/* Copyright (C) 2011 J. Coliz Copyright (c) 2007 Stefan Engelke Portions Copyright (C) 2011 Greg Copeland This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include "RF24.h" #ifdef SERIAL_DEBUG #define IF_SERIAL_DEBUG(x) ({x;}) #else #define IF_SERIAL_DEBUG(x) #endif // SERIAL_DEBUG /****************************************************************************/ void RF24::csn(bool mode) { #ifdef ARDUINO_ARCH_AVR if (!csnPtr) return; noInterrupts(); if (mode) *csnPtr |= csnMask; else *csnPtr &= ~csnMask; interrupts(); #else digitalWrite(csn_pin, mode); #endif delayMicroseconds(csDelay); } /****************************************************************************/ void RF24::ce(bool level) { //Allow for 3-pin use on ATTiny if (ce_pin != csn_pin) { #ifdef ARDUINO_ARCH_AVR if (!cePtr) return; noInterrupts(); if (level) *cePtr |= ceMask; else *cePtr &= ~ceMask; interrupts(); #else digitalWrite(ce_pin, level); #endif } } /****************************************************************************/ inline void RF24::beginTransaction() { _spi->beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0)); csn(LOW); } /****************************************************************************/ inline void RF24::endTransaction() { csn(HIGH); _spi->endTransaction(); } /****************************************************************************/ void RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { beginTransaction(); status = _spi->transfer(R_REGISTER | reg); while (len--) { *buf++ = _spi->transfer(0xFF); } endTransaction(); } /****************************************************************************/ uint8_t RF24::read_register(uint8_t reg) { uint8_t result; beginTransaction(); status = _spi->transfer(R_REGISTER | reg); result = _spi->transfer(0xff); endTransaction(); return result; } /****************************************************************************/ void RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { beginTransaction(); status = _spi->transfer(W_REGISTER | reg); while (len--) { _spi->transfer(*buf++); } endTransaction(); } /****************************************************************************/ void RF24::write_register(uint8_t reg, uint8_t value, bool is_cmd_only) { if (is_cmd_only) { if (reg != RF24_NOP) { // don't print the get_status() operation IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x)\r\n"), reg)); } beginTransaction(); status = _spi->transfer(W_REGISTER | reg); endTransaction(); } else { IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"), reg, value)); beginTransaction(); status = _spi->transfer(W_REGISTER | reg); _spi->transfer(value); endTransaction(); } } /****************************************************************************/ void RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType) { const uint8_t* current = reinterpret_cast(buf); uint8_t blank_len = !data_len ? 1 : 0; if (!dynamic_payloads_enabled) { data_len = rf24_min(data_len, payload_size); blank_len = payload_size - data_len; } else { data_len = rf24_min(data_len, 32); } //printf("[Writing %u bytes %u blanks]",data_len,blank_len); IF_SERIAL_DEBUG(printf("[Writing %u bytes %u blanks]\n", data_len, blank_len); ); beginTransaction(); status = _spi->transfer(writeType); while (data_len--) { _spi->transfer(*current++); } while (blank_len--) { _spi->transfer(0); } endTransaction(); } /****************************************************************************/ void RF24::read_payload(void* buf, uint8_t data_len) { uint8_t* current = reinterpret_cast(buf); uint8_t blank_len = 0; if (!dynamic_payloads_enabled) { data_len = rf24_min(data_len, payload_size); blank_len = payload_size - data_len; } else { data_len = rf24_min(data_len, 32); } //printf("[Reading %u bytes %u blanks]",data_len,blank_len); IF_SERIAL_DEBUG(printf("[Reading %u bytes %u blanks]\n", data_len, blank_len); ); beginTransaction(); status = _spi->transfer(R_RX_PAYLOAD); while (data_len--) { *current++ = _spi->transfer(0xFF); } while (blank_len--) { _spi->transfer(0xff); } endTransaction(); } /****************************************************************************/ uint8_t RF24::flush_rx(void) { write_register(FLUSH_RX, RF24_NOP, true); return status; } /****************************************************************************/ uint8_t RF24::flush_tx(void) { write_register(FLUSH_TX, RF24_NOP, true); return