/* * © 2022-2024 Paul M Antoine * © 2021 Mike S * © 2021 Fred Decker * © 2020-2023 Harald Barth * © 2020-2021 Chris Harlow * © 2023 Colin Murdoch * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see <https://www.gnu.org/licenses/>. */ #include <Arduino.h> #include "MotorDriver.h" #include "DCCWaveform.h" #include "DCCTimer.h" #include "DIAG.h" #include "EXRAIL2.h" unsigned long MotorDriver::globalOverloadStart = 0; volatile portreg_t shadowPORTA; volatile portreg_t shadowPORTB; volatile portreg_t shadowPORTC; #if defined(ARDUINO_ARCH_STM32) volatile portreg_t shadowPORTD; volatile portreg_t shadowPORTE; volatile portreg_t shadowPORTF; volatile portreg_t shadowPORTG; volatile portreg_t shadowPORTH; #endif MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin, byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) { const FSH * warnString = F("** WARNING **"); invertPower=power_pin < 0; if (invertPower) { powerPin = 0-power_pin; IODevice::write(powerPin,HIGH);// set to OUTPUT and off } else { powerPin = power_pin; IODevice::write(powerPin,LOW);// set to OUTPUT and off } signalPin=signal_pin; getFastPin(F("SIG"),signalPin,fastSignalPin); pinMode(signalPin, OUTPUT); fastSignalPin.shadowinout = NULL; if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) { DIAG(F("Found PORTA pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTA; } if (HAVE_PORTB(fastSignalPin.inout == &PORTB)) { DIAG(F("Found PORTB pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTB; } if (HAVE_PORTC(fastSignalPin.inout == &PORTC)) { DIAG(F("Found PORTC pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTC; } if (HAVE_PORTD(fastSignalPin.inout == &PORTD)) { DIAG(F("Found PORTD pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTD; } if (HAVE_PORTE(fastSignalPin.inout == &PORTE)) { DIAG(F("Found PORTE pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTE; } if (HAVE_PORTF(fastSignalPin.inout == &PORTF)) { DIAG(F("Found PORTF pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTF; } if (HAVE_PORTG(fastSignalPin.inout == &PORTG)) { DIAG(F("Found PORTG pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTG; } if (HAVE_PORTH(fastSignalPin.inout == &PORTH)) { DIAG(F("Found PORTH pin %d"),signalPin); fastSignalPin.shadowinout = fastSignalPin.inout; fastSignalPin.inout = &shadowPORTF; } signalPin2=signal_pin2; if (signalPin2!=UNUSED_PIN) { dualSignal=true; getFastPin(F("SIG2"),signalPin2,fastSignalPin2); pinMode(signalPin2, OUTPUT); fastSignalPin2.shadowinout = NULL; if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) { DIAG(F("Found PORTA pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTA; } if (HAVE_PORTB(fastSignalPin2.inout == &PORTB)) { DIAG(F("Found PORTB pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTB; } if (HAVE_PORTC(fastSignalPin2.inout == &PORTC)) { DIAG(F("Found PORTC pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTC; } if (HAVE_PORTD(fastSignalPin2.inout == &PORTD)) { DIAG(F("Found PORTD pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTD; } if (HAVE_PORTE(fastSignalPin2.inout == &PORTE)) { DIAG(F("Found PORTE pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTE; } if (HAVE_PORTF(fastSignalPin2.inout == &PORTF)) { DIAG(F("Found PORTF pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTF; } if (HAVE_PORTG(fastSignalPin2.inout == &PORTG)) { DIAG(F("Found PORTG pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTG; } if (HAVE_PORTH(fastSignalPin2.inout == &PORTH)) { DIAG(F("Found PORTH pin %d"),signalPin2); fastSignalPin2.shadowinout = fastSignalPin2.inout; fastSignalPin2.inout = &shadowPORTH; } } else dualSignal=false; if (brake_pin!=UNUSED_PIN){ invertBrake=brake_pin < 0; if (invertBrake) brake_pin = 0-brake_pin; if (brake_pin > MAX_PIN) DIAG(F("%S Brake pin %d > %d"), warnString, brake_pin, MAX_PIN); brakePin=(byte)brake_pin; getFastPin(F("BRAKE"),brakePin,fastBrakePin); // if brake is used for railcom cutout we need to do PORTX register trick here as well pinMode(brakePin, OUTPUT); setBrake(true); // start with brake on in case we hace DC stuff going on } else { brakePin=UNUSED_PIN; } currentPin=current_pin; if (currentPin!