/* * © 2022, Peter Cole. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create EX-IOExpander devices, these are defined in myHal.cpp: * (Note the device driver is included by default) * * void halSetup() { * // EXIOExpander::create(vpin, num_vpins, i2c_address); * EXIOExpander::create(800, 18, 0x65); * } * * All pins on an EX-IOExpander device are allocated according to the pin map for the specific * device in use. There is no way for the device driver to sanity check pins are used for the * correct purpose, however the EX-IOExpander device's pin map will prevent pins being used * incorrectly (eg. A6/7 on Nano cannot be used for digital input/output). */ #ifndef IO_EX_IOEXPANDER_H #define IO_EX_IOEXPANDER_H #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for EX-IOExpander. */ class EXIOExpander : public IODevice { public: enum ProfileType : uint8_t { Instant = 0, // Moves immediately between positions (if duration not specified) UseDuration = 0, // Use specified duration Fast = 1, // Takes around 500ms end-to-end Medium = 2, // 1 second end-to-end Slow = 3, // 2 seconds end-to-end Bounce = 4, // For semaphores/turnouts with a bit of bounce!! NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move. }; static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress); } private: // Constructor EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) { _firstVpin = firstVpin; _nPins = nPins; _i2cAddress = i2cAddress; addDevice(this); } void _begin() { // Initialise EX-IOExander device I2CManager.begin(); if (I2CManager.exists(_i2cAddress)) { _command4Buffer[0] = EXIOINIT; _command4Buffer[1] = _nPins; _command4Buffer[2] = _firstVpin & 0xFF; _command4Buffer[3] = _firstVpin >> 8; // Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline I2CManager.read(_i2cAddress, _receive3Buffer, 3, _command4Buffer, 4, &_i2crb); if (_receive3Buffer[0] == EXIOPINS) { _numDigitalPins = _receive3Buffer[1]; _numAnaloguePins = _receive3Buffer[2]; _digitalPinBytes = (_numDigitalPins + 7)/8; _digitalInputStates=(byte*) calloc(_digitalPinBytes,1); _analoguePinBytes = _numAnaloguePins * 2; _analogueInputStates = (byte*) calloc(_analoguePinBytes, 1); _analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1); } else { DIAG(F("ERROR configuring EX-IOExpander device, I2C:%s"), _i2cAddress.toString()); _deviceState = DEVSTATE_FAILED; return; } // We now need to retrieve the analogue pin map _command1Buffer[0] = EXIOINITA; I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1, &_i2crb); // Attempt to get version, if we don't get it, we don't care, don't go offline _command1Buffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1, &_i2crb); _majorVer = _versionBuffer[0]; _minorVer = _versionBuffer[1]; _patchVer = _versionBuffer[2]; DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"), _i2cAddress.toString(), _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]); #ifdef DIAG_IO _display(); #endif } else { DIAG(F("EX-IOExpander device not found, I2C:%s"), _i2cAddress.toString()); _deviceState = DEVSTATE_FAILED; } } // Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { if (paramCount != 1) return false; int pin = vpin - _firstVpin; if (configType == CONFIGURE_INPUT) { bool pullup = params[0]; _digitalOutBuffer[0] = EXIODPUP; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = pullup; I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3, &_i2crb); if (_command1Buffer[0] == EXIORDY) { return true; } else { DIAG(F("Vpin %d cannot be used as a digital input pin"), (int)vpin); return false; } } else { return false; } } // Analogue input pin configuration, used to enable on EX-IOExpander device int _configureAnalogIn(VPIN vpin) override { int pin = vpin - _firstVpin; _command2Buffer[0] = EXIOENAN; _command2Buffer[1] = pin; I2CManager.read(_i2cAddress, _command1Buffer, 1, _command2Buffer, 2, &_i2crb); if (_command1Buffer[0] == EXIORDY) { return true; } else { DIAG(F("Vpin %d cannot be used as an analogue input pin"), (int)vpin); return false; } return true; } // Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads) void _loop(unsigned long currentMicros) override { if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return uint8_t status = _i2crb.status; if (status == I2C_STATUS_PENDING) return; // If device busy, return if (status == I2C_STATUS_OK) { // If device ok, read input data if (_commandFlag) { if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay 10ms for digital read refresh _lastDigitalRead = currentMicros; _command1Buffer[0] = EXIORDD; I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1, &_i2crb); } } else { if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay 50ms for analogue read refresh _lastAnalogueRead = currentMicros; _command1Buffer[0] = EXIORDAN; byte _tempAnalogue[_analoguePinBytes]; // Setup temp buffer so reads come from known state I2CManager.read(_i2cAddress, _tempAnalogue, _analoguePinBytes, _command1Buffer, 1, &_i2crb); memcpy(_analogueInputStates, _tempAnalogue, _analoguePinBytes); // Copy temp buffer to states } } _commandFlag = !_commandFlag; // Need to delay here: digital in IO_Base 4000UL, analogue in IO_AnalogueInputs 10000UL (fast) or 1000000UL(slow) } else { DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); _deviceState = DEVSTATE_FAILED; } } // Obtain the correct analogue input value int _readAnalogue(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t _pinLSBByte; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { _pinLSBByte = aPin * 2; } } uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } // Obtain the correct digital input value int _read(VPIN vpin) override { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } void _write(VPIN vpin, int value) override { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; _digitalOutBuffer[0] = EXIOWRD; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = value; uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _digitalOutBuffer, 3); if (status != I2C_STATUS_OK) { DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); _deviceState = DEVSTATE_FAILED; } else { if (_command1Buffer[0] != EXIORDY) { DIAG(F("Vpin %d cannot be used as a digital output pin"), (int)vpin); } } } void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; #ifdef DIAG_IO DIAG(F("Servo: WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"), vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F("")); #endif _servoBuffer[0] = EXIOWRAN; _servoBuffer[1] = pin; _servoBuffer[2] = value & 0xFF; _servoBuffer[3] = value >> 8; _servoBuffer[4] = profile; _servoBuffer[5] = duration & 0xFF; _servoBuffer[6] = duration >> 8; uint8_t status = I2CManager.read(_i2cAddress, _command1Buffer, 1, _servoBuffer, 7); if (status != I2C_STATUS_OK) { DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status)); _deviceState = DEVSTATE_FAILED; } else { if (_command1Buffer[0] != EXIORDY) { DIAG(F("Vpin %d cannot be used as a servo/PWM pin"), (int)vpin); } } } void _display() override { DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %d-%d %S"), _i2cAddress.toString(), _majorVer, _minorVer, _patchVer, (int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); } I2CAddress _i2cAddress; uint8_t _numDigitalPins = 0; uint8_t _numAnaloguePins = 0; byte _digitalOutBuffer[3]; uint8_t _versionBuffer[3]; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; byte* _digitalInputStates; byte* _analogueInputStates; uint8_t _digitalPinBytes = 0; uint8_t _analoguePinBytes = 0; byte _command1Buffer[1]; byte _command2Buffer[2]; byte _command4Buffer[4]; byte _receive3Buffer[3]; byte _servoBuffer[7]; uint8_t* _analoguePinMap; I2CRB _i2crb; bool _commandFlag = 1; unsigned long _lastDigitalRead = 0; unsigned long _lastAnalogueRead = 0; const unsigned long _digitalRefresh = 10000UL; const unsigned long _analogueRefresh = 50000UL; // EX-IOExpander protocol flags enum { EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration EXIOVER = 0xE3, // Flag to get version EXIORDAN = 0xE4, // Flag to read an analogue input EXIOWRD = 0xE5, // Flag for digital write EXIORDD = 0xE6, // Flag to read digital input EXIOENAN = 0xE7, // Flag to enable an analogue pin EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM) EXIOERR = 0xEF, // Flag we've received an error }; }; #endif