status; } /****************************************************************************/ uint8_t RF24::get_status(void) { write_register(RF24_NOP, RF24_NOP, true); return status; } /****************************************************************************/ RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed) :ce_pin(_cepin), csn_pin(_cspin), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false), csDelay(0) { _init_obj(); } /****************************************************************************/ RF24::RF24(uint32_t _spi_speed) :ce_pin(0xFFFF), csn_pin(0xFFFF), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false), csDelay(0) { _init_obj(); } /****************************************************************************/ void RF24::_init_obj() { _spi = &SPI; pipe0_reading_address[0] = 0; if(spi_speed <= 35000){ //Handle old BCM2835 speed constants, default to RF24_SPI_SPEED spi_speed = RF24_SPI_SPEED; } } /****************************************************************************/ void RF24::setChannel(uint8_t channel) { const uint8_t max_channel = 125; write_register(RF_CH, rf24_min(channel, max_channel)); } uint8_t RF24::getChannel() { return read_register(RF_CH); } /****************************************************************************/ void RF24::setPayloadSize(uint8_t size) { // payload size must be in range [1, 32] payload_size = rf24_max(1, rf24_min(32, size)); // write static payload size setting for all pipes for (uint8_t i = 0; i < 6; ++i) write_register(RX_PW_P0 + i, payload_size); } /****************************************************************************/ uint8_t RF24::getPayloadSize(void) { return payload_size; } /****************************************************************************/ bool RF24::begin(_SPI* spiBus) { _spi = spiBus; if (_init_pins()) return _init_radio(); return false; } /****************************************************************************/ bool RF24::begin(_SPI* spiBus, uint16_t _cepin, uint16_t _cspin) { ce_pin = _cepin; csn_pin = _cspin; return begin(spiBus); } /****************************************************************************/ bool RF24::begin(uint16_t _cepin, uint16_t _cspin) { ce_pin = _cepin; csn_pin = _cspin; return begin(); } /****************************************************************************/ bool RF24::begin(void) { _spi->begin(); return _init_pins() && _init_radio(); } /****************************************************************************/ bool RF24::_init_pins() { if (!isValid()) { // didn't specify the CSN & CE pins to c'tor nor begin() return false; } // Initialize pins if (ce_pin != csn_pin) { pinMode(ce_pin, OUTPUT); pinMode(csn_pin, OUTPUT); } #ifdef ARDUINO_ARCH_AVR if (ce_pin < NUM_DIGITAL_PINS) { cePtr = portOutputRegister(digitalPinToPort(ce_pin)); ceMask = digitalPinToBitMask(ce_pin); } else cePtr = NULL; if (csn_pin < NUM_DIGITAL_PINS) { csnPtr = portOutputRegister(digitalPinToPort(csn_pin)); csnMask = digitalPinToBitMask(csn_pin); } else csnPtr = NULL; #endif ce(LOW); csn(HIGH); return true; // assuming pins are connected properly } /****************************************************************************/ bool RF24::_init_radio() { // Must allow the radio time to settle else configuration bits will not necessarily stick. // This is actually only required following power up but some settling time also appears to // be required after resets too. For full coverage, we'll always assume the worst. // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. delay(5); // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See datasheet for a more complete explanation. setRetries(5, 15); // Then set the data rate to the slowest (and most reliable) speed supported by all // hardware. setDataRate(RF24_1MBPS); // detect if is a plus variant & use old toggle features command accordingly uint8_t before_toggle = read_register(FEATURE); toggle_features(); uint8_t after_toggle = read_register(FEATURE); _is_p_variant = before_toggle == after_toggle; if (after_toggle){ if (_is_p_variant){ // module did not experience power-on-reset (#401) toggle_features(); } // allow use of multicast parameter and dynamic payloads by default write_register(FEATURE, 0); } ack_payloads_enabled = false; // ack payloads disabled by default write_register(DYNPD, 0); // disable dynamic payloads by default (for