=UNUSED_PIN) { int ret = ADCee::init(currentPin); if (ret < -1010) { // XXX give value a name later DIAG(F("ADCee::init error %d, disable current pin %d"), ret, currentPin); currentPin = UNUSED_PIN; } } senseOffset=0; // value can not be obtained until waveform is activated if (fault_pin != UNUSED_PIN) { invertFault=fault_pin < 0; if (invertFault) fault_pin = 0-fault_pin; if (fault_pin > MAX_PIN) DIAG(F("%S Fault pin %d > %d"), warnString, fault_pin, MAX_PIN); faultPin=(byte)fault_pin; DIAG(F("Fault pin = %d invert %d"), faultPin, invertFault); getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin); pinMode(faultPin, INPUT); } else { faultPin=UNUSED_PIN; } // This conversion performed at compile time so the remainder of the code never needs // float calculations or libraray code. senseFactorInternal=sense_factor * senseScale; tripMilliamps=trip_milliamps; #ifdef MAX_CURRENT if (MAX_CURRENT > 0 && MAX_CURRENT < tripMilliamps) tripMilliamps = MAX_CURRENT; #endif rawCurrentTripValue=mA2raw(tripMilliamps); if (rawCurrentTripValue + senseOffset > ADCee::ADCmax()) { // This would mean that the values obtained from the ADC never // can reach the trip value. So independent of the current, the // short circuit protection would never trip. So we adjust the // trip value so that it is tiggered when the ADC reports it's // maximum value instead. // DIAG(F("Changing short detection value from %d to %d mA"), // raw2mA(rawCurrentTripValue), raw2mA(ADCee::ADCmax()-senseOffset)); rawCurrentTripValue=ADCee::ADCmax()-senseOffset; } if (currentPin==UNUSED_PIN) DIAG(F("%S No current or short detection"), warnString); else { DIAG(F("Pin %d Max %dmA (%d)"), currentPin, raw2mA(rawCurrentTripValue), rawCurrentTripValue); // self testing diagnostic for the non-float converters... may be removed when happy // DIAG(F("senseFactorInternal=%d raw2mA(1000)=%d mA2Raw(1000)=%d"), // senseFactorInternal, raw2mA(1000),mA2raw(1000)); } progTripValue = mA2raw(TRIP_CURRENT_PROG); } bool MotorDriver::isPWMCapable() { return (!dualSignal) && DCCTimer::isPWMPin(signalPin); } void MotorDriver::setPower(POWERMODE mode) { if (powerMode == mode) return; //DIAG(F("Track %c POWERMODE=%d"), trackLetter, (int)mode); lastPowerChange[(int)mode] = micros(); if (mode == POWERMODE::OVERLOAD) globalOverloadStart = lastPowerChange[(int)mode]; bool on=(mode==POWERMODE::ON || mode ==POWERMODE::ALERT); if (on) { // when switching a track On, we need to check the crrentOffset with the pin OFF if (powerMode==POWERMODE::OFF && currentPin!=UNUSED_PIN) { senseOffset = ADCee::read(currentPin); DIAG(F("Track %c sensOffset=%d"),trackLetter,senseOffset); } IODevice::write(powerPin,invertPower ? LOW : HIGH); if (isProgTrack) DCCWaveform::progTrack.clearResets(); } else { IODevice::write(powerPin,invertPower ? HIGH : LOW); } powerMode=mode; } // setBrake applies brake if on == true. So to get // voltage from the motor bride one needs to do a // setBrake(false). // If the brakePin is negative that means the sense // of the brake pin on the motor bridge is inverted // (HIGH == release brake) and setBrake does // compensate for that. // void MotorDriver::setBrake(bool on, bool interruptContext) { if (brakePin == UNUSED_PIN) return; if (!interruptContext) {noInterrupts();} if (on ^ invertBrake) setHIGH(fastBrakePin); else setLOW(fastBrakePin); if (!interruptContext) {interrupts();} } bool MotorDriver::canMeasureCurrent() { return currentPin!