/* * © 2023, Neil McKechnie. All rights reserved. * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * DFPlayer is an MP3 player module with an SD card holder. It also has an integrated * amplifier, so it only needs a power supply and a speaker. * This driver is a modified version of the IO_DFPlayer.h file * ********************************************************************************************* * * 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus * The SC16IS752 has 64 bytes TX & RX FIFO buffer * First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be * needed as the RX Fifo holds the reply * * 2024, Issue with using both UARTs simultaniously, the first configured in myHal.cpp seems to get * overwritten by the second configured. * Possible solution is to handle both uarts in the same IO_I2CDFPLayer.h file as it seems that I2CManager * is not able to disinguise the 2 UARTs as they have the same I2C address * * 2024-01-22: Taken sendpacket and associated code out of _begin(), let _loop() handle it, need testing * * myHall.cpp configuration syntax: * * I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal); * * Parameters: * 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT) * vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART) * 1st vPin for UART 0, 2nd for UART 1 * I2C Address : I2C address of the serial controller, in 0x format * xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz * * * The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track * */ #ifndef IO_I2CDFPlayer_h #define IO_I2CDFPlayer_h #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" // Debug and diagnostic defines, enable too many will result in slowing the driver #define DIAG_I2CDFplayer //#define DIAG_I2CDFplayer_data //#define DIAG_I2CDFplayer_reg //#define DIAG_I2CDFplayer_playing class I2CDFPlayer : public IODevice { private: // Common parameters const uint8_t MAXVOLUME=30; // Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1 uint8_t STOP_BIT = 0x00; // Value LCR bit 2 uint8_t PARITY_ENA = 0x00; // Value LCR bit 3 uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4 uint32_t BAUD_RATE = 9600; uint8_t PRESCALER = 0x01; // Value MCR bit 7 uint8_t RETRYCOUNT_INIT = 0x3; unsigned long _sc16is752_xtal_freq; unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system uint8_t TEMP_REG_VAL = 0x00; uint8_t _inputIndex = 0; uint8_t _recvCMD; // Last received command code byte // uint8_t _inbuffer[10]; // common buffer for processing data from DFPLayer uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer uint8_t status; // I2C status uint8_t _uartSent = _UART_1; // Last uart used to send packet uint8_t _uartReceive = _UART_1; // Last uart to receive packet uint8_t _outbuffer[11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes // SC16IS752 defines I2CAddress _I2CAddress; I2CRB _rb; // Parameters and variables for UART 0 uint8_t FIFO_RX_LEVEL_0 = 0x00; uint8_t FIFO_TX_LEVEL_0 = 0x00; uint8_t _UART_0 = 0x00; uint8_t _retryCounter_0 = RETRYCOUNT_INIT; // Max retries before timing out bool _playing_0 = false; uint8_t _deviceState_0 = DEVSTATE_NORMAL; // Devivce State for DFPLayer unsigned long _commandSendTime_0; // Time (us) that last transmit took place. unsigned long _timeoutTime_0; bool _awaitingResponse_0 = false; uint8_t _requestedVolumeLevel_0 = MAXVOLUME; uint8_t _currentVolume_0 = MAXVOLUME; int _requestedSong_0 = -1; // -1=none, 0=stop, >0=file number bool _repeat_0 = false; // audio file is repeat playing uint8_t _previousCmd_0 = true; bool _playCmd_0 = false; bool _volCmd_0 = false; bool _folderCmd_0 = false; uint8_t _requestedFolder_0 = 0x01; // default to folder 01 uint8_t _currentFolder_0 = 0x01; // default to folder 01 bool _repeatCmd_0 = false; bool _stopplayCmd_0 = false; bool _resetCmd_0 = false; bool _eqCmd_0 = false; uint8_t _requestedEQValue_0 = NORMAL; uint8_t _currentEQvalue_0 = NORMAL; // start equalizer value bool _daconCmd_0 = false; uint8_t _audioMixer_0 = 0x01; // Default to output amplifier 1 bool _setamCmd_0 = false; // Set the Audio mixer channel // Parameters and variables for UART 1 uint8_t FIFO_RX_LEVEL_1 = 0x00; uint8_t FIFO_TX_LEVEL_1 = 0x00; uint8_t _UART_1 = 0x01; uint8_t _retryCounter_1 = RETRYCOUNT_INIT; // Max retries before timing out bool _playing_1 = false; uint8_t _deviceState_1 = DEVSTATE_NORMAL; // Devivce State for DFPLayer unsigned long _commandSendTime_1; // Time (us) that last transmit took place. unsigned long _timeoutTime_1; bool _awaitingResponse_1 = false; uint8_t _requestedVolumeLevel_1 = MAXVOLUME; uint8_t _currentVolume_1 = MAXVOLUME; int _requestedSong_1 = -1; // -1=none, 0=stop, >0=file number bool _repeat_1 = false; // audio file is repeat playing uint8_t _previousCmd_1 = true; bool _playCmd_1 = false; bool _volCmd_1 = false; bool _folderCmd_1 = false; uint8_t _requestedFolder_1 = 0x01; // default to folder 01 uint8_t _currentFolder_1 = 0x01; // default to folder 01 bool _repeatCmd_1 = false; bool _stopplayCmd_1 = false; bool _resetCmd_1 = false; bool _eqCmd_1 = false; uint8_t _requestedEQValue_1 = NORMAL; uint8_t _currentEQvalue_1 = NORMAL; // start equalizer value bool _daconCmd_1 = false; uint8_t _audioMixer_1 = 0x01; // Default to output amplifier 1 bool _setamCmd_1 = false; // Set the Audio mixer channel public: // Constructor I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){ _firstVpin = firstVpin; _nPins = nPins; _I2CAddress = i2cAddress; if (xtal == 0){ _sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW; } else { // should be 1 _sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH; } addDevice(this); } public: static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) { if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal); } void _begin() override { // check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752 I2CManager.begin(); I2CManager.setClock(1000000); if (I2CManager.exists(_I2CAddress)){ DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString()); Init_SC16IS752(_UART_0); // Initialize _UART_0 //Init_SC16IS752(_UART_1); // Initialize _UART_1 // /* if (_deviceState_0 == DEVSTATE_FAILED || _deviceState_1 == DEVSTATE_FAILED){ DIAG(F("SC16IS752 I2C:%s initialization failed"), _I2CAddress.toString()); } } else { DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString()); } // */ #if defined(DIAG_IO) _display(); #endif // Now init DFPlayer 0 // Send a query to the device to see if it responds _deviceState_0 = DEVSTATE_INITIALISING; // _deviceState is for uart 0 // if (status == I2C_STATUS_OK){ //sendPacket(0x42,0,0,_UART_0); // take this out of _begin() and let _loop handle it //_timeoutTime_0 = micros() + 5000000UL; // 5 second timeout //_awaitingResponse_0 = true; // } if (I2CManager.exists(_I2CAddress)){ DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString()); Init_SC16IS752(_UART_1); // Initialize UART_1 if (_deviceState_1 == DEVSTATE_FAILED){ DIAG(F("SC16IS752 I2C:%s initialization failed, UART: %d"), _I2CAddress.toString(), _UART_1); } } else { DIAG(F("SC16IS752 I2C:%s UART not detected, UART: %d"), _I2CAddress.toString(), _UART_0); } #if defined(DIAG_IO) _display(); #endif // Now init DFPlayer 1 // Send a query to the device to see if it responds _deviceState_1 = DEVSTATE_INITIALISING; // _deviceState is for UART 1 //if (status == I2C_STATUS_OK){ // sendPacket(0x42,0,0,_UART_1); // take this out of _begin() and let _loop handle it //_timeoutTime_1 = micros() + 5000000UL; // 5 second timeout //_awaitingResponse_1 = true; // } } void _loop(unsigned long currentMicros) override { // Read responses from device uint8_t _uart; if(_rb.isBusy()) { DIAG(F("I2CDFPlayer: %s, Loop, _rb.isBusy, do nothing"), _I2CAddress.toString()); return; } status = _rb.status; if (status == I2C_STATUS_OK) { _uart = _UART_0; processIncoming(currentMicros, _uart); // Check if a command sent to device has timed out. Allow 0.5 second for response // added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer if(_uart == _UART_0){ if (_awaitingResponse_0 && (int32_t)(currentMicros - _timeoutTime_0) > 0) { // timeout triggered if(_retryCounter_0 == 0){ // retry counter out of luck, must take the device to failed state DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART: %d"), _I2CAddress.toString(), _uart); _deviceState_0 = DEVSTATE_FAILED; // Fail uart 0 _awaitingResponse_0 = false; _playing_0 = false; _retryCounter_0 = RETRYCOUNT_INIT; } else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter_0: %d on UART: %d"), _I2CAddress.toString(), _retryCounter_0, _uart); #endif _timeoutTime_0 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout _awaitingResponse_0 = false; // trigger sending a keep alive 0x42 in processOutgoing() _retryCounter_0 --; // decrement retry counter resetRX_fifo(_uart); // reset the RX fifo as it has corrupt data } } } _uart = _UART_1; //processIncoming(currentMicros, _uart); // Check if a command sent to device has timed out. Allow 0.5 second for response // added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer if(_uart == _UART_1){ if (_awaitingResponse_1 && (int32_t)(currentMicros - _timeoutTime_1) > 0) { // timeout triggered if(_retryCounter_1 == 0){ // retry counter out of luck, must take the device to failed state DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART: %d"), _I2CAddress.toString(), _uart); _deviceState_1 = DEVSTATE_FAILED; // Fail uart 1 _awaitingResponse_1 = false; _playing_1 = false; _retryCounter_1 = RETRYCOUNT_INIT; } else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter_1: %d on UART: %d"), _I2CAddress.toString(), _retryCounter_1, _uart); #endif _timeoutTime_1 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout _awaitingResponse_1 = false; // trigger sending a keep alive 0x42 in processOutgoing() _retryCounter_1 --; // decrement retry counter resetRX_fifo(_uart); // reset the RX fifo as it has corrupt data } } } } if(_rb.isBusy()) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, _rb.isBusy"), _I2CAddress.toString()); #endif return; // I2C operation still ongoing return } status = _rb.status; if (status == I2C_STATUS_OK) { if(!