/* * © 2022, Peter Cole. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create EX-IOExpander devices, these are defined in myHal.cpp: * (Note the device driver is included by default) * * void halSetup() { * // EXIOExpander::create(vpin, num_vpins, i2c_address); * EXIOExpander::create(800, 18, 0x65); * } * * All pins on an EX-IOExpander device are allocated according to the pin map for the specific * device in use. There is no way for the device driver to sanity check pins are used for the * correct purpose, however the EX-IOExpander device's pin map will prevent pins being used * incorrectly (eg. A6/7 on Nano cannot be used for digital input/output). */ #ifndef IO_EX_IOEXPANDER_H #define IO_EX_IOEXPANDER_H #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for EX-IOExpander. */ class EXIOExpander : public IODevice { public: enum ProfileType : uint8_t { Instant = 0, // Moves immediately between positions (if duration not specified) UseDuration = 0, // Use specified duration Fast = 1, // Takes around 500ms end-to-end Medium = 2, // 1 second end-to-end Slow = 3, // 2 seconds end-to-end Bounce = 4, // For semaphores/turnouts with a bit of bounce!! NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move. }; static void create(VPIN vpin, int nPins, uint8_t i2cAddress) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress); } private: // Constructor EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress) { _firstVpin = firstVpin; _nPins = nPins; _i2cAddress = i2cAddress; // To save RAM, space for servo configuration is not allocated unless a pin is used. // Initialise the pointers to NULL. for (int i=0; i<_nPins; i++) { _servoData[i] = NULL; } addDevice(this); } void _begin() { // Initialise EX-IOExander device I2CManager.begin(); if (I2CManager.exists(_i2cAddress)) { _command4Buffer[0] = EXIOINIT; _command4Buffer[1] = _nPins; _command4Buffer[2] = _firstVpin & 0xFF; _command4Buffer[3] = _firstVpin >> 8; // Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4); if (_receive3Buffer[0] == EXIOPINS) { _numDigitalPins = _receive3Buffer[1]; _numAnaloguePins = _receive3Buffer[2]; _digitalPinBytes = (_numDigitalPins + 7)/8; _digitalInputStates=(byte*) calloc(_digitalPinBytes,1); _analoguePinBytes = _numAnaloguePins * 2; _analogueInputStates = (byte*) calloc(_analoguePinBytes, 1); _analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1); } else { DIAG(F("ERROR configuring EX-IOExpander device, I2C:x%x"), _i2cAddress); _deviceState = DEVSTATE_FAILED; return; } // We now need to retrieve the analogue pin map _command1Buffer[0] = EXIOINITA; I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1); // Attempt to get version, if we don't get it, we don't care, don't go offline _command1Buffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1); _command1Buffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1); _majorVer = _versionBuffer[0]; _minorVer = _versionBuffer[1]; _patchVer = _versionBuffer[2]; DIAG(F("EX-IOExpander device found, I2C:x%x, Version v%d.%d.%d"), _i2cAddress, _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]); #ifdef DIAG_IO _display(); #endif } else { DIAG(F("EX-IOExpander device not found, I2C:x%x"), _i2cAddress); _deviceState = DEVSTATE_FAILED; } } // Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { if (paramCount != 1) return false; int pin = vpin - _firstVpin; if (configType == CONFIGURE_INPUT) { bool pullup = params[0]; _digitalOutBuffer[0] = EXIODPUP; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = pullup; I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3); if (_command1Buffer[0] == EXIORDY) { return true; } else { DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin); return false; } } else if (configType == CONFIGURE_SERVO) { if (paramCount != 5) return false; #ifdef DIAG_IO DIAG(F("Servo: Configure VPIN:%d Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"), vpin, params[0], params[1], params[2], params[3], params[4]); #endif struct ServoData *s = _servoData[pin]; if (s == NULL) { _servoData[pin] = (struct ServoData *)calloc(1, sizeof(struct ServoData)); s = _servoData[pin]; if (!s) return false; // Check for failed memory allocation } s->activePosition = params[0]; s->inactivePosition = params[1]; s->profile = params[2]; s->duration = params[3]; int state = params[4]; if (state != -1) { // Position servo to initial state IODevice::writeAnalogue(pin, state ? s->activePosition : s->inactivePosition, 0, 0); } return true; } else { return false; } } // Analogue input pin configuration, used to enable on EX-IOExpander device int _configureAnalogIn(VPIN vpin) override { int pin = vpin - _firstVpin; _command2Buffer[0] = EXIOENAN; _command2Buffer[1] = pin; I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2); if (_command1Buffer[0] == EXIORDY) { return true; } else { DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin); return false; } return true; } // Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads) void _loop(unsigned long currentMicros) override { (void)currentMicros; // remove warning if (_deviceState == DEVSTATE_FAILED) return; _command1Buffer[0] = EXIORDD; I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1); _command1Buffer[0] = EXIORDAN; I2CManager.read(_i2cAddress, _analogueInputStates, _analoguePinBytes, _command1Buffer, 1); if ((currentMicros - _lastRefresh) / 1000UL > refreshInterval) { _lastRefresh = currentMicros; for (int pin=0; pin<_nPins; pin++) { if (_servoData[pin] != NULL) { updatePosition(pin); } } } } // Obtain the correct analogue input value int _readAnalogue(VPIN vpin) override { int pin = vpin - _firstVpin; uint8_t _pinLSBByte; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { _pinLSBByte = aPin * 2; } } uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } // Obtain the correct digital input value