all pipes) dynamic_payloads_enabled = false; write_register(EN_AA, 0x3F); // enable auto-ack on all pipes write_register(EN_RXADDR, 3); // only open RX pipes 0 & 1 setPayloadSize(32); // set static payload size to 32 (max) bytes by default setAddressWidth(5); // set default address length to (max) 5 bytes // Set up default configuration. Callers can always change it later. // This channel should be universally safe and not bleed over into adjacent // spectrum. setChannel(76); // Reset current status // Notice reset and flush is the last thing we do write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Flush buffers flush_rx(); flush_tx(); // Clear CONFIG register: // Reflect all IRQ events on IRQ pin // Enable PTX // Power Up // 16-bit CRC (CRC required by auto-ack) // Do not write CE high so radio will remain in standby I mode // PTX should use only 22uA of power write_register(NRF_CONFIG, (_BV(EN_CRC) | _BV(CRCO)) ); config_reg = read_register(NRF_CONFIG); powerUp(); // if config is not set correctly then there was a bad response from module return config_reg == (_BV(EN_CRC) | _BV(CRCO) | _BV(PWR_UP)) ? true : false; } /****************************************************************************/ bool RF24::isChipConnected() { uint8_t setup = read_register(SETUP_AW); if (setup >= 1 && setup <= 3) { return true; } return false; } /****************************************************************************/ bool RF24::isValid() { return ce_pin != 0xFFFF && csn_pin != 0xFFFF; } /****************************************************************************/ void RF24::startListening(void) { powerUp(); config_reg |= _BV(PRIM_RX); write_register(NRF_CONFIG, config_reg); write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); ce(HIGH); // Restore the pipe0 address, if exists if (pipe0_reading_address[0] > 0) { write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); } else { closeReadingPipe(0); } } /****************************************************************************/ static const PROGMEM uint8_t child_pipe_enable[] = {ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5}; void RF24::stopListening(void) { ce(LOW); delayMicroseconds(txDelay); if (ack_payloads_enabled){ flush_tx(); } config_reg &= ~_BV(PRIM_RX); write_register(NRF_CONFIG, config_reg); write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0 } /****************************************************************************/ void RF24::powerDown(void) { ce(LOW); // Guarantee CE is low on powerDown config_reg &= ~_BV(PWR_UP); write_register(NRF_CONFIG,config_reg); } /****************************************************************************/ //Power up now. Radio will not power down unless instructed by MCU for config changes etc. void RF24::powerUp(void) { // if not powered up then power up and wait for the radio to initialize if (!(config_reg & _BV(PWR_UP))) { config_reg |= _BV(PWR_UP); write_register(NRF_CONFIG, config_reg); // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet delayMicroseconds(RF24_POWERUP_DELAY); } } /******************************************************************/ #if defined(FAILURE_HANDLING) void RF24::errNotify() { #if defined(SERIAL_DEBUG) printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); #endif #if defined(FAILURE_HANDLING) failureDetected = 1; #else delay(5000); #endif } #endif /******************************************************************/ //Similar to the previous write, clears the interrupt flags bool RF24::write(const void* buf, uint8_t len, const bool multicast) { //Start Writing startFastWrite(buf, len, multicast); //Wait until complete or failed #if defined(FAILURE_HANDLING) uint32_t timer = millis(); #endif // defined(FAILURE_HANDLING) while (!