=UNUSED_PIN; } /* * Return the current reading as pin reading 0 to max resolution (1024 or 4096). * If the fault pin is activated return a negative current to show active fault pin. * As there is no -0, cheat a little and return -1 in that case. * * senseOffset handles the case where a shield returns values above or below * a central value depending on direction. * * Bool fromISR should be adjusted dependent how function is called */ int MotorDriver::getCurrentRaw(bool fromISR) { (void)fromISR; if (currentPin==UNUSED_PIN) return 0; int current; current = ADCee::read(currentPin, fromISR); // here one can diag raw value // if (fromISR == false) DIAG(F("%c: %d"), trackLetter, current); current = current-senseOffset; // adjust with offset if (current<0) current=0-current; // current >= 0 here, we use negative current as fault pin flag if ((faultPin != UNUSED_PIN) && powerPin) { if (invertFault ? isHIGH(fastFaultPin) : isLOW(fastFaultPin)) return (current == 0 ? -1 : -current); } return current; } #ifdef ANALOG_READ_INTERRUPT /* * This should only be called in interrupt context * Copies current value from HW to cached value in * Motordriver. */ #pragma GCC push_options #pragma GCC optimize ("-O3") bool MotorDriver::sampleCurrentFromHW() { byte low, high; //if (!bit_is_set(ADCSRA, ADIF)) if (bit_is_set(ADCSRA, ADSC)) return false; // if ((ADMUX & mask) != (currentPin - A0)) // return false; low = ADCL; //must read low before high high = ADCH; bitSet(ADCSRA, ADIF); sampleCurrent = (high << 8) | low; sampleCurrentTimestamp = millis(); return true; } void MotorDriver::startCurrentFromHW() { #if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) const byte mask = 7; #else const byte mask = 31; #endif ADMUX=(1<<REFS0)|((currentPin-A0) & mask); //select AVCC as reference and set MUX bitSet(ADCSRA,ADSC); // start conversion } #pragma GCC pop_options #endif //ANALOG_READ_INTERRUPT #if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32) #ifdef VARIABLE_TONES uint16_t taurustones[28] = { 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 523, 587, 659, 698, 494, 440, 392, 249, 330, 284, 262, 247, 220, 196, 175, 165 }; #endif #endif void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/) { if (brakePin == UNUSED_PIN) return; // spedcoode is a dcc speed & direction byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127 byte tDir=speedcode & 0x80; byte brake; if (tSpeed <= 1) brake = 255; else if (tSpeed >= 127) brake = 0; else brake = 2 * (128-tSpeed); { // new block because of variable f #if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32) int f = frequency; #ifdef VARIABLE_TONES if (tSpeed > 2) { if (tSpeed <= 58) { f = taurustones[ (tSpeed-2)/2 ] ; } } #endif //DIAG(F("Brake pin %d value %d freqency %d"), brakePin, brake, f); DCCTimer::DCCEXanalogWrite(brakePin, brake, invertBrake); DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency #else // all AVR here DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps analogWrite(brakePin, invertBrake ? 255-brake : brake); #endif } //DIAG(F("DCSignal %d"), speedcode); if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) { noInterrupts(); HAVE_PORTA(shadowPORTA=PORTA); setSignal(tDir); HAVE_PORTA(PORTA=shadowPORTA); interrupts(); } else if (HAVE_PORTB(fastSignalPin.shadowinout == &PORTB)) { noInterrupts(); HAVE_PORTB(shadowPORTB=PORTB); setSignal(tDir); HAVE_PORTB(PORTB=shadowPORTB); interrupts(); } else if (HAVE_PORTC(fastSignalPin.shadowinout == &PORTC)) { noInterrupts(); HAVE_PORTC(shadowPORTC=PORTC); setSignal(tDir); HAVE_PORTC(PORTC=shadowPORTC); interrupts(); } else if (HAVE_PORTD(fastSignalPin.shadowinout == &PORTD)) { noInterrupts(); HAVE_PORTD(shadowPORTD=PORTD); setSignal(tDir); HAVE_PORTD(PORTD=shadowPORTD); interrupts(); } else if (HAVE_PORTE(fastSignalPin.shadowinout == &PORTE)) { noInterrupts(); HAVE_PORTE(shadowPORTE=PORTE); setSignal(tDir); HAVE_PORTE(PORTE=shadowPORTE); interrupts(); } else if (HAVE_PORTF(fastSignalPin.shadowinout == &PORTF)) { noInterrupts(); HAVE_PORTF(shadowPORTF=PORTF); setSignal(tDir); HAVE_PORTF(PORTF=shadowPORTF); interrupts(); } else if (HAVE_PORTG(fastSignalPin.shadowinout == &PORTG)) { noInterrupts(); HAVE_PORTG(shadowPORTG=PORTG); setSignal(tDir); HAVE_PORTG(PORTG=shadowPORTG); interrupts(); } else if (HAVE_PORTH(fastSignalPin.shadowinout == &PORTH)) { noInterrupts(); HAVE_PORTH(shadowPORTH=PORTH); setSignal(tDir); HAVE_PORTH(PORTH=shadowPORTH); interrupts(); } else { noInterrupts(); setSignal(tDir); interrupts(); } } void MotorDriver::throttleInrush(bool on) { if (brakePin == UNUSED_PIN) return; if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT | TRACK_MODE_BOOST))) return; byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec #if defined(ARDUINO_ARCH_ESP32) if(on) { DCCTimer::DCCEXInrushControlOn(brakePin, duty, invertBrake); } else { ledcDetachPin(brakePin); // not DCCTimer::DCCEXledcDetachPin() as we have not // registered the pin in the pin to channel array } #elif defined(ARDUINO_ARCH_STM32) if(on) { DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max DCCTimer::DCCEXanalogWrite(brakePin,duty,invertBrake); } else { pinMode(brakePin, OUTPUT); } #else // all AVR here if (invertBrake) duty = 255-duty; if(on){ DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max } analogWrite(brakePin,duty); #endif } unsigned int MotorDriver::raw2mA( int raw) { //DIAG(F("%d = %d * %d / %d"), (int32_t)raw * senseFactorInternal / senseScale, raw, senseFactorInternal, senseScale); return (int32_t)raw * senseFactorInternal / senseScale; } unsigned int MotorDriver::mA2raw( unsigned int mA) { //DIAG(F("%d = %d * %d / %d"), (int32_t)mA * senseScale / senseFactorInternal, mA, senseScale, senseFactorInternal); return (int32_t)mA * senseScale / senseFactorInternal; } void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) { // DIAG(F("MotorDriver %S Pin=%d,"),type,pin); (void) type; // avoid compiler warning if diag not used above. #if defined(ARDUINO_ARCH_SAMD) PortGroup *port = digitalPinToPort(pin); #elif defined(ARDUINO_ARCH_STM32) GPIO_TypeDef *port = digitalPinToPort(pin); #else uint8_t port = digitalPinToPort(pin); #endif if (input) result.inout = portInputRegister(port); else result.inout = portOutputRegister(port); result.maskHIGH = digitalPinToBitMask(pin); result.maskLOW = ~result.maskHIGH; // DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH); } /////////////////////////////////////////////////////////////////////////////////////////// // checkPowerOverload(useProgLimit, trackno) // bool useProgLimit: Trackmanager knows if this track is in prog mode or in main mode // byte trackno: trackmanager knows it's number (could be skipped?) // // Short ciruit handling strategy: // // There are the following power states: ON ALERT OVERLOAD OFF // OFF state is only changed to/from manually. Power is on // during ON and ALERT. Power is off during OVERLOAD and OFF. // The overload mechanism changes between the other states like // // ON -1-> ALERT -2-> OVERLOAD -3-> ALERT -4-> ON // or // ON -1-> ALERT -4-> ON // // Times are in class MotorDriver (MotorDriver.h). // // 1. ON to ALERT: // Transition on fault pin condition or current overload // // 2. ALERT to OVERLOAD: // Transition happens if different timeouts have elapsed. // If only the fault pin is active, timeout is // POWER_SAMPLE_IGNORE_FAULT_LOW (100ms) // If only overcurrent is detected, timeout is // POWER_SAMPLE_IGNORE_CURRENT (100ms) // If fault pin and overcurrent are active, timeout is // POWER_SAMPLE_IGNORE_FAULT_HIGH (5ms) // Transition to OVERLOAD turns off power to the affected // output (unless fault pins are shared) // If the transition conditions are not fullfilled, // transition according to 4 is tested. // // 3. OVERLOAD to ALERT // Transiton happens when timeout has elapsed, timeout // is named power_sample_overload_wait. It is started // at POWER_SAMPLE_OVERLOAD_WAIT (40ms) at first entry // to OVERLOAD and then increased by a factor of 2 // at further entries to the OVERLOAD condition. This // happens until POWER_SAMPLE_RETRY_MAX (10sec) is reached. // power_sample_overload_wait is reset by a poweroff or // a POWER_SAMPLE_ALL_GOOD (5sec) period during ON. // After timeout power is turned on again and state // goes back to ALERT. // // 4. ALERT