_rb.isBusy()){ // not busy, save to sent data if (_uartSent == _UART_1){ // Previous sent was _UART_1, now sent _UART_0 //#ifdef DIAG_I2CDFplayer_playing // DIAG(F("I2CDFPlayer: %s, sent uart 0"), _I2CAddress.toString()); //#endif // Send any commands that need to go. processOutgoing(currentMicros, _UART_0); _uartSent = _UART_0; } else { //#ifdef DIAG_I2CDFplayer_playing // DIAG(F("I2CDFPlayer: %s, sent uart 1"), _I2CAddress.toString()); //#endif //processOutgoing(currentMicros, _UART_1); _uartSent = _UART_1; } delayUntil(currentMicros + 10000); // Only enter every 10ms } } } // Check for incoming data, and update busy flag and other state accordingly void processIncoming(unsigned long currentMicros, uint8_t _uart) { // Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF" RX_fifo_lvl(_uart); if(_uart == _UART_0){ // Process uart 0 if (FIFO_RX_LEVEL_0 >= 10) { #ifdef DIAG_I2CDFplayer DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART: %d, FIFO_RX_LEVEL_0: %d"),_I2CAddress.toString(), _uart, FIFO_RX_LEVEL_0); #endif _outbuffer[0] = REG_RHR << 3 | _uart << 1; // Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: I2C: %s, Receive data, RX FIFO Data, UART: %d"), _I2CAddress.toString(), _uart); for (int i = 0; i < sizeof _inbuffer; i++){ DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]); } #endif } else { //RX fifo level less < 10, do nothing FIFO_RX_LEVEL_0 = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL_0 next time return; // No data or not enough data in rx fifo, check again next time around } } else { // Process uart 1 if (FIFO_RX_LEVEL_1 >= 10) { #ifdef DIAG_I2CDFplayer DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART: %d, FIFO_RX_LEVEL_1: %d"),_I2CAddress.toString(), _uart, FIFO_RX_LEVEL_1); #endif _outbuffer[0] = REG_RHR << 3 | _uart << 1; // Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer_1[] has the data now RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: I2C: %s, Receive data, RX FIFO Data, UART: %d"), _I2CAddress.toString(), _uart); for (int i = 0; i < sizeof _inbuffer; i++){ DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]); } #endif } else { //RX fifo level less < 10, do nothing FIFO_RX_LEVEL_1 = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL_1 next time return; // No data or not enough data in rx fifo, check again next time around } } // Tranfer _inbuffer or _inbuffer to _inbuffer (common buffer to process incomming frame from DFPLayer) // _inbuffer is used for both uarts if (_uart == _UART_0){ for( int i = 0;i < sizeof _inbuffer; i++){ _inbuffer[i] = _inbuffer[i]; } } else if (_uart == _UART_1){ for( int i = 0;i < sizeof _inbuffer; i++){ _inbuffer[i] = _inbuffer[i]; } } bool ok = false; while (RX_BUFFER != 0) { int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL switch (_inputIndex) { case 0: if (c == 0x7E) ok = true; // Start flag break; case 1: if (c == 0xFF) ok = true; // Version break; case 2: if (c== 0x06) ok = true; // Length break; case 3: _recvCMD = c; // CMD byte ok = true; break; case 6: switch (_recvCMD) { #ifdef DIAG_I2CDFplayer_data if(_uart == _UART_0){ DIAG(F("I2CDFPlayer: %s, uart: %d, _recvCMD: 0x%x _awaitingResponse_0: 0x0%x"),_I2CAddress.toString(), _uart, _recvCMD, _awaitingResponse_0); } else { // uart 1 DIAG(F("I2CDFPlayer: %s, uart: %d, _recvCMD: 0x%x _awaitingResponse_1: 0x0%x"),_I2CAddress.toString(), _uart, _recvCMD, _awaitingResponse_1); } #endif case 0x42: // Response to status query if(_uart == _UART_0){ _playing_0 = (c != 0); // Mark the DFPLayer online and cancel timeout if (_deviceState_0 == DEVSTATE_INITIALISING) { _deviceState_0 = DEVSTATE_NORMAL; #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d, _deviceState_0: 0x0%x"),_I2CAddress.toString(), _recvCMD, _uart, _deviceState_0); #endif #ifdef DIAG_IO _display(); #endif } #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d"), _I2CAddress.toString(), _recvCMD, _uart); #endif _awaitingResponse_0 = false; } else { // uart 1 _playing_1 = (c != 0); // Mark the DFPLayer online and cancel timeout if (_deviceState_1 == DEVSTATE_INITIALISING) { _deviceState_1 = DEVSTATE_NORMAL; #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d, _deviceState_1: 0x0%x"),_I2CAddress.toString(), _recvCMD, _uart, _deviceState_1); #endif #ifdef DIAG_IO _display(); #endif } #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d"), _I2CAddress.toString(), _recvCMD, _uart); #endif _awaitingResponse_1 = false; } break; case 0x3d: // End of play if (_uart == _UART_0){ if (_playing_0) { #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Finished, uart: %d"), _uart); #endif _playing_0 = false; } } else { // uart 1 finished playing if (_playing_1) { #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Finished, uart: %d"), _uart); #endif _playing_1 = false; } } break; case 0x40: // Error codes; 1: Module Busy if (_uart == _UART_0){ DIAG(F("I2CDFPlayer: Error %d returned from device, uart: %d"), c, _uart); _playing_0 = false; } else { // uart 1 error message DIAG(F("I2CDFPlayer: Error %d returned from device, uart: %d"), c, _uart); _playing_1 = false; } break; } ok = true; break; case 4: case 5: case 7: case 8: ok = true; // Skip over these bytes in message. break; case 9: if (c==0xef) { // Message finished if(_uart == _UART_0){ _retryCounter_0 = RETRYCOUNT_INIT; // reset the retry counter as we have received a valid packet } else { //uart 1 _retryCounter_1 = RETRYCOUNT_INIT; // reset the retry counter as we have received a valid packet } } break; default: break; } if (ok){ _inputIndex++; // character as expected, so increment index RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex] } else { _inputIndex = 0; // otherwise reset. RX_BUFFER = 0; } } RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again } // Send any commands that need to be sent void processOutgoing(unsigned long currentMicros, uint8_t _uart) { // When two commands are sent in quick succession, the device will often fail to // execute one. Testing has indicated that a delay of 100ms or more is required // between successive commands to get reliable operation. // If 100ms has elapsed since the last thing sent, then check if there's some output to do. if(_uart == _UART_0){ if (((int32_t)currentMicros - _commandSendTime_0) > 100000) { if ( _resetCmd_0 == true){ sendPacket(0x0C,0,0, _uart); _resetCmd_0 = false; } else if(_volCmd_0 == true) { // do the volme before palying a track if(_requestedVolumeLevel_0 >= 0 && _requestedVolumeLevel_0 <= 30){ _currentVolume_0 = _requestedVolumeLevel_0; // If _requestedVolumeLevel is out of range, sent _currentV1olume } sendPacket(0x06, 0x00, _currentVolume_0, _uart); _volCmd_0 = false; } else if (_playCmd_0 == true) { // Change song if (_requestedSong_0 != -1) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: _requestedVolumeLevel_0: %u, _requestedSong_0: %u, _currentFolder_0: %u _playCmd_0: 0x%x"), _requestedVolumeLevel_0, _requestedSong_0, _currentFolder_0, _playCmd_0); #endif sendPacket(0x0F, _currentFolder_0, _requestedSong_0, _uart); // audio file in folder _requestedSong_0 = -1; _playCmd_0 = false; } } //else if (_requestedSong_0 == 0) { else if (_stopplayCmd_0 == true) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd_0: 0x%x"), _stopplayCmd_0); #endif sendPacket(0x16, 0x00, 0x00, _uart); // Stop playing _requestedSong_0 = -1; _repeat_0 = false; // reset repeat for uart 0 _stopplayCmd_0 = false; } else if (_folderCmd_0 == true) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Folder: _folderCmd_0: 0x%x, _requestedFolder_0: %d"), _stopplayCmd_0, _requestedFolder_0); #endif if (_currentFolder_0 != _requestedFolder_0){ _currentFolder_0 = _requestedFolder_0; } _folderCmd_0 = false; } else if (_repeatCmd_0 == true) { if(_repeat_0 == false) { // No repeat play currently #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Repeat: _repeatCmd_0: 0x%x, _requestedSong_0: %d, _repeat_0: 0x0%x"), _repeatCmd_0, _requestedSong_0, _repeat_0); #endif sendPacket(0x08, 0x00, _requestedSong_0, _uart); // repeat playing audio file in root folder _requestedSong_0 = -1; _repeat_0 = true; } _repeatCmd_0= false; } else if (_daconCmd_0 == true) { // Always turn DAC on #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: DACON: _daconCmd_0: 0x%x"), _daconCmd_0); #endif sendPacket(0x1A,0,0x00, _uart); _daconCmd_0 = false; } else if (_eqCmd_0 == true){ // Set Equalizer, values 0x00 - 0x05 if (_currentEQvalue_0 != _requestedEQValue_0){ #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: EQ: _eqCmd_0: 0x%x, _currentEQvalue_0: 0x0%x, _requestedEQValue_0: 0x0%x"), _eqCmd_0, _currentEQvalue_0, _requestedEQValue_0); #endif _currentEQvalue_0 = _requestedEQValue_0; sendPacket(0x07,0x00,_currentEQvalue_0, _uart); } _eqCmd_0 = false; } else if (_setamCmd_0 == true){ // Set Audio mixer channel setGPIO(_uart); // Set the audio mixer channel _setamCmd_0 = false; } else if ((int32_t)currentMicros - _commandSendTime_0 > 1000000) { // Poll device every second that other commands aren't being sent, // to check if it's still connected and responding. #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Send keepalive, uart: %d") , _uart); #endif sendPacket(0x42,0,0, _uart); if (!_awaitingResponse_0) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse_0: 0x0%x, , uart: %d"), _awaitingResponse_0, _uart); #endif _timeoutTime_0 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds _awaitingResponse_0 = true; } } } } else if(_uart == _UART_1){ if (((int32_t)currentMicros - _commandSendTime_1) > 100000) { if ( _resetCmd_1 == true){ sendPacket(0x0C,0,0, _uart); _resetCmd_1 = false; } else if(_volCmd_1 == true) { // do the volme before palying a track if(_requestedVolumeLevel_1 >= 0 && _requestedVolumeLevel_1 <= 30){ _currentVolume_1 = _requestedVolumeLevel_1; // If _requestedVolumeLevel is out of range, sent _currentV1olume } sendPacket(0x06, 0x00, _currentVolume_1, _uart); _volCmd_1 = false; } else if (_playCmd_1 == true) { // Change song if (_requestedSong_1 != -1) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: _requestedVolumeLevel_1: %u, _requestedSong_1: %u, _currentFolder_1: %u _playCmd_1: 0x%x"), _requestedVolumeLevel_1, _requestedSong_1, _currentFolder_1, _playCmd_1); #endif sendPacket(0x0F, _currentFolder_1, _requestedSong_1, _uart); // audio file in folder _requestedSong_1 = -1; _playCmd_1 = false; } } //else if (_requestedSong_0 == 0) { else if (_stopplayCmd_1 == true) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd_1: 0x%x"), _stopplayCmd_1); #endif sendPacket(0x16, 0x00, 0x00, _uart); // Stop playing _requestedSong_1 = -1; _repeat_1 = false; // reset repeat for uart 0 _stopplayCmd_1 = false; } else if (_folderCmd_1 == true) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Folder: _folderCmd_1: 0x%x, _requestedFolder_1: %d"), _stopplayCmd_1, _requestedFolder_1); #endif if (_currentFolder_1 != _requestedFolder_1){ _currentFolder_1 = _requestedFolder_1; } _folderCmd_1 = false; } else if (_repeatCmd_1 == true) { if(_repeat_1 == false) { // No repeat play currently #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Repeat: _repeatCmd_1: 0x%x, _requestedSong_1: %d, _repeat_1: 0x0%x"), _repeatCmd_1, _requestedSong_1, _repeat_1); #endif sendPacket(0x08, 0x00, _requestedSong_0, _uart); // repeat playing audio file in root folder _requestedSong_1 = -1; _repeat_1 = true; } _repeatCmd_1= false; } else if (_daconCmd_1 == true) { // Always turn DAC on #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: DACON: _daconCmd_1: 0x%x"), _daconCmd_1); #endif sendPacket(0x1A,0,0x00, _uart); _daconCmd_1 = false; } else if (_eqCmd_1 == true){ // Set Equalizer, values 0x00 - 0x05 if (_currentEQvalue_1 != _requestedEQValue_1){ #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: EQ: _eqCmd_1: 0x%x, _currentEQvalue_1: 0x0%x, _requestedEQValue_1: 0x0%x"), _eqCmd_1, _currentEQvalue_1, _requestedEQValue_1); #endif _currentEQvalue_1 = _requestedEQValue_1; sendPacket(0x07,0x00,_currentEQvalue_0, _uart); } _eqCmd_1 = false; } else if (_setamCmd_1 == true){ // Set Audio mixer channel setGPIO(_uart); // Set the audio mixer channel _setamCmd_1 = false; } else if ((int32_t)currentMicros - _commandSendTime_1 > 1000000) { // Poll device every second that other commands aren't being sent, // to check if it's still connected and responding. #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Send keepalive, uart: %d") , _uart); #endif sendPacket(0x42,0,0, _uart); if (!_awaitingResponse_1) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse_1: 0x0%x, , uart: %d"), _awaitingResponse_1, _uart); #endif _timeoutTime_1 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds _awaitingResponse_1 = true; } } } } } // Write to a vPin will do nothing void _write(VPIN vpin, int value) override { if (_deviceState_0 == DEVSTATE_FAILED) return; if (_deviceState_1 == DEVSTATE_FAILED) return; #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Writing to any vPin not supported")); #endif } // WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0. // Volume may be specified as second parameter to writeAnalogue. // If value is zero, the player stops playing. // WriteAnalogue on second pin sets the output volume. // // //void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override { void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override { if (_deviceState_0 == DEVSTATE_FAILED) return; if (_deviceState_1 == DEVSTATE_FAILED) return; #ifdef DIAG_IO DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd); #endif uint8_t pin = vpin - _firstVpin; if (pin == 0) { // Enhanced DFPlayer commands, vPin 0 for uart 0 // Read command and value switch (cmd){ case PLAY: _playCmd_0 = true; _volCmd_0 = true; _requestedSong_0 = value; _requestedVolumeLevel_0 = volume; _playing_0 = true; break; case VOL: _volCmd_0 = true; _requestedVolumeLevel_0 = volume; break; case FOLDER: _folderCmd_0 = true; if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1 _requestedFolder_0 = 0x01; // if outside range, default to folder 01 } else { _requestedFolder_0 = volume; } break; case REPEATPLAY: // Need to check if _repeat == true, if so do nothing if (_repeat_0 == false) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat_0: 0x0%x, value: %d _repeatCmd_0: 0x%x"), _repeat_0, value, _repeatCmd_0); #endif _repeatCmd_0 = true; _requestedSong_0 = value; _requestedVolumeLevel_0 = volume; _playing_0 = true; } break; case STOPPLAY: _stopplayCmd_0 = true; break; case EQ: #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume); #endif _eqCmd_0 = true; if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL _requestedEQValue_0 = NORMAL; } else { // Valid EQ parameter range _requestedEQValue_0 = volume; } break; case RESET: // Reset the DFPlayer module _resetCmd_0 = true; break; case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd); #endif _daconCmd_0 = true; break; case SETAM: // Set the audio mixer channel to 1 or 2 _setamCmd_0 = true; #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: value: %d, cmd: 0x%x"), value, cmd); #endif if (volume <= 0 || volume > 2) { // If out of range, default to 1 _audioMixer_0 = 1; } else { // Valid SETAM parameter in range _audioMixer_0 = volume; // _audioMixer_0 valid values 1 or 2 } break; default: break; } } else if(pin == 1){ // Enhanced DFPlayer commands, vPin 0 for uart 0 switch (cmd){ case PLAY: _playCmd_1 = true; _volCmd_1 = true; _requestedSong_1 = value; _requestedVolumeLevel_1 = volume; _playing_1 = true; break; case VOL: _volCmd_1 = true; _requestedVolumeLevel_1 = volume; break; case FOLDER: _folderCmd_1 = true; if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1 _requestedFolder_1 = 0x01; // if outside range, default to folder 01 } else { _requestedFolder_1 = volume; } break; case REPEATPLAY: // Need to check if _repeat == true, if so do nothing if (_repeat_1 == false) { #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat_1: 0x0%x, value: %d _repeatCmd_1: 0x%x"), _repeat_1, value, _repeatCmd_1); #endif _repeatCmd_1 = true; _requestedSong_1 = value; _requestedVolumeLevel_1 = volume; _playing_1 = true; } break; case STOPPLAY: _stopplayCmd_1 = true; break; case EQ: #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume); #endif _eqCmd_1 = true; if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL _requestedEQValue_1 = NORMAL; } else { // Valid EQ parameter range _requestedEQValue_1 = volume; } break; case RESET: // Reset the DFPlayer module _resetCmd_1 = true; break; case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd); #endif _daconCmd_1 = true; break; case SETAM: // Set the audio mixer channel to 1 or 2 _setamCmd_1 = true; #ifdef DIAG_I2CDFplayer_playing DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: value: %d, cmd: 0x%x"), value, cmd); #endif if (volume <= 0 || volume > 2) { // If out of range, default to 1 _audioMixer_1 = 1; } else { // Valid SETAM parameter in range _audioMixer_1 = volume; // _audioMixer_0 valid values 1 or 2 } break; default: break; } } } // A read on any pin indicates if the player is still playing. int _read(VPIN vpin) override { if (_deviceState_0 == DEVSTATE_FAILED) return false; if (_deviceState_1 == DEVSTATE_FAILED) return false; uint8_t pin = vpin - _firstVpin; if (pin == 0) { // return _playing for uart 0 return _playing_0; } else if (pin == 1) { // return _playing for uart 1 return _playing_1; } } void _display() override { DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S, UART: %d"), _firstVpin, _firstVpin+_nPins-1, (_deviceState_0==DEVSTATE_FAILED) ? F("OFFLINE") : F(""), _UART_0); DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S, UART: %d"), _firstVpin, _firstVpin+_nPins-1, (_deviceState_1==DEVSTATE_FAILED) ? F("OFFLINE") : F(""), _UART_1); } private: // DFPlayer command frame // 7E FF 06 0F 00 01 01 xx xx EF // 0 -> 7E is start code // 1 -> FF is version // 2 -> 06 is length // 3 -> 0F is command // 4 -> 00 is no receive // 5~6 -> 01 01 is argument // 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 ) // 9 -> EF is end code // TODO rewite sendPacket for both uarts -- Done void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0, uint8_t _uart = 0) { if(_uart == _UART_0){ FIFO_TX_LEVEL_0 = 0; // Reset FIFO_TX_LEVEL_0 } else { FIFO_TX_LEVEL_1 = 0; // Reset FIFO_TX_LEVEL_1 } TX_fifo_lvl(_uart); // Now check for TX FIFO level uint8_t out[] = { 0x7E, 0xFF, 06, command, 00, //static_cast(arg >> 8), //static_cast(arg & 0x00ff), arg1, arg2, 00, 00, 0xEF }; setChecksum(out); // Prepend the DFPlayer command with REG address and UART Channel in _outbuffer or _outbuffer _outbuffer[0] = 0x00; // empty _outbuffer[0] just in case if (_uart==_UART_0){ _outbuffer[0] = REG_THR << 3 | _uart << 1; //TX FIFO and UART Channel for ( int i = 1; i < sizeof(out)+1 ; i++){ _outbuffer[i] = out[i-1]; } } else if (_uart==_UART_1){ _outbuffer[0] = REG_THR << 3 | _uart << 1; //TX FIFO and UART Channel for ( int i = 1; i < sizeof(out)+1 ; i++){ _outbuffer[i] = out[i-1]; } } if (_uart==_UART_0){ #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: I2C: %s Sent packet function, UART: %d"), _I2CAddress.toString(), _uart); for (int i = 0; i < sizeof _outbuffer; i++){ DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]); } #endif } else if (_uart==_UART_1){ #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: I2C: %s Sent packet function, UART: %d"), _I2CAddress.toString(), _uart); for (int i = 0; i < sizeof _outbuffer; i++){ DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]); } #endif } //TX_fifo_lvl(_uart); // wrong place, this will overwrite _oubuffer[0], moved to beginning of function if(_uart == _UART_0){ if(FIFO_TX_LEVEL_0 > 10){ //FIFO uart 0 is empty, proceed I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb); // ************************* use this once buffer issue is solved ********************* _commandSendTime_0 = micros(); #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: %d"), _I2CAddress.toString(), _uart); #endif } else { DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: %d"), _I2CAddress.toString(), _uart); _deviceState_0 = DEVSTATE_FAILED; // This should not happen, _devstate_0 is for both UART 0 } } else { //Handle uart 1 if(FIFO_TX_LEVEL_1 > 10){ //FIFO uart 1 is empty, proceed I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb); // ************************* use this once buffer issue is solved ********************* _commandSendTime_1 = micros(); #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: %d"), _I2CAddress.toString(), _uart); #endif } else { DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: %d"), _I2CAddress.toString(), _uart); _deviceState_1 = DEVSTATE_FAILED; // This should not happen, _devstate is for both UART 1 } } } uint16_t calcChecksum(uint8_t* packet) { uint16_t sum = 0; for (int i = 1; i < 7; i++) { sum += packet[i]; } return -sum; } void setChecksum(uint8_t* out) { uint16_t sum = calcChecksum(out); out[7] = (sum >> 8); out[8] = (sum & 0xff); } // SC16IS752 functions // Initialise SC16IS752 only for this uart // First a software reset // Enable FIFO and clear TX & RX FIFO // Need to set the following registers // IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO // IODIR set all bit to 1 indicating al are output // IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 // // LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor), // WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE // MCR bit 7=0 clock divisor devide-by-1 clock input // DLH most significant part of divisor // DLL least significant part of divisor // // BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized // void Init_SC16IS752(uint8_t _uart){ // Return value is in _deviceState_0 or _deviceState_1 #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: Initialize I2C: %s , UART: %d"), _I2CAddress.toString(), _uart); #endif UART_WriteRegister(REG_IOCONTROL, 0x08, _uart); // UART Software reset UART_ReadRegister(REG_FCR, _uart); UART_WriteRegister(REG_FCR, 0x07, _uart); // Reset FIFO, clear RX & TX FIFO UART_WriteRegister(REG_MCR, 0x00, _uart); // Set MCR to all 0, includes Clock divisor TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE; UART_WriteRegister(REG_LCR, TEMP_REG_VAL, _uart); // Divisor latch enabled uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate UART_WriteRegister(REG_DLL, (uint8_t)_divisor, _uart); // Write DLL UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8), _uart); // Write DLH UART_ReadRegister(REG_LCR, _uart); // Read LCR, _inbuffer_x[0] has value, then AND with 0x7F to set bit 7 to 0 if (_uart == _UART_0){ TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit uart 0 } else { if(_uart == _UART_1){ TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit uart 1 } } UART_WriteRegister(REG_LCR, TEMP_REG_VAL, _uart); // Divisor latch disabled UART_WriteRegister(REG_IOCONTROL, 0x00, _uart); // Set pins to GPIO mode UART_WriteRegister(REG_IODIR, 0xFF, _uart); // Set all pins as output setGPIO(_uart); // Set the audio mixer channel, is uart independent status = _rb.status; if(_uart == _UART_0){ // only execute if _UART_0 if (status != I2C_STATUS_OK) { DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); _deviceState_0 = DEVSTATE_FAILED; } else { #ifdef DIAG_IO DIAG(F("SC16IS752: I2C: %s, _rb.status: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); #endif _deviceState_0 = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer } } else { // uart 1 if (status != I2C_STATUS_OK) { DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); _deviceState_1 = DEVSTATE_FAILED; } else { #ifdef DIAG_IO DIAG(F("SC16IS752: I2C: %s, _rb.status: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); #endif _deviceState_1 = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer } } } // Read the Receive FIFO Level register (RXLVL), return a single unsigned integer // of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero // value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data // The RX fifo level is used to check if there are enough bytes to process a frame void RX_fifo_lvl(uint8_t _uart){ UART_ReadRegister(REG_RXLV, _uart); if (_uart == _UART_0){ FIFO_RX_LEVEL_0 = _inbuffer[0]; } else { // uart 1 FIFO_RX_LEVEL_1 = _inbuffer[0]; } #ifdef DIAG_I2CDFplayer if (_uart == _UART_0){ if (FIFO_RX_LEVEL_0 > 0){ //if (FIFO_RX_LEVEL_0 > 0 && FIFO_RX_LEVEL_0 < 10){ // uncomment if only RX lvl between 1-9 is required DIAG(F("SC16IS752: At I2C: %s, UART: 0d%d, FIFO_RX_LEVEL_0: 0d%d"), _I2CAddress.toString(), _uart, _inbuffer[0]); } } else { // uart 1 if (FIFO_RX_LEVEL_1 > 0){ //if (FIFO_RX_LEVEL_1 > 0 && FIFO_RX_LEVEL_1 < 10){ // uncomment if only RX lvl between 1-9 is required DIAG(F("SC16IS752: At I2C: %s, UART: 0d%d, FIFO_RX_LEVEL_1: 0d%d"), _I2CAddress.toString(), _uart, _inbuffer[0]); } } #endif } // Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer // of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero // value from 0 (0x00) to 64 (0x40) // void TX_fifo_lvl(uint8_t _uart){ UART_ReadRegister(REG_TXLV, _uart); if(_uart == _UART_0){ FIFO_TX_LEVEL_0 = _inbuffer[0]; } else { FIFO_TX_LEVEL_1 = _inbuffer[0]; } #ifdef DIAG_I2CDFplayer if(_uart == _UART_0){ // DIAG(F("SC16IS752: At I2C: %s, UART channel: 0d%d, FIFO_TX_LEVEL_0: 0d%d"), _I2CAddress.toString(), _uart, FIFO_TX_LEVEL_0); } else { // DIAG(F("SC16IS752: At I2C: %s, UART channel: 0d%d, FIFO_TX_LEVEL_1: 0d%d"), _I2CAddress.toString(), _uart, FIFO_TX_LEVEL_1); } #endif } // When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query // the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the // CS will complain and generate a timeout. // The RX fifo has corrupt data and need to be flushed, this function does that // void resetRX_fifo(uint8_t _uart){ #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: At I2C: %s, UART: %d, RX fifo reset"), _I2CAddress.toString(), _uart); #endif //TEMP_REG_VAL = 0x03; // Reset RX fifo UART_WriteRegister(REG_FCR, 0x03, _uart); } // Set or reset GPIO pin 0 and 1 depending on the UART ch // This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail // for various auxilary functions void setGPIO(uint8_t _uart){ UART_ReadRegister(REG_IOSTATE, _uart); // Get the current GPIO pins state from the IOSTATE register, independant of uart // _inbuffer for uart 0, _inbuffer for uart 1 if (_audioMixer_0 == 1){ // set to audio mixer 1 if (_uart == _UART_0){ TEMP_REG_VAL = _inbuffer[0]; TEMP_REG_VAL |= (0x01 << _uart); //Set GPIO pin 0 to high _setamCmd_0 = false; } else { // must be UART 1 TEMP_REG_VAL = _inbuffer[0]; TEMP_REG_VAL |= (0x01 << _uart); //Set GPIO pin 1 to high _setamCmd_1 = false; } } else { // set to audio mixer 2 if (_uart == _UART_0){ TEMP_REG_VAL = _inbuffer[0]; TEMP_REG_VAL &= ~(0x01 << _uart); //Set GPIO pin 0 to Low _setamCmd_0 = false; } else { // must be UART 1 TEMP_REG_VAL = _inbuffer[0]; TEMP_REG_VAL &= ~(0x01 << _uart); //Set GPIO pin 1 to Low _setamCmd_1 = false; } } UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL, _uart); } //void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, uint8 _uart, I2CRB &_rb){ void UART_WriteRegister(uint8_t UART_REG, uint8_t Val, uint8_t _uart){ if (_uart == _UART_0){ _outbuffer[0] = UART_REG << 3 | _uart << 1; _outbuffer[1] = Val; I2CManager.write(_I2CAddress, _outbuffer, 2); } else { if (_uart == _UART_1){ _outbuffer[0] = UART_REG << 3 | _uart << 1; _outbuffer[1] = Val; I2CManager.write(_I2CAddress, _outbuffer, 2); } } #ifdef DIAG_I2CDFplayer_reg if(_uart == _UART_0){ DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _outbuffer[1]); } else { if(_uart == _UART_1){ DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _outbuffer[1]); } } #endif } void UART_ReadRegister(uint8_t UART_REG, uint8_t _uart){ if (_uart == _UART_0){ _outbuffer[0] = UART_REG << 3 | _uart << 1; // _outbuffer[0] has now UART_REG and UART I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1); } else if (_uart == _UART_1){ _outbuffer[0] = UART_REG << 3 | _uart << 1; // _outbuffer[0] has now UART_REG and UART I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1); } // _inbuffer has the REG data #ifdef DIAG_I2CDFplayer_reg if (_uart == _UART_0){ DIAG(F("SC16IS752: Read register at I2C: %s, UART: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _inbuffer[0]); } else { DIAG(F("SC16IS752: Read register at I2C: %s, UART: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _inbuffer[0]); } #endif } // SC16IS752 General register set (from the datasheet) enum : uint8_t{ REG_RHR = 0x00, // FIFO Read REG_THR = 0x00, // FIFO Write REG_IER = 0x01, // Interrupt Enable Register R/W REG_FCR = 0x02, // FIFO Control Register Write REG_IIR = 0x02, // Interrupt Identification Register Read REG_LCR = 0x03, // Line Control Register R/W REG_MCR = 0x04, // Modem Control Register R/W REG_LSR = 0x05, // Line Status Register Read REG_MSR = 0x06, // Modem Status Register Read REG_SPR = 0x07, // Scratchpad Register R/W REG_TCR = 0x06, // Transmission Control Register R/W REG_TLR = 0x07, // Trigger Level Register R/W REG_TXLV = 0x08, // Transmitter FIFO Level register Read REG_RXLV = 0x09, // Receiver FIFO Level register Read REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W REG_IOCONTROL = 0x0E, // I/O Control register R/W REG_EFCR = 0x0F, // Extra Features Control Register R/W }; // SC16IS752 Special register set enum : uint8_t{ REG_DLL = 0x00, // Division registers R/W REG_DLH = 0x01, // Division registers R/W }; // SC16IS752 Enhanced regiter set enum : uint8_t{ REG_EFR = 0X02, // Enhanced Features Register R/W REG_XON1 = 0x04, // R/W REG_XON2 = 0x05, // R/W REG_XOFF1 = 0x06, // R/W REG_XOFF2 = 0x07, // R/W }; // DFPlayer commands and values enum : uint8_t{ PLAY = 0x0F, VOL = 0x06, FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is REPEATPLAY = 0x08, STOPPLAY = 0x16, EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS RESET = 0x0C, DACON = 0x1A, SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer NORMAL = 0x00, // Equalizer parameters POP = 0x01, ROCK = 0x02, JAZZ = 0x03, CLASSIC = 0x04, BASS = 0x05, }; }; #endif // IO_I2CDFPlayer_h