/* * © 2021 Mike S * © 2021 Fred Decker * © 2020 Chris Harlow * © 2022 Harald Barth * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef MotorDriver_h #define MotorDriver_h #include "FSH.h" #include "IODevice.h" #include "DCCTimer.h" #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH) #define isLOW(fastpin) (!isHIGH(fastpin)) #define TOKENPASTE(x, y) x ## y #define TOKENPASTE2(x, y) TOKENPASTE(x, y) #if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) #define HAVE_PORTA(X) X #define HAVE_PORTB(X) X #define HAVE_PORTC(X) X #endif #if defined(ARDUINO_AVR_UNO) #define HAVE_PORTB(X) X #endif // if macros not defined as pass-through we define // them here as someting that is valid as a // statement and evaluates to false. #ifndef HAVE_PORTA #define HAVE_PORTA(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTB #define HAVE_PORTB(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTC #define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif // Virtualised Motor shield 1-track hardware Interface #ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h #define UNUSED_PIN 127 // inside int8_t #endif #if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) struct FASTPIN { volatile uint32_t *inout; uint32_t maskHIGH; uint32_t maskLOW; volatile uint32_t *shadowinout; }; #else struct FASTPIN { volatile uint8_t *inout; uint8_t maskHIGH; uint8_t maskLOW; volatile uint8_t *shadowinout; }; #endif enum class POWERMODE : byte { OFF, ON, OVERLOAD }; class MotorDriver { public: MotorDriver(VPIN power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin); virtual void setPower( POWERMODE mode); virtual POWERMODE getPower() { return powerMode;} __attribute__((always_inline)) inline void setSignal( bool high) { if (trackPWM) { DCCTimer::setPWM(signalPin,high); } else { if (high) { setHIGH(fastSignalPin); if (dualSignal) setLOW(fastSignalPin2); } else { setLOW(fastSignalPin); if (dualSignal) setHIGH(fastSignalPin2); } } }; inline void enableSignal(bool on) { if (on) pinMode(signalPin, OUTPUT); else pinMode(signalPin, INPUT); }; virtual void setBrake( bool on); virtual void setDCSignal(byte speedByte); virtual int getCurrentRaw(); virtual int getCurrentRawInInterrupt(); virtual unsigned int raw2mA( int raw); virtual unsigned int mA2raw( unsigned int mA); inline bool brakeCanPWM() { return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin))); } inline int getRawCurrentTripValue() { return rawCurrentTripValue; } bool isPWMCapable(); bool canMeasureCurrent(); bool trackPWM; // this track uses PWM timer to generate the DCC waveform static bool commonFaultPin; // This is a stupid motor shield which has only a common fault pin for both outputs inline byte getFaultPin() { return faultPin; } inline void setResetCounterPointer(volatile byte *bp) { // load resetPacketCounter pointer resetsCounterP = bp; } void checkPowerOverload(bool useProgLimit, byte trackno); private: volatile byte *resetsCounterP = NULL; // points to the resetPacketCounter if this is a prog track void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result); void getFastPin(const FSH* type,int pin, FASTPIN & result) { getFastPin(type, pin, 0, result); } VPIN powerPin; byte signalPin, signalPin2, currentPin, faultPin, brakePin; FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin; bool dualSignal; // true to use signalPin2 bool invertBrake; // brake pin passed as negative means pin is inverted // Raw to milliamp conversion factors avoiding float data types. // Milliamps=rawADCreading * sensefactorInternal / senseScale // // senseScale is chosen as 256 to give enough scale for 2 decimal place // raw->mA conversion with an ultra fast optimised integer multiplication int senseFactorInternal; // set to senseFactor * senseScale static const int senseScale=256; int senseOffset; unsigned int tripMilliamps; int rawCurrentTripValue; // current sampling POWERMODE powerMode; unsigned long lastSampleTaken; unsigned int sampleDelay; int progTripValue; int lastCurrent; int maxmA; int tripmA; // Wait times for power management. Unit: milliseconds static const int POWER_SAMPLE_ON_WAIT = 100; static const int POWER_SAMPLE_OFF_WAIT = 1000; static const int POWER_SAMPLE_OVERLOAD_WAIT = 20; // Trip current for programming track, 250mA. Change only if you really // need to be non-NMRA-compliant because of decoders that are not either. static const int TRIP_CURRENT_PROG=250; unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; unsigned int power_good_counter = 0; }; #endif