(get_status() & (_BV(TX_DS) | _BV(MAX_RT)))) { #if defined(FAILURE_HANDLING) if (millis() - timer > 95) { errNotify(); return 0; } #endif } ce(LOW); write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); //Max retries exceeded if (status & _BV(MAX_RT)) { flush_tx(); // Only going to be 1 packet in the FIFO at a time using this method, so just flush return 0; } //TX OK 1 or 0 return 1; } bool RF24::write(const void* buf, uint8_t len) { return write(buf, len, 0); } /****************************************************************************/ //For general use, the interrupt flags are not important to clear bool RF24::writeBlocking(const void* buf, uint8_t len, uint32_t timeout) { //Block until the FIFO is NOT full. //Keep track of the MAX retries and set auto-retry if seeing failures //This way the FIFO will fill up and allow blocking until packets go through //The radio will auto-clear everything in the FIFO as long as CE remains high uint32_t timer = millis(); // Get the time that the payload transmission started while ((get_status() & (_BV(TX_FULL)))) { // Blocking only if FIFO is full. This will loop and block until TX is successful or timeout if (status & _BV(MAX_RT)) { // If MAX Retries have been reached reUseTX(); // Set re-transmit and clear the MAX_RT interrupt flag if (millis() - timer > timeout) { return 0; // If this payload has exceeded the user-defined timeout, exit and return 0 } } #if defined(FAILURE_HANDLING) if (millis() - timer > (timeout + 95)) { errNotify(); return 0; } #endif } //Start Writing startFastWrite(buf, len, 0); // Write the payload if a buffer is clear return 1; // Return 1 to indicate successful transmission } /****************************************************************************/ void RF24::reUseTX() { write_register(NRF_STATUS, _BV(MAX_RT)); //Clear max retry flag write_register(REUSE_TX_PL, RF24_NOP, true); ce(LOW); //Re-Transfer packet ce(HIGH); } /****************************************************************************/ bool RF24::writeFast(const void* buf, uint8_t len, const bool multicast) { //Block until the FIFO is NOT full. //Keep track of the MAX retries and set auto-retry if seeing failures //Return 0 so the user can control the retrys and set a timer or failure counter if required //The radio will auto-clear everything in the FIFO as long as CE remains high #if defined(FAILURE_HANDLING) uint32_t timer = millis(); #endif //Blocking only if FIFO is full. This will loop and block until TX is successful or fail while ((get_status() & (_BV(TX_FULL)))) { if (status & _BV(MAX_RT)) { return 0; //Return 0. The previous payload has not been retransmitted // From the user perspective, if you get a 0, just keep trying to send the same payload } #if defined(FAILURE_HANDLING) if (millis() - timer > 95) { errNotify(); return 0; } #endif } startFastWrite(buf, len, multicast); // Start Writing return 1; } bool RF24::writeFast(const void* buf, uint8_t len) { return writeFast(buf, len, 0); } /****************************************************************************/ //Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high //In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay) //Otherwise we enter Standby-II mode, which is still faster than standby mode //Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data void RF24::startFastWrite(const void* buf, uint8_t len, const bool multicast, bool startTx) { //TMRh20 write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD); if (startTx) { ce(HIGH); } } /****************************************************************************/ //Added the original startWrite back in so users can still use interrupts, ack payloads, etc //Allows the library to pass all tests bool RF24::startWrite(const void* buf, uint8_t len, const bool multicast) { // Send the payload write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD); ce(HIGH); ce(LOW); return !(status & _BV(TX_FULL)); } /****************************************************************************/ bool RF24::rxFifoFull() { return read_register(FIFO_STATUS) & _BV(RX_FULL); } /****************************************************************************/ bool RF24::isWriteFinished() { return (get_status() & (_BV(TX_DS) | _BV(MAX_RT))); } /****************************************************************************/ bool RF24::txStandBy() { #if defined(FAILURE_HANDLING) uint32_t timeout = millis(); #endif while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) { if (status & _BV(MAX_RT)) { write_register(NRF_STATUS, _BV(MAX_RT)); ce(LOW); flush_tx(); //Non blocking, flush the data return 0; } #if defined(FAILURE_HANDLING) if (millis() - timeout > 95) { errNotify(); return 0; } #endif } ce(LOW); //Set STANDBY-I mode return 1; } /****************************************************************************/ bool RF24::txStandBy(uint32_t timeout, bool startTx) { if (startTx) { stopListening(); ce(HIGH); } uint32_t start = millis(); while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) { if (status & _BV(MAX_RT)) { write_register(NRF_STATUS, _BV(MAX_RT)); ce(LOW); // Set re-transmit ce(HIGH); if (millis() - start >= timeout) { ce(LOW); flush_tx(); return 0; } } #if defined(FAILURE_HANDLING) if (millis() - start > (timeout + 95)) { errNotify(); return 0; } #endif } ce(LOW); //Set STANDBY-I mode return 1; } /****************************************************************************/ void RF24::maskIRQ(bool tx, bool fail, bool rx) { /* clear the interrupt flags */ config_reg &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); /* set the specified interrupt flags */ config_reg |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ uint8_t RF24::getDynamicPayloadSize(void) { uint8_t result = read_register(R_RX_PL_WID); if (result > 32) { flush_rx(); delay(2); return 0; } return result; } /****************************************************************************/ bool RF24::available(void) { return available(NULL); } /****************************************************************************/ bool RF24::available(uint8_t* pipe_num) { // get implied RX FIFO empty flag from status byte uint8_t pipe = (get_status() >> RX_P_NO) & 0x07; if (pipe > 5) return 0; // If the caller wants the pipe number, include that if (pipe_num) *pipe_num = pipe; return 1; } /****************************************************************************/ void RF24::read(void* buf, uint8_t len) { // Fetch the payload read_payload(buf, len); //Clear the only applicable interrupt flags write_register(NRF_STATUS, _BV(RX_DR)); } /****************************************************************************/ void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready) { // Read the status & reset the status in one easy call // Or is that such a good idea? write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Report to the user what happened tx_ok = status & _BV(TX_DS); tx_fail = status & _BV(MAX_RT); rx_ready = status & _BV(RX_DR); } /****************************************************************************/ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast(&value), addr_width); write_register(TX_ADDR, reinterpret_cast(&value), addr_width); } /****************************************************************************/ void RF24::openWritingPipe(const uint8_t* address) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, address, addr_width); write_register(TX_ADDR, address, addr_width); } /****************************************************************************/ static const PROGMEM uint8_t child_pipe[] = {RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5}; void RF24::openReadingPipe(uint8_t child, uint64_t address) { // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) { memcpy(pipe0_reading_address, &address, addr_width); } if (child <= 5) { // For pipes 2-5, only write the LSB if (child < 2) { write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), addr_width); } else { write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), 1); } // Note it would be more efficient to set all of the bits for all open // pipes at once. However, I thought it would make the calling code // more simple to do it this way. write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); } } /****************************************************************************/ void RF24::setAddressWidth(uint8_t a_width) { if (a_width -= 2) { write_register(SETUP_AW, a_width % 4); addr_width = (a_width % 4) + 2; } else { write_register(SETUP_AW, 0); addr_width = 2; } } /****************************************************************************/ void RF24::openReadingPipe(uint8_t child, const uint8_t* address) { // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) { memcpy(pipe0_reading_address, address, addr_width); } if (child <= 5) { // For pipes 2-5, only write the LSB if (child < 2) { write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); } else { write_register(pgm_read_byte(&child_pipe[child]), address, 1); } // Note it would be more efficient to set all of the bits for all open // pipes at once. However, I thought it would make the calling code // more simple to do it this way. write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); } } /****************************************************************************/ void RF24::closeReadingPipe(uint8_t