int _read(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; if (_servoData[pin] == NULL) { uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } else { struct ServoData *s = _servoData[pin]; if (s == NULL) { return false; // No structure means no animation! } else { return (s->stepNumber < s->numSteps); } } } void _write(VPIN vpin, int value) override { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; if (_servoData[pin] == NULL) { _digitalOutBuffer[0] = EXIOWRD; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = value; I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3); if (_command1Buffer[0] != EXIORDY) { DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin); } } else { if (value) value = 1; struct ServoData *s = _servoData[pin]; if (s != NULL) { // Use configured parameters this->_writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration); } else { /* simulate digital pin on PWM */ this->_writeAnalogue(vpin, value ? 4095 : 0, Instant | NoPowerOff, 0); } } } void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override { int pin = vpin - _firstVpin; #ifdef DIAG_IO DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"), vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F("")); #endif if (_deviceState == DEVSTATE_FAILED) return; if (value > 4095) value = 4095; else if (value < 0) value = 0; struct ServoData *s = _servoData[pin]; if (s == NULL) { // Servo pin not configured, so configure now using defaults s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1); if (s == NULL) return; // Check for memory allocation failure s->activePosition = 4095; s->inactivePosition = 0; s->currentPosition = value; s->profile = Instant | NoPowerOff; // Use instant profile (but not this time) } // Animated profile. Initiate the appropriate action. s->currentProfile = profile; uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit. s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds profileValue==Medium ? 20 : // 1.0 seconds profileValue==Slow ? 40 : // 2.0 seconds profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms) s->stepNumber = 0; s->toPosition = value; s->fromPosition = s->currentPosition; } void updatePosition(uint8_t pin) { struct ServoData *s = _servoData[pin]; if (s == NULL) return; // No pin configuration/state data if (s->numSteps == 0) return; // No animation in progress if (s->stepNumber == 0 && s->fromPosition == s->toPosition) { // Go straight to end of sequence, output final position. s->stepNumber = s->numSteps-1; } if (s->stepNumber < s->numSteps) { // Animation in progress, reposition servo s->stepNumber++; if ((s->currentProfile & ~NoPowerOff) == Bounce) { // Retrieve step positions from array in flash uint8_t profileValue = GETFLASH(&_bounceProfile[s->stepNumber]); s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition); } else { // All other profiles - calculate step by linear interpolation between from and to positions. s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition); } // Send servo command this->writePWM(pin, s->currentPosition); } else if (s->stepNumber < s->numSteps + _catchupSteps) { // We've finished animation, wait a little to allow servo to catch up s->stepNumber++; } else if (s->stepNumber == s->numSteps + _catchupSteps && s->currentPosition != 0) { s->numSteps = 0; // Done now. } } void writePWM(int pin, uint16_t value) { _command4Buffer[0] = EXIOWRAN; _command4Buffer[1] = pin; _command4Buffer[2] = value & 0xFF; _command4Buffer[3] = value >> 8; I2CManager.write(_i2cAddress, _command4Buffer, 4); } void _display() override { DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d Vpins %d-%d %S"), _i2cAddress, _majorVer, _minorVer, _patchVer, (int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); } uint8_t _i2cAddress; uint8_t _numDigitalPins = 0; uint8_t _numAnaloguePins = 0; byte _digitalOutBuffer[3]; uint8_t _versionBuffer[3]; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; byte* _digitalInputStates; byte* _analogueInputStates; uint8_t _digitalPinBytes = 0; uint8_t _analoguePinBytes = 0; byte _command1Buffer[1]; byte _command2Buffer[2]; byte _command4Buffer[4]; byte _receive3Buffer[3]; uint8_t* _analoguePinMap; // Servo specific struct ServoData { uint16_t activePosition : 12; // Config parameter uint16_t inactivePosition : 12; // Config parameter uint16_t currentPosition : 12; uint16_t fromPosition : 12; uint16_t toPosition : 12; uint8_t profile; // Config parameter uint16_t stepNumber; // Index of current step (starting from 0) uint16_t numSteps; // Number of steps in animation, or 0 if none in progress. uint8_t currentProfile; // profile being used for current animation. uint16_t duration; // time (tenths of a second) for animation to complete. }; // 14 bytes per element, i.e. per pin in use struct ServoData *_servoData[256]; static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off const unsigned int refreshInterval = 50; // refresh every 50ms unsigned long _lastRefresh = 0; // Profile for a bouncing signal or turnout // The profile below is in the range 0-100% and should be combined with the desired limits // of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here, // i.e. the bounce is the same on the down action as on the up action. First entry isn't used. const byte FLASH _bounceProfile[30] = {0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100}; // EX-IOExpander protocol flags enum { EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration EXIOVER = 0xE3, // Flag to get version EXIORDAN = 0xE4, // Flag to read an analogue input EXIOWRD = 0xE5, // Flag for digital write EXIORDD = 0xE6, // Flag to read digital input EXIOENAN = 0xE7, // Flag to enable an analogue pin EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM) EXIOERR = 0xEF, // Flag we've received an error }; }; #endif