of shown below whole package shown. The commands can be used by vehicle and accessory decoders alike. 5.1 Time command This command is four bytes long and has the format: 1100-0001 CCxx-xxxx xxxx-xxxxx xxxx-xxxx CC indicates what data is transmitted in the packet: CC = 00 Model Time 1100-0001 00MM-MMMM WWWH-HHHH U0BB-BBBB with: MMMMMM = Minutes, Value range: 0..59 WWW = Day of the Week, Value range: 0 = Monday, 1 = Tuesday, 2 = Wednesday, 3 = Thursday, 4 = Friday, 5 = Saturday, 6 = Sunday, 7 = Weekday is not supported. HHHHH = Hours, value range: 0..23 U = Update, i.e. the time has changed suddenly, e.g. by a new one timetable to start. Up to 4 can occur per sudden change commands can be marked like this. BBBBBB = Acceleration factor, value range 0..63. An acceleration factor of 0 means the model clock has been stopped, a factor of 1 corresponds to real time, at 2 the clock runs twice as fast, at three times as fast as real time, etc. */ if (minutes>=1440 || speed>63 ) return false; byte b[5]; b[0]=0; // broadcast address b[1]=0b11000001; // 1100-0001 (model time) b[2]=minutes % 60 ; // MM b[3]= 0b11100000 | (minutes/60); // 111H-HHHH weekday not supported b[4]= (suddenChange ? 0b10000000 : 0) | speed; DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), 2); return true; } // // writeCVByteMain: Write a byte with PoM on main. This writes // the 5 byte sized packet to implement this DCC function // void DCC::writeCVByteMain(int cab, int cv, byte bValue) { byte b[5]; byte nB = 0; if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03 b[nB++] = cv2(cv); b[nB++] = bValue; DCCWaveform::mainTrack.schedulePacket(b, nB, 4); } // // readCVByteMain: Read a byte with PoM on main. // This requires Railcom active // void DCC::readCVByteMain(int cab, int cv, ACK_CALLBACK callback) { byte b[5]; byte nB = 0; if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = cv1(READ_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03 b[nB++] = cv2(cv); b[nB++] = 0; DCCWaveform::mainTrack.schedulePacket(b, nB, 4); Railcom::anticipate(cab,cv,callback); } // // writeCVBitMain: Write a bit of a byte with PoM on main. This writes // the 5 byte sized packet to implement this DCC function // void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) { byte b[5]; byte nB = 0; bValue = bValue % 2; bNum = bNum % 8; if (cab > HIGHEST_SHORT_ADDR) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03 b[nB++] = cv2(cv); b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum; DCCWaveform::mainTrack.schedulePacket(b, nB, 4); } FSH* DCC::getMotorShieldName() { return shieldName; } const ackOp FLASH WRITE_BIT0_PROG[] = { BASELINE, W0,WACK, V0, WACK, // validate bit is 0 ITC1, // if acked, callback(1) CALLFAIL // callback (-1) }; const ackOp FLASH WRITE_BIT1_PROG[] = { BASELINE, W1,WACK, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) CALLFAIL // callback (-1) }; const ackOp FLASH VERIFY_BIT0_PROG[] = { BASELINE, V0, WACK, // validate bit is 0 ITC0, // if acked, callback(0) V1, WACK, // validate bit is 1 ITC1, CALLFAIL // callback (-1) }; const ackOp FLASH VERIFY_BIT1_PROG[] = { BASELINE, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) V0, WACK, ITC0, CALLFAIL // callback (-1) }; const ackOp FLASH READ_BIT_PROG[] = { BASELINE, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) V0, WACK, // validate bit is zero ITC0, // if acked callback 0 CALLFAIL // bit not readable }; const ackOp FLASH WRITE_BYTE_PROG[] = { BASELINE, WB,WACK,ITC1, // Write and callback(1) if ACK // handle decoders that dont ack a write VB,WACK,ITC1, // validate byte and callback(1) if correct CALLFAIL // callback (-1) }; const ackOp FLASH VERIFY_BYTE_PROG[] = { BASELINE, BIV, // ackManagerByte initial value VB,WACK, // validate byte ITCB, // if ok callback value STARTMERGE, //clear bit and byte values ready for merge pass // each bit is validated against 0 and the result inverted in MERGE // this is because there tend to be more zeros in cv values than ones. // There is no need for one validation as entire byte is