pipe) { write_register(EN_RXADDR, read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); } /****************************************************************************/ void RF24::toggle_features(void) { beginTransaction(); status = _spi->transfer(ACTIVATE); _spi->transfer(0x73); endTransaction(); } /****************************************************************************/ void RF24::enableDynamicPayloads(void) { // Enable dynamic payload throughout the system //toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Enable dynamic payload on all pipes // // Not sure the use case of only having dynamic payload on certain // pipes, so the library does not support it. write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); dynamic_payloads_enabled = true; } /****************************************************************************/ void RF24::disableDynamicPayloads(void) { // Disables dynamic payload throughout the system. Also disables Ack Payloads //toggle_features(); write_register(FEATURE, 0); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Disable dynamic payload on all pipes // // Not sure the use case of only having dynamic payload on certain // pipes, so the library does not support it. write_register(DYNPD, 0); dynamic_payloads_enabled = false; ack_payloads_enabled = false; } /****************************************************************************/ void RF24::enableAckPayload(void) { // enable ack payloads and dynamic payload features if (!ack_payloads_enabled){ write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); // Enable dynamic payload on pipes 0 & 1 write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); dynamic_payloads_enabled = true; ack_payloads_enabled = true; } } /****************************************************************************/ void RF24::disableAckPayload(void) { // disable ack payloads (leave dynamic payload features as is) if (ack_payloads_enabled){ write_register(FEATURE, read_register(FEATURE) | ~_BV(EN_ACK_PAY)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); ack_payloads_enabled = false; } } /****************************************************************************/ void RF24::enableDynamicAck(void) { // // enable dynamic ack features // //toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_DYN_ACK)); IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE))); } /****************************************************************************/ bool RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { if (ack_payloads_enabled){ const uint8_t* current = reinterpret_cast(buf); write_payload(current, len, W_ACK_PAYLOAD | (pipe & 0x07)); return !(status & _BV(TX_FULL)); } return 0; } /****************************************************************************/ bool RF24::isAckPayloadAvailable(void) { return available(NULL); } /****************************************************************************/ bool RF24::isPVariant(void) { return _is_p_variant; } /****************************************************************************/ void RF24::setAutoAck(bool enable) { if (enable){ write_register(EN_AA, 0x3F); }else{ write_register(EN_AA, 0); // accomodate ACK payloads feature if (ack_payloads_enabled){ disableAckPayload(); } } } /****************************************************************************/ void RF24::setAutoAck(uint8_t pipe, bool enable) { if (pipe < 6) { uint8_t en_aa = read_register(EN_AA); if (enable) { en_aa |= _BV(pipe); }else{ en_aa &= ~_BV(pipe); if (ack_payloads_enabled && !pipe){ disableAckPayload(); } } write_register(EN_AA, en_aa); } } /****************************************************************************/ bool RF24::testCarrier(void) { return (read_register(CD) & 1); } /****************************************************************************/ bool RF24::testRPD(void) { return (read_register(RPD) & 1); } /****************************************************************************/ void RF24::setPALevel(uint8_t level, bool lnaEnable) { uint8_t setup = read_register(RF_SETUP) & 0xF8; if (level > 3) { // If invalid level, go to max PA level = (RF24_PA_MAX << 1) + lnaEnable; // +1 to support the SI24R1 chip extra bit } else { level = (level << 1) + lnaEnable; // Else set level as requested } write_register(RF_SETUP, setup |= level); // Write it to the chip } /****************************************************************************/ uint8_t RF24::getPALevel(void) { return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1; } /****************************************************************************/ uint8_t RF24::getARC(void) { return read_register(OBSERVE_TX) & 0x0F; } /****************************************************************************/ bool RF24::setDataRate(rf24_datarate_e speed) { bool result = false; uint8_t setup = read_register(RF_SETUP); // HIGH and LOW '00' is 1Mbs - our default setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 280; #else //16Mhz Arduino txDelay=85; #endif if (speed == RF24_250KBPS) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 // Making it '10'. setup |= _BV(RF_DR_LOW); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 505; #else //16Mhz Arduino txDelay = 155; #endif } else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 // Making it '01' if (speed == RF24_2MBPS) { setup |= _BV(RF_DR_HIGH); #if !defined(F_CPU) || F_CPU > 20000000 txDelay = 240; #else // 16Mhz Arduino txDelay = 65; #endif } } write_register(RF_SETUP, setup); // Verify our result if (read_register(RF_SETUP) == setup) { result = true; } return result; } /****************************************************************************/ rf24_datarate_e RF24::getDataRate(void) { rf24_datarate_e result; uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); // switch uses RAM (evil!) // Order matters in our case below if (dr == _BV(RF_DR_LOW)) { // '10' = 250KBPS result = RF24_250KBPS; } else if (dr == _BV(RF_DR_HIGH)) { // '01' = 2MBPS result = RF24_2MBPS; } else { // '00' = 1MBPS result = RF24_1MBPS; } return result; } /****************************************************************************/ void RF24::setCRCLength(rf24_crclength_e length) { config_reg &= ~(_BV(CRCO) | _BV(EN_CRC)); // switch uses RAM (evil!) if (length == RF24_CRC_DISABLED) { // Do nothing, we turned it off above. } else if (length == RF24_CRC_8) { config_reg |= _BV(EN_CRC); } else { config_reg |= _BV(EN_CRC); config_reg |= _BV(CRCO); } write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ rf24_crclength_e RF24::getCRCLength(void) { rf24_crclength_e result = RF24_CRC_DISABLED; uint8_t AA = read_register(EN_AA); config_reg = read_register(NRF_CONFIG); if (config_reg & _BV(EN_CRC) || AA) { if (config_reg & _BV(CRCO)) { result = RF24_CRC_16; } else { result = RF24_CRC_8; } } return result; } /****************************************************************************/ void RF24::disableCRC(void) { config_reg &= ~_BV(EN_CRC); write_register(NRF_CONFIG, config_reg); } /****************************************************************************/ void RF24::setRetries(uint8_t delay, uint8_t count) { write_register(SETUP_RETR, rf24_min(15, delay) << ARD | rf24_min(15, count)); } /****************************************************************************/ void RF24::startConstCarrier(rf24_pa_dbm_e level, uint8_t channel) { stopListening(); write_register(RF_SETUP, read_register(RF_SETUP) | _BV(CONT_WAVE) | _BV(PLL_LOCK)); if (isPVariant()){ setAutoAck(0); setRetries(0, 0); uint8_t dummy_buf[32]; for (uint8_t i = 0; i < 32; ++i) dummy_buf[i] = 0xFF; // use write_register() instead of openWritingPipe() to bypass // truncation of the address with the current RF24::addr_width value write_register(TX_ADDR, reinterpret_cast(&dummy_buf), 5); flush_tx(); // so we can write to top level // use write_register() instead of write_payload() to bypass // truncation of the payload with the current RF24::payload_size value write_register(W_TX_PAYLOAD, reinterpret_cast(&dummy_buf), 32); disableCRC(); } setPALevel(level); setChannel(channel); IF_SERIAL_DEBUG(printf_P(PSTR("RF_SETUP=%02x\r\n"), read_register(RF_SETUP))); ce(HIGH); if (isPVariant()){ delay(1); // datasheet says 1 ms is ok in this instance ce(LOW); reUseTX(); } } /****************************************************************************/ void RF24::stopConstCarrier() { /* * A note from the datasheet: * Do not use REUSE_TX_PL together with CONT_WAVE=1. When both these * registers are set the chip does not react when setting CE low. If * however, both registers are set PWR_UP = 0 will turn TX mode off. */ powerDown(); // per datasheet recommendation (just to be safe) write_register(RF_SETUP, read_register(RF_SETUP) & ~_BV(CONT_WAVE) & ~_BV(PLL_LOCK)); ce(LOW); }