/* * © 2022 Paul M Antoine * © 2021 Mike S * © 2021 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a SAMD21 based board // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #ifdef ARDUINO_ARCH_SAMD #include "FSH.h" //PMA temp debug #include "DIAG.h" //PMA temp debug #include "DCCTimer.h" INTERRUPT_CALLBACK interruptHandler=0; void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // Set up ADC to do faster reads... default for Arduino Zero platform configs is 436uS, // and we need sub-100uS. This code sets it to a read speed of around 21uS, and for now // enables 10-bit mode, although 12-bit is possible ADC->CTRLA.bit.ENABLE = 0; // disable ADC while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization ADC->CTRLB.reg &= 0b1111100011111111; // mask PRESCALER bits ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 64 ADC_CTRLB_RESSEL_10BIT; // Result on 10 bits default, 12 bits possible ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0 ADC->SAMPCTRL.reg = 0x00; // sampling Time Length = 0 ADC->CTRLA.bit.ENABLE = 1; // enable ADC while(ADC->STATUS.bit.SYNCBUSY == 1); // wait for synchronization // Timer setup - setup clock sources first REG_GCLK_GENDIV = GCLK_GENDIV_DIV(1) | // Divide 48MHz by 1 GCLK_GENDIV_ID(4); // Apply to GCLK4 while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization REG_GCLK_GENCTRL = GCLK_GENCTRL_GENEN | // Enable GCLK GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz clock source GCLK_GENCTRL_ID(4); // Select GCLK4 while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable generic clock 4 << GCLK_CLKCTRL_GEN_Pos | // Apply to GCLK4 GCLK_CLKCTRL_ID_TCC0_TCC1; // Feed GCLK to TCC0/1 while (GCLK->STATUS.bit.SYNCBUSY); // Assume we're using TCC0... as we're bit-bashing the DCC waveform output pins anyway // for "normal accuracy" DCC waveform generation. For high accuracy we're going to need // to a good deal more. The TCC waveform output pins are mux'd on the SAMD, and output // pins for each TCC are only available on certain pins TCC0->WAVE.reg = TCC_WAVE_WAVEGEN_NPWM; // Select NPWM as waveform while (TCC0->SYNCBUSY.bit.WAVE); // Wait for sync // Set the frequency TCC0->CTRLA.reg |= TCC_CTRLA_PRESCALER(TCC_CTRLA_PRESCALER_DIV1_Val); TCC0->PER.reg = CLOCK_CYCLES * 2; while (TCC0->SYNCBUSY.bit.PER); // Start the timer TCC0->CTRLA.bit.ENABLE = 1; while (TCC0->SYNCBUSY.bit.ENABLE); // Set the interrupt condition, priority and enable it in the NVIC TCC0->INTENSET.reg = TCC_INTENSET_OVF; // Only interrupt on overflow NVIC_SetPriority((IRQn_Type)TCC0_IRQn, 0); // Make this highest priority NVIC_EnableIRQ((IRQn_Type)TCC0_IRQn); // Enable the interrupt interrupts(); } // Timer IRQ handlers replace the dummy handlers (in cortex_handlers) // copied from rf24 branch void TCC0_Handler() { if(TCC0->INTFLAG.bit.OVF) { TCC0->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } void TCC1_Handler() { if(TCC1->INTFLAG.bit.OVF) { TCC1->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } void TCC2_Handler() { if(TCC2->INTFLAG.bit.OVF) { TCC2->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } bool DCCTimer::isPWMPin(byte pin) { //TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM, // there's no support yet for High Accuracy, so for now return false // return digitalPinHasPWM(pin); return false; } void DCCTimer::setPWM(byte pin, bool high) { // TODO: High Accuracy mode is not supported as yet, and may never need to be (void) pin; (void) high; } void DCCTimer::clearPWM() { return; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C; volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040; // volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044; // volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; return (int)(&top - reinterpret_cast(sbrk(0))); } #endif