validated at the end V0, WACK, MERGE, // read and merge first tested bit (7) ITSKIP, // do small excursion if there was no ack SETBIT,(ackOp)7, V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7) SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6) SKIPTARGET, V0, WACK, MERGE, // read and merge second tested bit (6) V0, WACK, MERGE, // read and merge third tested bit (5) ... V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCBV, // verify merged byte and return it if acked ok - with retry report CALLFAIL }; const ackOp FLASH READ_CV_PROG[] = { BASELINE, STARTMERGE, //clear bit and byte values ready for merge pass // each bit is validated against 0 and the result inverted in MERGE // this is because there tend to be more zeros in cv values than ones. // There is no need for one validation as entire byte is validated at the end V0, WACK, MERGE, // read and merge first tested bit (7) ITSKIP, // do small excursion if there was no ack SETBIT,(ackOp)7, V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7) SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6) SKIPTARGET, V0, WACK, MERGE, // read and merge second tested bit (6) V0, WACK, MERGE, // read and merge third tested bit (5) ... V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB, // verify merged byte and return it if acked ok CALLFAIL }; // verification failed const ackOp FLASH LOCO_ID_PROG[] = { BASELINE, // first check cv20 for extended addressing SETCV, (ackOp)20, // CV 19 is extended SETBYTE, (ackOp)0, VB, WACK, ITSKIP, // skip past extended section if cv20 is zero // read cv20 and 19 and merge STARTMERGE, // Setup to read cv 20 V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKSKIP, // bad read of cv20, assume its 0 STASHLOCOID, // keep cv 20 until we have cv19 as well. SETCV, (ackOp)19, STARTMERGE, // Setup to read cv 19 V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable COMBINE1920, // Combile byte with stash and callback // end of advanced 20,19 check SKIPTARGET, SETCV, (ackOp)19, // CV 19 is consist setting SETBYTE, (ackOp)0, VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist) SETBYTE, (ackOp)128, VB, WACK, ITSKIP, // ignore consist if cv19 is 128 (no consist, direction bit set) STARTMERGE, // Setup to read cv 19 V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB7, // return 7 bits only, No_ACK means CV19 not supported so ignore it SKIPTARGET, // continue here if CV 19 is zero or fails all validation SETCV,(ackOp)29, SETBIT,(ackOp)5, V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero // Long locoid SETCV, (ackOp)17, // CV 17 is part of locoid STARTMERGE, V0, WACK, MERGE, // read and merge bit 1 etc V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok STASHLOCOID, // keep stashed cv 17 for later // Read 2nd part from CV 18 SETCV, (ackOp)18, STARTMERGE, V0, WACK, MERGE, // read and merge bit 1 etc V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok COMBINELOCOID, // Combile byte with stash to make long locoid and callback // ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that SKIPTARGET, SETCV, (ackOp)1, STARTMERGE, SETBIT, (ackOp)6, // skip over first bit as we know its a zero V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB, // verify merged byte and callback CALLFAIL }; const ackOp FLASH SHORT_LOCO_ID_PROG[] = { BASELINE, // Clear consist CV 19,20 SETCV,(ackOp)20, SETBYTE, (ackOp)0, WB,WACK, // ignore dedcoder without cv20 support SETCV,(ackOp)19, SETBYTE, (ackOp)0, WB,WACK, // ignore dedcoder without cv19 support // Turn off long address flag SETCV,(ackOp)29, SETBIT,(ackOp)5, W0,WACK, V0,WACK,NAKFAIL, SETCV, (ackOp)1, SETBYTEL, // low byte of word WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok VB,WACK,ITC1, // Some decoders do not ack and need verify CALLFAIL }; // for CONSIST_ID_PROG the 20,19 values are already calculated const ackOp FLASH CONSIST_ID_PROG[] = { BASELINE, SETCV,(ackOp)20, SETBYTEH, // high byte to CV 20 WB,WACK, // ignore dedcoder without cv20 support SETCV,(ackOp)19, SETBYTEL, // low byte of word WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok VB,WACK,ITC1, // Some decoders do not ack and need verify CALLFAIL }; const ackOp FLASH LONG_LOCO_ID_PROG[] = { BASELINE, // Clear consist CV 19,20 SETCV,(ackOp)20, SETBYTE, (ackOp)0, WB,WACK, // ignore dedcoder without cv20 support SETCV,(ackOp)19, SETBYTE, (ackOp)0, WB,WACK, // ignore decoder without cv19 support // Turn on long address flag cv29 bit 5 SETCV,(ackOp)29, SETBIT,(ackOp)5, W1,WACK, V1,WACK,NAKFAIL, // Store high byte of address in cv 17 SETCV, (ackOp)17, SETBYTEH, // high byte of word WB,WACK, // do write ITSKIP, // if ACK, jump to SKIPTARGET VB,WACK, // try verify instead ITSKIP, // if ACK, jump to SKIPTARGET CALLFAIL, // if still here, fail SKIPTARGET, // store SETCV, (ackOp)18, SETBYTEL, // low byte of word WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok VB,WACK,ITC1, // Some decoders do not ack and need verify CALLFAIL }; void DCC::writeCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) { DCCACK::Setup(cv, byteValue, WRITE_BYTE_PROG, callback); } void DCC::writeCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) { if (bitNum >= 8) callback(-1); else DCCACK::Setup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback); } void DCC::verifyCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) { DCCACK::Setup(cv, byteValue, VERIFY_BYTE_PROG, callback); } void DCC::verifyCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) { if (bitNum >= 8) callback(-1); else DCCACK::Setup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback); } void DCC::readCVBit(int16_t cv, byte bitNum, ACK_CALLBACK callback) { if (bitNum >= 8) callback(-1); else DCCACK::Setup(cv, bitNum,READ_BIT_PROG, callback); } void DCC::readCV(int16_t cv, ACK_CALLBACK callback) { DCCACK::Setup(cv, 0,READ_CV_PROG, callback); } void DCC::getLocoId(ACK_CALLBACK callback) { DCCACK::Setup(0,0, LOCO_ID_PROG, callback); } void DCC::setLocoId(int id,ACK_CALLBACK callback) { if (id<1 || id>10239) { //0x27FF according to standard callback(-1); return; } if (id<=HIGHEST_SHORT_ADDR) DCCACK::Setup(id, SHORT_LOCO_ID_PROG, callback); else DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback); } void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) { if (id<0 || id>10239) { //0x27FF according to standard callback(-1); return; } byte cv20; byte cv19; if (id<=HIGHEST_SHORT_ADDR) { cv19=id; cv20=0; } else { cv20=id/100; cv19=id%100; } if (reverse) cv19|=0x80; DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback); } void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco setThrottle2(cab,1); // ESTOP this loco if still on track int reg=lookupSpeedTable(cab, false); if (reg>=0) { speedTable[reg].loco=0; setThrottle2(cab,1); // ESTOP if this loco still on track CommandDistributor::broadcastForgetLoco(cab); } } void DCC::forgetAllLocos() { // removes all speed reminders setThrottle2(0,1); // ESTOP all locos still on track for (int i=0;i highestUsedReg) reg = 0; // Go to start of table if (speedTable[reg].loco > 0) { // have found loco to remind if (issueReminder(reg)) lastLocoReminder = reg; } else lastLocoReminder = reg; } bool DCC::issueReminder(int reg) { unsigned long functions=speedTable[reg].functions; int loco=speedTable[reg].loco; byte flags=speedTable[reg].groupFlags; switch (loopStatus) { case 0: // DIAG(F("Reminder %d speed %d"),loco,speedTable[reg].speedCode); setThrottle2(loco, speedTable[reg].speedCode); break; case 1: // remind function group 1 (F0-F4) if (flags & FN_GROUP_1) #ifndef DISABLE_FUNCTION_REMINDERS setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),0); // 100D DDDD #else setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),2); flags&= ~FN_GROUP_1; // dont send them again #endif break; case 2: // remind function group 2 F5-F8 if (flags & FN_GROUP_2) #ifndef DISABLE_FUNCTION_REMINDERS setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),0); // 1011 DDDD #else setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),2); flags&= ~FN_GROUP_2; // dont send them again #endif break; case 