/* * © 2021 Mike S * © 2021 Fred Decker * © 2020-2022 Harald Barth * © 2020-2021 Chris Harlow * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include #include "MotorDriver.h" #include "DCCTimer.h" #include "DIAG.h" #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH) #define isLOW(fastpin) (!isHIGH(fastpin)) bool MotorDriver::usePWM=false; bool MotorDriver::commonFaultPin=false; MotorDriver::MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) { powerPin=power_pin; getFastPin(F("POWER"),powerPin,fastPowerPin); pinMode(powerPin, OUTPUT); signalPin=signal_pin; getFastPin(F("SIG"),signalPin,fastSignalPin); pinMode(signalPin, OUTPUT); signalPin2=signal_pin2; if (signalPin2!=UNUSED_PIN) { dualSignal=true; getFastPin(F("SIG2"),signalPin2,fastSignalPin2); pinMode(signalPin2, OUTPUT); } else dualSignal=false; brakePin=brake_pin; if (brake_pin!=UNUSED_PIN){ invertBrake=brake_pin < 0; brakePin=invertBrake ? 0-brake_pin : brake_pin; getFastPin(F("BRAKE"),brakePin,fastBrakePin); pinMode(brakePin, OUTPUT); setBrake(false); } else brakePin=UNUSED_PIN; currentPin=current_pin; if (currentPin!=UNUSED_PIN) { pinMode(currentPin, INPUT); senseOffset=analogRead(currentPin); // value of sensor at zero current } faultPin=fault_pin; if (faultPin != UNUSED_PIN) { getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin); pinMode(faultPin, INPUT); } senseFactor=sense_factor; tripMilliamps=trip_milliamps; rawCurrentTripValue=(int)(trip_milliamps / sense_factor); if (currentPin==UNUSED_PIN) DIAG(F("MotorDriver ** WARNING ** No current or short detection")); else DIAG(F("MotorDriver currentPin=A%d, senseOffset=%d, rawCurrentTripValue(relative to offset)=%d"), currentPin-A0, senseOffset,rawCurrentTripValue); // prepare values for current detection sampleDelay = 0; lastSampleTaken = millis(); progTripValue = mA2raw(TRIP_CURRENT_PROG); } bool MotorDriver::isPWMCapable() { return (!dualSignal) && DCCTimer::isPWMPin(signalPin); } void MotorDriver::setPower(POWERMODE mode) { bool on=mode==POWERMODE::ON; if (on) { // toggle brake before turning power on - resets overcurrent error // on the Pololu board if brake is wired to ^D2. setBrake(true); setBrake(false); setHIGH(fastPowerPin); } else setLOW(fastPowerPin); powerMode=mode; } // setBrake applies brake if on == true. So to get // voltage from the motor bride one needs to do a // setBrake(false). // If the brakePin is negative that means the sense // of the brake pin on the motor bridge is inverted // (HIGH == release brake) and setBrake does // compensate for that. // void MotorDriver::setBrake(bool on) { if (brakePin == UNUSED_PIN) return; if (on ^ invertBrake) setHIGH(fastBrakePin); else setLOW(fastBrakePin); } void MotorDriver::setSignal( bool high) { if (usePWM) { DCCTimer::setPWM(signalPin,high); } else { if (high) { setHIGH(fastSignalPin); if (dualSignal) setLOW(fastSignalPin2); } else { setLOW(fastSignalPin); if (dualSignal) setHIGH(fastSignalPin2); } } } bool MotorDriver::canMeasureCurrent() { return currentPin!=UNUSED_PIN; } /* * Return the current reading as pin reading 0 to 1023. If the fault * pin is activated return a negative current to show active fault pin. * As there is no -0, create a little and return -1 in that case. * * senseOffset handles the case where a shield returns values above or below * a central value depending on direction. */ int MotorDriver::getCurrentRaw() { if (currentPin==UNUSED_PIN) return 0; int current; // This function should NOT be called in an interruot so we // dont need to fart about saving and restoring CPU specific // interrupt registers. noInterrupts(); current = analogRead(currentPin)-senseOffset; interrupts(); if (current<0) current=0-current; if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && isHIGH(fastPowerPin)) return (current == 0 ? -1 : -current); return current; } void MotorDriver::setDCSignal(byte speedcode) { // spedcxode is a dcc speed /direction // TODO jiggle the DC speed pin PWMs } int MotorDriver::getCurrentRawInInterrupt() { // IMPORTANT: This function must be called in Interrupt() time within the 56uS timer // The default analogRead takes ~100uS which is catastrphic // so DCCTimer has set the sample time to be much faster. if (currentPin==UNUSED_PIN) return 0; return analogRead(currentPin)-senseOffset; } unsigned int MotorDriver::raw2mA( int raw) { return (unsigned int)(raw * senseFactor); } int MotorDriver::mA2raw( unsigned int mA) { return (int)(mA / senseFactor); } void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) { // DIAG(F("MotorDriver %S Pin=%d,"),type,pin); (void) type; // avoid compiler warning if diag not used above. uint8_t port = digitalPinToPort(pin); if (input) result.inout = portInputRegister(port); else result.inout = portOutputRegister(port); result.maskHIGH = digitalPinToBitMask(pin); result.maskLOW = ~result.maskHIGH; // DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH); } void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) { if (millis() - lastSampleTaken < sampleDelay) return; lastSampleTaken = millis(); int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue(); // Trackname for diag messages later switch (powerMode) { case POWERMODE::OFF: sampleDelay = POWER_SAMPLE_OFF_WAIT; break; case POWERMODE::ON: // Check current lastCurrent=getCurrentRaw(); if (lastCurrent < 0) { // We have a fault pin condition to take care of lastCurrent = -lastCurrent; setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again if (commonFaultPin) { if (lastCurrent <= tripValue) { setPower(POWERMODE::ON); // maybe other track } // Write this after the fact as we want to turn on as fast as possible // because we don't know which output actually triggered the fault pin DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %d"), trackno); } else { DIAG(F("TRACK %d FAULT PIN ACTIVE - OVERLOAD"), trackno); if (lastCurrent < tripValue) { lastCurrent = tripValue; // exaggerate } } } if (lastCurrent < tripValue) { sampleDelay = POWER_SAMPLE_ON_WAIT; if(power_good_counter<100) power_good_counter++; else if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT; } else { setPower(POWERMODE::OVERLOAD); unsigned int mA=raw2mA(lastCurrent); unsigned int maxmA=raw2mA(tripValue); power_good_counter=0; sampleDelay = power_sample_overload_wait; DIAG(F("TRACK %d POWER OVERLOAD current=%d max=%d offtime=%d"), trackno, mA, maxmA, sampleDelay); if (power_sample_overload_wait >= 10000) power_sample_overload_wait = 10000; else power_sample_overload_wait *= 2; } break; case POWERMODE::OVERLOAD: // Try setting it back on after the OVERLOAD_WAIT setPower(POWERMODE::ON); sampleDelay = POWER_SAMPLE_ON_WAIT; // Debug code.... DIAG(F("TRACK %d POWER RESET delay=%d"), trackno, sampleDelay); break; default: sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning. } }