to ON // Transition happens by watching the current and fault pin // samples during POWER_SAMPLE_ALERT_GOOD (20ms) time. If // values have been good during that time, transition is // made back to ON. Note that even if state is back to ON, // the power_sample_overload_wait time is first reset // later (see above). // // The time keeping is handled by timestamps lastPowerChange[] // which are set by each power change and by lastBadSample which // keeps track if conditions during ALERT have been good enough // to go back to ON. The time differences are calculated by // microsSinceLastPowerChange(). // void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) { switch (powerMode) { case POWERMODE::OFF: { lastPowerMode = POWERMODE::OFF; power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; break; } case POWERMODE::ON: { lastPowerMode = POWERMODE::ON; bool cF = checkFault(); bool cC = checkCurrent(useProgLimit); if(cF || cC ) { if (cC) { unsigned int mA=raw2mA(lastCurrent); DIAG(F("TRACK %c ALERT %s %dmA"), trackno + 'A', cF ? "FAULT" : "", mA); } else { DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A'); } setPower(POWERMODE::ALERT); if ((trackMode & TRACK_MODE_AUTOINV) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){ DIAG(F("TRACK %c INVERT"), trackno + 'A'); invertOutput(); } break; } // all well if (microsSinceLastPowerChange(POWERMODE::ON) > POWER_SAMPLE_ALL_GOOD) { power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; } break; } case POWERMODE::ALERT: { // set local flags that handle how much is output to diag (do not output duplicates) bool notFromOverload = (lastPowerMode != POWERMODE::OVERLOAD); bool powerModeChange = (powerMode != lastPowerMode); unsigned long now = micros(); if (powerModeChange) lastBadSample = now; lastPowerMode = POWERMODE::ALERT; // check how long we have been in this state unsigned long mslpc = microsSinceLastPowerChange(POWERMODE::ALERT); if(checkFault()) { throttleInrush(true); lastBadSample = now; unsigned long timeout = checkCurrent(useProgLimit) ? POWER_SAMPLE_IGNORE_FAULT_HIGH : POWER_SAMPLE_IGNORE_FAULT_LOW; if ( mslpc < timeout) { if (powerModeChange) DIAG(F("TRACK %c FAULT PIN (%M ignore)"), trackno + 'A', timeout); break; } DIAG(F("TRACK %c FAULT PIN detected after %4M. Pause %4M)"), trackno + 'A', mslpc, power_sample_overload_wait); throttleInrush(false); setPower(POWERMODE::OVERLOAD); break; } if (checkCurrent(useProgLimit)) { lastBadSample = now; if (mslpc < POWER_SAMPLE_IGNORE_CURRENT) { if (powerModeChange) { unsigned int mA=raw2mA(lastCurrent); DIAG(F("TRACK %c CURRENT (%M ignore) %dmA"), trackno + 'A', POWER_SAMPLE_IGNORE_CURRENT, mA); } break; } unsigned int mA=raw2mA(lastCurrent); unsigned int maxmA=raw2mA(tripValue); DIAG(F("TRACK %c POWER OVERLOAD %4dmA (max %4dmA) detected after %4M. Pause %4M"), trackno + 'A', mA, maxmA, mslpc, power_sample_overload_wait); throttleInrush(false); setPower(POWERMODE::OVERLOAD); break; } // all well unsigned long goodtime = micros() - lastBadSample; if (goodtime > POWER_SAMPLE_ALERT_GOOD) { if (true || notFromOverload) { // we did a RESTORE message XXX unsigned int mA=raw2mA(lastCurrent); DIAG(F("TRACK %c NORMAL (after %M/%M) %dmA"), trackno + 'A', goodtime, mslpc, mA); } throttleInrush(false); setPower(POWERMODE::ON); } break; } case POWERMODE::OVERLOAD: { lastPowerMode = POWERMODE::OVERLOAD; unsigned long mslpc = (commonFaultPin ? (micros() - globalOverloadStart) : microsSinceLastPowerChange(POWERMODE::OVERLOAD)); if (mslpc > power_sample_overload_wait) { // adjust next wait time power_sample_overload_wait *= 2; if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX) power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX; #ifdef EXRAIL_ACTIVE DIAG(F("Calling EXRAIL")); RMFT2::powerEvent(trackno, true); // Tell EXRAIL we have an overload #endif // power on test DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc); setPower(POWERMODE::ALERT); } break; } default: break; } }