3: // remind function group 3 F9-F12 if (flags & FN_GROUP_3) #ifndef DISABLE_FUNCTION_REMINDERS setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),0); // 1010 DDDD #else setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),2); flags&= ~FN_GROUP_3; // dont send them again #endif break; case 4: // remind function group 4 F13-F20 if (flags & FN_GROUP_4) setFunctionInternal(loco,222, ((functions>>13)& 0xFF),2); flags&= ~FN_GROUP_4; // dont send them again break; case 5: // remind function group 5 F21-F28 if (flags & FN_GROUP_5) setFunctionInternal(loco,223, ((functions>>21)& 0xFF),2); flags&= ~FN_GROUP_5; // dont send them again break; } loopStatus++; // if we reach status 6 then this loco is done so // reset status to 0 for next loco and return true so caller // moves on to next loco. if (loopStatus>5) loopStatus=0; return loopStatus==0; } ///// Private helper functions below here ///////////////////// byte DCC::cv1(byte opcode, int cv) { cv--; return (highByte(cv) & (byte)0x03) | opcode; } byte DCC::cv2(int cv) { cv--; return lowByte(cv); } int DCC::lookupSpeedTable(int locoId, bool autoCreate) { // determine speed reg for this loco int firstEmpty = MAX_LOCOS; int reg; for (reg = 0; reg < MAX_LOCOS; reg++) { if (speedTable[reg].loco == locoId) break; if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg; } // return -1 if not found and not auto creating if (reg== MAX_LOCOS && !autoCreate) return -1; if (reg == MAX_LOCOS) reg = firstEmpty; if (reg >= MAX_LOCOS) { DIAG(F("Too many locos")); return -1; } if (reg==firstEmpty){ speedTable[reg].loco = locoId; speedTable[reg].speedCode=128; // default direction forward speedTable[reg].groupFlags=0; speedTable[reg].functions=0; } if (reg > highestUsedReg) highestUsedReg = reg; return reg; } void DCC::updateLocoReminder(int loco, byte speedCode) { if (loco==0) { // broadcast stop/estop but dont change direction for (int reg = 0; reg <= highestUsedReg; reg++) { if (speedTable[reg].loco==0) continue; byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f); if (speedTable[reg].speedCode != newspeed) { speedTable[reg].speedCode = newspeed; CommandDistributor::broadcastLoco(reg); } } return; } // determine speed reg for this loco int reg=lookupSpeedTable(loco); if (reg>=0 && speedTable[reg].speedCode!=speedCode) { speedTable[reg].speedCode = speedCode; CommandDistributor::broadcastLoco(reg); } } DCC::LOCO DCC::speedTable[MAX_LOCOS]; int DCC::lastLocoReminder = 0; int DCC::highestUsedReg = 0; void DCC::setLocoInBlock(int loco, uint16_t blockid, bool exclusive) { // update block loco is in, tell exrail leaving old block, and entering new. // NOTE: The loco table scanning is really inefficient and needs rewriting // This was done once in the momentum poc. #ifdef EXRAIL_ACTIVE int reg=lookupSpeedTable(loco,true); if (reg<0) return; auto oldBlock=speedTable[reg].blockOccupied; if (oldBlock==blockid) return; if (oldBlock) RMFT2::blockEvent(oldBlock,loco,false); speedTable[reg].blockOccupied=blockid; if (blockid) RMFT2::blockEvent(blockid,loco,true); if (exclusive) { for (int reg = 0; reg <= highestUsedReg; reg++) { if (speedTable[reg].loco!=loco && speedTable[reg].blockOccupied==blockid) { RMFT2::blockEvent(blockid,speedTable[reg].loco,false); speedTable[reg].blockOccupied=0; } } } #endif } void DCC::clearBlock(uint16_t blockid) { // Railcom reports block empty... tell Exrail about all leavers #ifdef EXRAIL_ACTIVE for (int reg = 0; reg <= highestUsedReg; reg++) { if (speedTable[reg].blockOccupied==blockid) { RMFT2::blockEvent(blockid,speedTable[reg].loco,false); speedTable[reg].blockOccupied=0; } } #endif } void DCC::displayCabList(Print * stream) { int used=0; for (int reg = 0; reg <= highestUsedReg; reg++) { if (speedTable[reg].loco>0) { used ++; StringFormatter::send(stream,F("cab=%d, speed=%d, dir=%c blk=%d\n"), speedTable[reg].loco, speedTable[reg].speedCode & 0x7f,(speedTable[reg].speedCode & 0x80) ? 'F':'R', speedTable[reg].blockOccupied); } } StringFormatter::send(stream,F("Used=%d, max=%d\n"),used,MAX_LOCOS); }